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Isometric View (Source: FlagSol)
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Candidate Salts


� Binary nitrate: 60% NaNO3; 40% KNO3; 
190 °C (eutectic) � 600 °C 
� Hitec : 7% NaNO3; 53% KNO3; 40% NaNO2; 

142 °C � 460 °C 
� HitecXL : 15% NaNO3; 43% KNO3; 42% Ca(NO3)

140 °C � 500 °C 
� Sandia molten salt: xx% NaNO3; yy% ?NO3; 

zz% ?NO3; 100 °C � 500 °C 
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Sandia National Laboratories


Advanced heat transport fluid
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Comparison with Therminol


� Collector field outlet temperatures


¾ 460 to 600 °C 
¾ Thermal stability limits on 3 of 4 salts as high as 

temperature limits on receiver selective surfaces 
¾ Improves Rankine cycle efficiency at expense of 

collector field efficiency; likely limit is perhaps 540 °C 
with current concentration ratios 
¾ Pipe, tank, and heat exchanger materials available for 


all combinations of salt temperatures and impurities
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Comparison with Therminol - Continued


Rankine cycle and annual field efficiencies 
Gross Annual field efficiency 

cycle efficiency Current Prototype 
Therminol 0.377 0.483 0.540 
Salt
 - 450 C 0.396 0.449 0.517
 - 500 C 0.407 0.414 0.492
 - 510 C 0.410 0.406 0.487
 - 540 C 0.424 0.382 0.470 

Emissivity of 0.07 at 400 °C is essentially mandatory 
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Comparison with Therminol - Continued


� Thermal storage 
¾ Heat transport fluid is thermal storage media 
¾ Avoid capital cost, and Rankine cycle performance 

penalty, of oil-to-salt heat exchangers 
¾ Larger temperature rise across collector field; reduces 

storage medium volume 
¾ Avoids parasitic energy demand of storage salt pumps 
¾ $35 to $40/kWht for indirect Therminol storage 
¾ $24/kWht for direct Hitec storage at 450 °C, decreasing 

to $13/kWht for binary salt storage at 540 °C
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Comparison with Therminol - Continued


� Overnight freeze protection increases auxiliary 
demand for thermal energy 
¾ 10 hours per year for Therminol 
¾ 600 hours per year for Sandia salt (130 °C) 
¾ 2,300 hours per year for Hitec and HitecXL (175 °C) 
¾ 4,200 hours per year for binary salt (250 °C) 

� Capital investment in Joule and resistance heating 
systems 
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Comparison with Therminol - Continued


� Higher temperatures and salt impurities require 

low alloy ferritic and stainless steel materials


� Ball joint seals are not yet available


� More complex maintenance procedures for 

draining and filling a collector loop


� Thawing a frozen loop, particularly with lost 

glass envelopes, will be a time consuming 

process
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Nitrate Salt

Design Parameters and Constraints 
¾ Industrial grades, with total chloride contents up to

~0.6 percent, can be accommodated 
¾ For 30 year project life: 

• Temperatures below 400 °C � Carbon steel

• 400 to 480 °C � 9 Cr - 1 Mo low alloy steel

• Above 480 °C � Stabilized stainless steels


¾ Optimum combination of salt impurities and
equipment materials probably not yet identified 
¾ MgNO3 → MgO↓ + NO2 reaction may need to be


promoted in some grades of industrial salt
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Intergranular Stress Corrosion Cracking


�	 Susceptible materials: ‘H’ grades (C > 0.04%) of 304 
and 316 stainless steel; chromium carbide formation at 
temperatures between 530 and 590 °C; chromium 
depletion at grain boundaries 
�	 Residual tensile stresses: Welding 
�	 Chlorides: 0.6 weight percent in industrial grade salt

�	 Water: Disassembly for maintenance 
�	 Possible alternate materials: Stainless steels stabilized 

with titanium (Grade 321) or niobium (Grade 347) 
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Intergranular Stress Corrosion Cracking


Heat affected zone of welds in stabilized stainless steels 
¾ Weld temperatures dissolve titanium (niobium) 

carbides into titanium (niobium) and carbon 
¾ As weld cools, carbon combines with chromium, 

forming chromium carbide; material then susceptible 
to stress corrosion cracking at grain boundaries 
¾ Post weld heat treatment to 850 to 900 °C 
¾ Chromium carbide dissolves to chromium and carbon 
¾ Carbon preferentially recombines with titanium 

(niobium) to re-form stable carbides
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Sandia National Laboratories


� Plant dispatch 
� Levelized cost of energy 
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Salt Components


� Joule heating

� Resistance cable heat tracing

� Pumps

� Tanks

� Steam generator

� Valves

� Instruments

� Needed, but not yet available

� Ball joints 
� Selective surface for temperatures above 450 °C 
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Joule Heating

300 kVA Transformer Heat collection elements 

64 Volts

64 Volts

80 Volts 

480 V / 80 V
300 kVA Transformer 

8 Volts
8 Volts

72 Volts 

72 Volts

8 Volts 

480 V / 80 V 

¾ P = I2 R 
¾ Uniform circumferential 

8 Volts flux 
8 Volts 

¾ No vacuum or salt 
72 Volts boundary penetration 

8 Volts ¾ Demonstrated at ENEA 8 Volts 

and Sandia 
¾ Considerable vendor 

72 Volts


experience
 8 Volts 

1 

4 

3 

7 

5 

8 

2 

3 

2 

1 

4 

5 

66 

8 

Collector 
assembly 1 

Collector 
assembly 2 

21 



Sandia National Laboratories


Joule heating demonstration and analyses
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Resistance Heat Tracing


� Description 
¾ Heat exchangers, pumps, nitrate salt piping, nitrate salt

valves, and Therminol piping: Mineral insulated cables 
¾ Zone selection based on geometry; i.e., 1 heat

exchanger would be a zone, as would a valve bonnet 
¾ Redundant cables provided in each zone 
¾ Storage tanks: Immersion heaters 

� Suppliers 
¾ Chromalox 
¾ Other competitive 
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Resistance Heat Tracing - Continued


Pipe, valve body, and valve bonnet installation
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Resistance Heat Tracing - Continued


End of zone installation 
Stainless steel jacket 

Rigid block insulation 

Flexible blanket insulation 

Tie wire or strap 

Corrugated 
steel tube 

Stainless 
steel foil 

Note: Insulation not shown 
on bottom of pipe for clarity. 

Hot-to-hot 
cable junction 
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FRIATEC - Rheinhütte


High temperature pumps
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Bertrams Heatec


Salt heat transfer systems
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Initial Fill of Nitrate Salt
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Two Tank Thermal Storage


� Description 
¾ Vertical, cylindrical tanks with self-supporting roofs 
¾ Cold tank: SA 516 Grade 70 carbon steel 
¾ Hot tank: SA 387 Grade 91 low alloy steel for 

temperatures < 480 °C; SA 240 Grade 347 stabilized 
stainless steel for temperatures above 
¾ Mineral wool wall insulation; calcium silicate roof 

insulation 
¾ Foamglass and refractory brick foundation; passive 

air cooling 
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Two Tank Thermal Storage - Continued


Foundation Design 
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Two Tank Thermal Storage - Continued


WallTank wall-to-floor joints 
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Two Tank Thermal Storage - Continued


� Floor ring header with spargers 
¾ Limit stratification 
¾ Provide uniform source 

temperatures for steam 
generator and collector field 

� Tank agitation 
¾ Fluid recirculation 
¾ Mechanical mixer 
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Steam Generator
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Steam Generator - Continued


Description 
¾ Forced recirculation, with separate steam drum 
¾ Separate superheater, reheater, evaporator, and 

preheater shells 
¾ U-tube with straight shell and longitudinal baffle 
¾ Nitrate salt on the shell sides, water or steam on 

the tube sides


¾ Startup feedwater heater
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Steam Generator - Continued


Observations


�	 Steam generator will operate more hours at no-load or 
low-load conditions than full-load conditions 
�	 Thorough mixing must be maintained on both nitrate 

salt and water/steam sides at all loads 
�	 Coupled Rankine cycle / steam generator model for 

part-load conditions is a necessary element 
� Daily startup and routine operation was (eventually) 


demonstrated at Solar Two central receiver project
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-------- --------

Steam Generator - Continued

2.8 C pinch point temperature 

Hot Salt Tank	 4,071 m2 total steam generator area 
Cold Salt Tank 139.8 MWt steam generator duty 

441 C 391 C

Salt


1.59 bar 
Duties, kWt Salt Water/steam


Steam 49.519 kg/sec cold reheat steam
 Preheater 20,930 20,930 
0.49 bar Evaporator 72,710 72,710


427 C
 241 C cold reheat steam Superheater 24,503 24,503 
20.7 bar   REHEATER 22.2 bar cold reheat steam Reheater 21,660 21,660


664 m2 area

337.516 kg/sec salt flow rate
 139,803 139,803 

381.826 kg/sec salt flow rate 

441 C Salt 391 C	 Salt 315 C Salt 294 C 719.341 kg/sec salt flow rate 
1.69 bar	 1.66 bar 1.63 bar 

Steam	 312 C Water/steam 307 C Water 
0.75 bar 0.01 bar 0.02 bar


427 C
 312 C 308 F 
  SUPERHEATER 54.325 kg/sec     EVAPORATOR


693 m2 area 2,033 m2 area


233 C 233 C feedwater
65.911 kg/sec PREHEATER 54.936 kg/sec 54.873 kg/sec flow rate 

681 m2 area 

5.0 C preheater approach 
to saturation 

STEAM

DRUM


  312 C 

INTERNAL RECIRCULATION 
10.975 kg/sec flow rate

  312 C 

EXTERNAL RECIRCULATION    ELECTRIC HEATER 
0.063 kg/sec flow rate 0 kWt

  312 C 

EVAPORATOR BLOWDOWN 
0.549 kg/sec flow rate 
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Steam Generator - Continued
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Steam Generator - Continued



Freeze Recovery in Steam Generator


� Nitrate salt is on the shell side in all heat 

exchangers


� Binary salt softens and melts over a narrow 
temperature range 
� Geometry for melting salt on the shell side 

more favorable than on the tube side 
� Solar Two superheater thawed once with no 

apparent damage 
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Freeze Recovery in Steam Generator


Multiple sources of energy for freeze recovery


� Electric heat tracing on shells and channels 
� Electric immersion heaters in steam drum; 


circulate saturated water from drum, to 

evaporator, to preheater, and return


� Send saturated steam from drum through 
superheater or reheater; exhaust to condenser 
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Nitrate Salt Valves


� Description 
¾ Gate valves for flow isolation, draining, and venting 
¾ Electric or pneumatic operators 
¾ Bellows stem seals, with backup combination of 

Teflon washers and graphite impregnated stainless 
steel braid packing 
¾ Catalog items only; specialty valves neither required 

nor desired 
¾ Globe valves are not desired; flow control is provided 

by pump variable speed drive 
41 



FRIATEC - Rheinhütte


Nitrate salt valves
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Instrumentation


� Description 
¾ Temperature: Thermocouples in thermowells 
¾ Heat trace control: Surface thermocouples or 

resistance temperature devices 
¾ Pressure: Impedance coil; transmitters with remote 

diaphragms are not suitable 
¾ Flow rate: Venturi, with differential impedance coil 
¾ Tank level: Capacitance, based on dielectric 

properties of fluid
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Instrumentation - Continued


Design Parameters and Constraints


¾ Conventional capillary fluids are unsuitable, but 
NaK alternate requires heat tracing, and suppliers 
are limited 
¾ Vortex shedding flow meters are reliable, but not 

available for large pipe sizes (measuring a portion 
of the flow may be possible), or for temperatures 
above 400 °C 
¾ Impedance transducers must be kept above 

melting point of salt, or kept dry; salt freezing on 
the diaphragm ruins the transducer 
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Instrumentation - Continued

Kaman KP-1911 

differential 
pressure gauge 

Rear vent tube 
supplied with 

transducer 

/
200 mm 

75 mm 

12 mm 
diameter 
tubing 

12 mm 
diameter 
tubing 

Air salt 
chamber 

50 mm 

Note:  Dimensions of air/salt chamber selected to ensure 
nitrate salt level does not reach rear vent tube entrance 
at design salt flow rate and pressure. 
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Ball Joint Development


Sandia National Laboratories
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Demonstration Program


ENEA
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Development Program


� Performance models and economic analyses 
� Salt analysis 
� Ball joint development 
� Component and system tests 
¾ Joule heating


¾ Freeze/thaw demonstrations


¾ Loop operation and maintenance


� Collector optimization
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Performance and Economic Analyses


� Comprehensive study last conducted by Flabeg, 
Kearney & Associates, NREL, Sandia, and 
Nexant in 2002 
¾ Higher temperatures were beneficial only in 

conjunction with thermal storage; otherwise, 
increase in Rankine efficiency was offset by 
overnight thermal losses and the cost of heat 
tracing 
¾ A low emissivity coating for the heat collection 

elements was necessary 
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Performance and Economic Analyses


� Recent data on prototype heat collection 
element emissivities, low melting point salts, 
and costs for multiple, large Therminol plants 
at a common site 
� Confirm projected energy cost reductions for 

salt projects, and define applicable ranges of 
plant size and storage capacity 
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Salt Development


� Sandia formulation 
� Thermodynamic properties: Melting point, 

density, specific heat, thermal conductivity, 
and viscosity 
� Corrosion rates for carbon, low alloy, and 

stainless steels 
� Eutectic stability 
� Costs: Capital, melting, and maintenance 
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Ball Joint Development


� Therminol: Iron compression seals, a braided 
graphite packing, and a sealing chamber filled 
with graphite flakes 
� In salt, graphite loss by oxidation negligible at 

350 °C, appreciable at 400 °C, rapid at 500 °C 
� Sandia tests 
¾ No suitable metal seals found 
¾ Boron nitride powder a possibility to replace graphite 
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Ball Joint Development - Continued


� Internally insulated design, which maintains 
the graphite temperature below 300 °C, may 
be possible 
� Alternate approaches 
¾ Flex hoses, with mesh liners to reduce pressure 

losses 
¾ Collector designs with fixed heat collection 

elements 
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Component and System Tests
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Component and System Tests - Continued


Joule heating 
� Tests with full-size collector loop 
� Current and voltage distributions over time 
� Preheat and freeze recovery 
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Component and System Tests - Continued


Freeze / thaw experiments 
� Heat collection element 
¾ Repeated freeze/thaw cycles to tube rupture 
¾ Demonstrate the ability to withstand a lifetime of 

cycles (30?) due to plant electric outages with 
simultaneous loss of fluid circulation and heat 
tracing 
¾ Assess supplemental insulation for tubes with 

lost vacuum or lost envelope 
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Component and System Tests - Continued


Freeze / thaw experiments - Continued 
� Heat collection element - Continued 
¾ Consider receiver tube material and tube fabrication 

process 
Annealed 

Type elongation, % 
301 60 
304 55 
321 45 
347 45 
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Component and System Tests - Continued


Freeze / thaw experiments - Continued


� Collector loop 
¾ Inlet line, solar collector assemblies, ball joints, 


crossover pipe, outlet line, and isolation valves


¾ Replicate geometry, thermal losses through 
insulation, voids during freezing, Joule/resistance 
heating boundaries, and various receiver conditions 
(intact, lost vacuum, and lost envelope) 
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Component and System Tests - Continued


Collector loop maintenance


� Therminol

¾ Maintenance truck with vacuum tank


¾ Air removed from loop prior to refilling


� Salt

¾ Maintenance truck with heated vacuum tank


¾ Cleaning procedures for weld zones


¾ Air removed from loop prior to preheating
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Component and System Tests - Continued


Collector loop maintenance 
Continued 
¾ Portable 300 kVA generator and 


480 V / 80 V transformer on 

maintenance truck for Joule 

heating


¾ Permanent low voltage cables


¾ 3 trucks: 48 hours to preheat 

1,000,000 m2 field
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Component and System Tests - Continued


Collector loop demonstration


¾ Lowest cost approach is to convert one loop to (binary) 
salt at a plant with indirect thermal storage 

¾ Add cold salt pump, Joule heating, resistance heating, 
salt valves, and loop fill / drain equipment 

¾ Outlet temperatures up to limits of selective surface


¾ Verify thermal performance, ball joint seals, freeze 

protection energy demands, and maintenance 

procedures
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Collector Optimization


Collector tailored for salt 
¾ Concentration ratio 
¾ Receiver tube diameter 
¾ High temperature selective surface 
¾ Fixed receiver / rotating structure 
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