

Parabolic Trough Technology Workshop March 8th and 9th, 2007 Golden, Colorado

Nitrate and Nitrite/Nitrate Salt Heat Transport Fluids

Bruce Kelly Nexant, Inc. Daniel Barth FRIATEC - Rheinhütte

Doug Brosseau Sandia National Laboratories

Steven Konig Bertrams Heatec

Fabrizio Fabrizi ENEA

Topics

- Concept
- Comparison with Therminol
- Salt components and systems
- Demonstration program
- Development program

Topics

- Concept
- Comparison with Therminol
- Salt components and systems
- Demonstration program
- Development program

Salt Heat Transport Fluid

Steam Generator

Isometric View (Source: FlagSol)

- Binary nitrate: 60% NaNO₃; 40% KNO₃; 190 °C (eutectic) → 600 °C
- Hitec : 7% NaNO₃; 53% KNO₃; 40% NaNO₂; 142 °C → 460 °C
- HitecXL : 15% NaNO₃; 43% KNO₃; 42% Ca(NO₃)₂
 140 °C → 500 °C
- Sandia molten salt: xx% NaNO₃; yy% ?NO₃; zz% ?NO₃; 100 °C → 500 °C

Sandia National Laboratories

Advanced heat transport fluid

Topics

- Concept
- Comparison with Therminol
- Salt components and systems
- Demonstration program
- Development program

Comparison with Therminol

- Collector field outlet temperatures
 - ≻ 460 to 600 °C
 - Thermal stability limits on 3 of 4 salts as high as temperature limits on receiver selective surfaces
 - Improves Rankine cycle efficiency at expense of collector field efficiency; likely limit is perhaps 540 °C with current concentration ratios
 - Pipe, tank, and heat exchanger materials available for all combinations of salt temperatures and impurities

Rankine cycle and annual field efficiencies

	Gross	Annual field efficiency	
	<u>cycle efficiency</u>	Current	Prototype
Therminol	0.377	0.483	0.540
Salt			
- 450 C	0.396	0.449	0.517
- 500 C	0.407	0.414	0.492
- 510 C	0.410	0.406	0.487
- 540 C	0.424	0.382	0.470

Emissivity of 0.07 at 400 °C is essentially mandatory

- Thermal storage
 - > Heat transport fluid is thermal storage media
 - Avoid capital cost, and Rankine cycle performance penalty, of oil-to-salt heat exchangers
 - Larger temperature rise across collector field; reduces storage medium volume
 - > Avoids parasitic energy demand of storage salt pumps
 - \$35 to \$40/kWht for indirect Therminol storage
 - \$24/kWht for direct Hitec storage at 450 °C, decreasing to \$13/kWht for binary salt storage at 540 °C

- Overnight freeze protection increases auxiliary demand for thermal energy
 - > 10 hours per year for Therminol
 - ➢ 600 hours per year for Sandia salt (130 °C)
 - > 2,300 hours per year for Hitec and HitecXL (175 °C)
 - > 4,200 hours per year for binary salt (250 °C)
- Capital investment in Joule and resistance heating systems

- Higher temperatures and salt impurities require low alloy ferritic and stainless steel materials
- Ball joint seals are not yet available
- More complex maintenance procedures for draining and filling a collector loop
- Thawing a frozen loop, particularly with lost glass envelopes, will be a time consuming process

Nitrate Salt

Design Parameters and Constraints

- Industrial grades, with total chloride contents up to ~0.6 percent, can be accommodated
- > For 30 year project life:
 - Temperatures below 400 °C → Carbon steel
 - 400 to 480 °C \rightarrow 9 Cr 1 Mo low alloy steel
 - Above 480 °C → Stabilized stainless steels
- Optimum combination of salt impurities and equipment materials probably not yet identified
- > MgNO₃ → MgO_↓ + NO₂ reaction may need to be promoted in some grades of industrial salt

Intergranular Stress Corrosion Cracking

- Susceptible materials: 'H' grades (C > 0.04%) of 304 and 316 stainless steel; chromium carbide formation at temperatures between 530 and 590 °C; chromium depletion at grain boundaries
- Residual tensile stresses: Welding
- Chlorides: 0.6 weight percent in industrial grade salt
- Water: Disassembly for maintenance
- Possible alternate materials: Stainless steels stabilized with titanium (Grade 321) or niobium (Grade 347)

Intergranular Stress Corrosion Cracking

Heat affected zone of welds in stabilized stainless steels

- Weld temperatures dissolve titanium (niobium) carbides into titanium (niobium) and carbon
- As weld cools, carbon combines with chromium, forming chromium carbide; material then susceptible to stress corrosion cracking at grain boundaries
- Post weld heat treatment to 850 to 900 °C
- Chromium carbide dissolves to chromium and carbon
- Carbon preferentially recombines with titanium (niobium) to re-form stable carbides

Sandia National Laboratories

- Plant dispatch
- Levelized cost of energy

Topics

- Concept
- Comparison with Therminol
- Salt components and systems
- Demonstration program
- Development program

Salt Components

- Joule heating
- Resistance cable heat tracing
- Pumps
- Tanks
- Steam generator
- Valves
- Instruments
- Needed, but not yet available
 - Ball joints
 - Selective surface for temperatures above 450 °C

Joule Heating

- > P = I² R
- Uniform circumferential flux
- No vacuum or salt boundary penetration
- Demonstrated at ENEA and Sandia
- Considerable vendor experience

Sandia National Laboratories

Joule heating demonstration and analyses

Resistance Heat Tracing

Description

- Heat exchangers, pumps, nitrate salt piping, nitrate salt valves, and Therminol piping: Mineral insulated cables
- Zone selection based on geometry; i.e., 1 heat exchanger would be a zone, as would a valve bonnet
- Redundant cables provided in each zone
- Storage tanks: Immersion heaters

Suppliers

- Chromalox
- > Other competitive

Resistance Heat Tracing - Continued

Pipe, valve body, and valve bonnet installation

Resistance Heat Tracing - Continued

End of zone installation

ONEXANT

FRIATEC - Rheinhütte

High temperature pumps

Salt heat transfer systems

Initial Fill of Nitrate Salt

Two Tank Thermal Storage

- Description
 - > Vertical, cylindrical tanks with self-supporting roofs
 - > Cold tank: SA 516 Grade 70 carbon steel
 - Hot tank: SA 387 Grade 91 low alloy steel for temperatures < 480 °C; SA 240 Grade 347 stabilized stainless steel for temperatures above
 - Mineral wool wall insulation; calcium silicate roof insulation
 - Foamglass and refractory brick foundation; passive air cooling

Two Tank Thermal Storage - Continued

() Nexant

Two Tank Thermal Storage - Continued

Two Tank Thermal Storage - Continued

- Floor ring header with spargers
 - Limit stratification
 - Provide uniform source temperatures for steam generator and collector field
- Tank agitation
 - Fluid recirculation
 - Mechanical mixer

Steam Generator

Description

- > Forced recirculation, with separate steam drum
- Separate superheater, reheater, evaporator, and preheater shells
- > U-tube with straight shell and longitudinal baffle
- Nitrate salt on the shell sides, water or steam on the tube sides
- Startup feedwater heater

Observations

- Steam generator will operate more hours at no-load or low-load conditions than full-load conditions
- Thorough mixing must be maintained on both nitrate salt and water/steam sides at all loads
- Coupled Rankine cycle / steam generator model for part-load conditions is a necessary element
- Daily startup and routine operation was (eventually) demonstrated at Solar Two central receiver project

ONEXANT

Freeze Recovery in Steam Generator

- Nitrate salt is on the shell side in all heat exchangers
- Binary salt softens and melts over a narrow temperature range
- Geometry for melting salt on the shell side more favorable than on the tube side
- Solar Two superheater thawed once with no apparent damage

Multiple sources of energy for freeze recovery

- Electric heat tracing on shells and channels
- Electric immersion heaters in steam drum; circulate saturated water from drum, to evaporator, to preheater, and return
- Send saturated steam from drum through superheater or reheater; exhaust to condenser

Nitrate Salt Valves

Description

- Gate valves for flow isolation, draining, and venting
- > Electric or pneumatic operators
- Bellows stem seals, with backup combination of Teflon washers and graphite impregnated stainless steel braid packing
- Catalog items only; specialty valves neither required nor desired
- Globe valves are not desired; flow control is provided by pump variable speed drive

FRIATEC - Rheinhütte

Nitrate salt valves

Instrumentation

- Description
 - > Temperature: Thermocouples in thermowells
 - Heat trace control: Surface thermocouples or resistance temperature devices
 - Pressure: Impedance coil; transmitters with remote diaphragms are not suitable
 - **Flow rate: Venturi, with differential impedance coil**
 - Tank level: Capacitance, based on dielectric properties of fluid

Instrumentation - Continued

Design Parameters and Constraints

- Conventional capillary fluids are unsuitable, but NaK alternate requires heat tracing, and suppliers are limited
- Vortex shedding flow meters are reliable, but not available for large pipe sizes (measuring a portion of the flow may be possible), or for temperatures above 400 °C
- Impedance transducers must be kept above melting point of salt, or kept dry; salt freezing on the diaphragm ruins the transducer

Instrumentation - Continued

Note: Dimensions of air/salt chamber selected to ensure nitrate salt level does not reach rear vent tube entrance at design salt flow rate and pressure.

Ball Joint Development

Sandia National Laboratories

Demonstration Program

ENEA

Topics

- Concept
- Comparison with Therminol
- Salt components and systems
- Demonstration program
- Development program

Development Program

- Performance models and economic analyses
- Salt analysis
- Ball joint development
- Component and system tests
 - > Joule heating
 - Freeze/thaw demonstrations
 - Loop operation and maintenance
- Collector optimization

Performance and Economic Analyses

- Comprehensive study last conducted by Flabeg, Kearney & Associates, NREL, Sandia, and Nexant in 2002
 - Higher temperatures were beneficial only in conjunction with thermal storage; otherwise, increase in Rankine efficiency was offset by overnight thermal losses and the cost of heat tracing
 - A low emissivity coating for the heat collection elements was necessary

Performance and Economic Analyses

- Recent data on prototype heat collection element emissivities, low melting point salts, and costs for multiple, large Therminol plants at a common site
- Confirm projected energy cost reductions for salt projects, and define applicable ranges of plant size and storage capacity

Salt Development

- Sandia formulation
- Thermodynamic properties: Melting point, density, specific heat, thermal conductivity, and viscosity
- Corrosion rates for carbon, low alloy, and stainless steels
- Eutectic stability
- Costs: Capital, melting, and maintenance

- Therminol: Iron compression seals, a braided graphite packing, and a sealing chamber filled with graphite flakes
- In salt, graphite loss by oxidation negligible at 350 °C, appreciable at 400 °C, rapid at 500 °C
- Sandia tests
 - No suitable metal seals found
 - > Boron nitride powder a possibility to replace graphite

Ball Joint Development - Continued

- Internally insulated design, which maintains the graphite temperature below 300 °C, may be possible
- Alternate approaches
 - Flex hoses, with mesh liners to reduce pressure losses
 - Collector designs with fixed heat collection elements

Component and System Tests

Joule heating

- High current, low voltages, long distances
- IEEE restrictions on maximum voltage
- Considerable vendor experience

Joule heating

- Tests with full-size collector loop
- Current and voltage distributions over time
- Preheat and freeze recovery

Freeze / thaw experiments

- Heat collection element
 - Repeated freeze/thaw cycles to tube rupture
 - Demonstrate the ability to withstand a lifetime of cycles (30?) due to plant electric outages with simultaneous loss of fluid circulation and heat tracing
 - Assess supplemental insulation for tubes with lost vacuum or lost envelope

Freeze / thaw experiments - Continued

- Heat collection element Continued
 - Consider receiver tube material and tube fabrication process

	Annealed		
Type	elongation, %		
301	60		
304	55		
321	45		
347	45		

Freeze / thaw experiments - Continued

- Collector loop
 - Inlet line, solar collector assemblies, ball joints, crossover pipe, outlet line, and isolation valves
 - Replicate geometry, thermal losses through insulation, voids during freezing, Joule/resistance heating boundaries, and various receiver conditions (intact, lost vacuum, and lost envelope)

Collector loop maintenance

- Therminol
 - Maintenance truck with vacuum tank
 - > Air removed from loop prior to refilling
- Salt
 - Maintenance truck with heated vacuum tank
 - Cleaning procedures for weld zones
 - > Air removed from loop prior to preheating

Collector loop maintenance -Continued

- Portable 300 kVA generator and 480 V / 80 V transformer on maintenance truck for Joule heating
- Permanent low voltage cables
- 3 trucks: 48 hours to preheat 1,000,000 m² field

Collector loop demonstration

- Lowest cost approach is to convert one loop to (binary) salt at a plant with indirect thermal storage
- Add cold salt pump, Joule heating, resistance heating, salt valves, and loop fill / drain equipment
- > Outlet temperatures up to limits of selective surface
- Verify thermal performance, ball joint seals, freeze protection energy demands, and maintenance procedures

Collector Optimization

Collector tailored for salt

- Concentration ratio
- Receiver tube diameter
- > High temperature selective surface
- Fixed receiver / rotating structure