

Concentrator Testing Eckhard Lüpfert, K. Pottler, S. Ulmer, DLR Tim Wendelin, NREL

NREL Trough Workshop, Golden Denver 2007

EuroTrough at Plataforma Solar de Almería

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Concentrating Solar Technology is Ready

- Parabolic trough collectors are state of the art
- Components Manufacturers
- Investors
- ✓ Projects
- ✓ Interesting Revenues
- → But what if...
 - → a few millimeters spoil the project success?
 - ✓ mirrors do not have expected specular reflectance?

Objectives of Concentrator Testing

→ Development

- ✓ R&D directed at maximizing performance/cost ratio
- Requires testing tools that provide detailed data on mirror contour, mirror panel positioning
- Manufacture/Installation
 - ✓ QC testing of mirror panels (statistical sampling)
 - ✓ Module assembly
 - Requires fast, relatively simple optical characterization to reveal problems & fix
- ✓ Maintenance/Operation
 - Many contributors to optical performance (e.g. specularity, mirror distortion, dirt, receiver shape/position)
 - Large fields require simple, fast, effective tools to understand/fix problems & maximize performance

Concentrator Optical Characterization

- ➤ Mirror Reflectivity → Spectrometry
- ✓ Mirror Optical Accuracy
 - ✓ Mirror contour
 - ➤ Mirror specularity
- ✓ Mirror Panel Alignment

 - → Position
- → Receiver Positioning
- ➤ Different tools meet needs of each phase of technology deployment.

Photogrammetry

- → Characterizes surface or structure as Z(x,y),
- Minimal equipment required (still camera/reference grid/software)
- Potential for large mirror areas to characterized this way
- ✓ Requires prior surface preparation with reference grid

Geometry und Intercept Analysis with Photogrammetry

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Photogrammetry on Concentrating Collectors

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Concentrator Quality in 3 dimensions

9

Geometric Precision over Large Collector Areas

German Aerospace Center 10 DLR OPALmobil, Trough Workshop March 2007, E. Lüpfert

ET150 Collector Shape Variation from west horizontal position to east horizontal position (180° turn)

Deformations due to gravitational forces measured with Photogrammetry

Photogrammetry on Reflector Surface

DLR

in der Helmholtz-Gemeinschaft

DLR OPALmobil, Trough Workshop March 2007, E. Lüpfert

Photogrammetry on Mirrors

- ➤ Measure Mirror Shape
- ✓ Measure Slope and Slope Deviations
- Measure Deformation due to dead-load etc.

Quality Control during Assembly

Quality Control during Collector Assembly

DLR

15

Automatic Measurement System for Assembly Monitoring

Aerospace Center

in der Helmholtz-Gemeinschaft

States and the second theme

Laser Techniques

- ✓ Laser beam reflected by the concentrator mirror
- → Scanning laser
- ✓ Analysis of the position of the reflected laser on a target

NREL's Video Scanning Hartmann Optical Testing (VSHOT) of State-of-the-Art Parabolic Trough Concentrators

- Focused on development and manufacturing/installation phases
 - Solargenix Advanced Parabolic Pilot Project
 - Industrial Solar Technology (IST) Parabolic Trough Technology Development Project
- Improved VSHOT for Parabolic Trough Field Measurements
- VSHOT characterized Solargenix, Industrial Solar Technology, LS-2 and LS-3 designs
 - Overall contour
 - Mirror Panel Alignment
 - Module to Module Tilt

VSHOT

- Originally designed for point-focus concentrators
- Adapted for linefocus optics (samples one vertical slice at a time)
- Measures bidirectional surface slope, fits data to user defined shape, reports errors relative to that shape

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Gossamer Spaceframe

Gossamer Spaceframe Results

- R.M.S. Slope Error ~ 3.0 milliradians or less
- Based in part on these results, Solargenix decided to use Gossamer spaceframe design in their 64 MW EI Dorado Valley plant.

Results

- VSHOT as development and manufacturing/installation tool (Solargenix/Starnet)
 - Mirror position/tilt/deformation on module support structure
- Example: Correction of lower panel tilt

Summary VSHOT

- Optical Testing Critical to all phases of CSP Deployment
- Different tools needed for different phases
- VSHOT is one tool which cuts across all technologies and phases.

"Distant Observer" Techniques Reflection Image Analysis

- Receiver is imaged, thus couples receiver position/shape to concentrator optics
- Potential for large mirror areas (module level) to be characterized quickly; does not provide point by point surface measurement (i.e. suited to fast module/mirror panel/receiver alignment)
- → Examples:
 - Theoretical Overlay Photographic Alignment System (TOP)
 - → OPAL Reflector Analysis
 - → OPAL Pattern Recognition

A PART A PART A PART A PART A PART

OPAL Reflector Analysis

- → Based on image recognition of a target in the reflector
- ✓ measure coordinates of many points in one step

a start and the second the second theme

Absorber Tube Reflection

- correct for distortion (lens, perspective)
- use luminance threshold to find reflected edges

Absorber Tube Reflection

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

German Aerospace Center 800 1000 1200 1400 1600

1800

1400

Application Examples

- Mirror Facets
- \checkmark high spatial resolution and precision

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

What is the use of all the data?

- → Ray-tracing analyses
- ✓ Intercept factor calculations
- Conclusions from achieved accuracy
 - ✓ Prediction of performance
 - ✓ Specifications for component geometry
 - ✓ Analysis of mechanical loads by dead weight, by wind
- Prototype evaluations
- ✓ Solar field evaluations
- Quality control systems

Intercepted Energy depends on Collector Accuracy Ray-Tracing for Interpretation of Results

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Summary Concentrator Testing

- Spectrometry on Reflectors (hemispherical, specular)
- ➔ 3D-geometry measurement on Reflector surface
- ✓ Slope measurements on reflector surface
- Deformation measurements of reflector panels
- ➔ 3D-collector metal support structure geometry
- Collector metal support structure slope and deformation analysis

Applications of the Results

- → Ray-Tracing Evaluation → Intercept Factor Analysis
- Definition of quality parameters
 (e.g. Root-mean-square slope deviation)
- Application to collector development and evaluation
- Specification for components and assembly
- Quality control, quality assurance during solar field installation
- Solar field performance evaluation, operation supervision

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft