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Background on the AHHPS 
Program

Advanced Heavy Hybrid Propulsion System Program:
– a cost-shared R&D program between the US Department of Energy, 

NREL, and Competitively Selected Industry Teams
– Currently 3 teams awarded

AHHPS program Goals:
– Increase the fuel efficiency of heavy trucks (Class 3-8) and buses by as 

much as 100% (2x) over baseline. 
– Reduce U.S. dependence on foreign oil
– Maintain future Environmental Protection Agency emissions standards

the program is in two phases:
– phase I: technology development
– phase II: technology demonstration

appropriate duty cycle will need 
to be chosen by each team
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Background on the Eaton Team

Team Members:
– Eaton Corporation
– International Truck and Engine Corporation
– Ricardo

Subcontract awarded September 2002 
Class 4-6 hybrid truck application

– Focus on Urban Pickup and Delivery Application
– Parallel Hybrid System
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Considerations 
for the Drive Cycle

Why we did this work:
– to benchmark fuel economy and emissions in context of AHHPS program
– the duty cycle will affect the fuel economy of any vehicle
– HEV fuel economy and HEV benefit are directly tied to the drive cycle

Why we used existing cycles to create our cycle: 
– detailed information from delivery fleets considered proprietary
– there are many good cycles available--wish to fit those cycles to our application
– stock cycles have wide degree of use; accepted in the engineering community

Messages to take home:
– DRIVE CYCLE DOES MATTER!
– our cycle is a good choice among several reasonable choices
– it is the best fit to the data we have from the target customer
– this cycle is not proposed as a new standard
– we are highlighting the methodology over the final result
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Contrasting the Cycle Types
Element, Composite, and Weighted Cycles

Element Cycles: UDDS-Schedule D The speed-time trace as 
obtained from literature and 
standards

Weighted: Combines several cycles 
without losing per-cycle 
information
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Composite:
3 CBDTRUCK + 2 ARTERIAL + 1 
COMMUTER

Combines various types of 
driving into one cycle
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Drive Cycle Criterion for our 
Application

1st 1. suitable for both fuel economy and emissions testing (suitable test 
cycles)

2. cycle must be acceptable to all parties involved (acceptable)

3. traction power appropriate to vocation (meet trace)

4. representative of actual customer driving patterns in vocations 
applicable to HEVs (representative driving)

5. ease energy storage State-of-Charge (SOC) correction (ease SOC 
correct)

6. easy to execute in both dynamometer and field testing (ease of 
execution)

2nd

3rd

4th

5th

6th
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Criterion Data for our Application

Baseline Vehicle:(target application)
– Max Engine Power: 175 hp (130 kW)
– examined GVW: 23440 lbs. and half 

payload weight

Metrics from the Customer 
• miles between stops: ~ 0.59 (note:all stops)
• average speed : ~ 17.6 mph
• City/Sub./Hwy: 55% / 28% / 17%

Note: this information represents the target customer’s knowledge of 
the duty cycle
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The Drive Cycle Selection Process
A Process of Elimination

1. Cycle Library

2. Drive Cycle Trace

3.2 Trace Statistics and Simple Vehicle Kinetics
speed and acceleration histograms and averages; 
maximum tractive forces required

a collection of all 
candidate drive cycles

the speed versus time 
information of the cycle

?
5. Meet Criterion?

check how cycle compares to 
customer driving patterns and 
available vehicle performance

4. Ease of SOC Balancing
The fuel energy used over a 
cycle must be large compared 
with the change in State-of-
Charge of the Hybrid Energy 
Storage System.

Team
Consensus

weighted and composite 
cycles created

6. If not, Feedback?
new weightings
or combinations

3.1 Combine/Weight Cycles

Down-select from the remaining cycles to 
a cycle everyone can agree upon.
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1st/
2nd

Downselecting by Suitability and 
Group Acceptability

CRITERION

acceptable & suitable test cycles

Initial Cycles came from:
– NREL’s ADVISORTM vehicle simulation software library
– contributions by Eaton and International

We only considered cycles
– acceptable by the group 
– previously used to measure fuel economy and emissions

This left us with ~50 cycles to examine

ADVISOR is a trademark of the Midwest Research Institute
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3rd Down Selection of Element Cycles 
based on power requirement

CRITERION

meet trace

Maximum Traction Power Required by Cycle
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Weighted & Composite Cycles made 
from “Drivable” Element Cycles

~20 element cycles can be driven by our baseline 
application

However, these element cycles did not match target 
customer data to satisfaction

Therefore, weighted cycles and composite cycles were 
considered
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Example Composite Cycles

Cycle Time
(sec.)

Dist.
(mile)

ASpd
(mph)

# of
Stops

Stop
Time

City
(%)

Sub
(%)

Hwy
(%)

MPG
Gain

Composite 1 * 3466 14.6 15.11 51 613 45 27.5 27.5 32%
Composite 2** 7533 32.9 15.7 60 1854 30 22.7 47.3 39%
Composite 3*** 2978 13 15.7 19 514 46 23 31 34.6%

*    = 3 CBDTRUCK + 2 ARTERIAL +1 COMMUTER ۞
**  = 3 WVUCITY + 1 WVUSURB + 1 WVUINTER
*** = 3 Int’l Local + 1 COMMUTER

۞ SAE J1376, cancelled 1997
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Example Weighted Cycle

West Virginia University Cycles*:
– City Cycle
– City Suburban Heavy Vehicle Route (CSHVR)
– Interstate Cycle

Interstate









++

=

HWYSURBCITY MPGMPGMPG
mile mile mile 

mile Economy Fuel
17.028.055.0

1

CITY CSHVR

*ref SAE: 1999-01-1467
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4th Using Customer Metrics for 
Further Down-Selection

CRITERION

representative driving

Average Speed over Cycle
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4th Using Customer Metrics for 
Further Down-Selection

CRITERION

representative driving
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4th Looking at the Speed 
Distributions

CRITERION

representative driving

CSHVR
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CILCC contains
freeway speed
driving.
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Examining Speed Distributions
Classifying City, Suburban, and Freeway Driving

Peak-Speed on Micro-trip
• microtrip = the travel profile between a start and stop
• the top speed is used to classify microtrips
• City: 30 mph >   top speed >   0 mph

Suburban: 40 mph >=   top speed >= 30 mph
Highway: top speed > 40 mph

The distribution from customer: 

55% city 
28% suburban 
17% highway

the CILCC was arranged to meet this
distribution. SP

EE
D

 (m
ph

)

Distance (miles)
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4th

Speed Distribution Spread
CRITERION

representative driving

Best Fit
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5th/
6th Other Considerations for Testing 

Weighted Cycles versus Composite CyclesCRITERION

ease of SOC correct/ ease of execution

An appropriate element cycle not found:
Remaining choices:
– weighted cycles and 
– composite cycles

Weighted cycles require more testing resources

A composite cycle such as the CILCC is preferred
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Why is Energy Storage SOC 
Important?

Conventional Vehicle testing:
energy from combustion engine equals total energy to complete the cycle
this energy is consistent from test run to test run
no significant energy storage on board other than fuel

HEV testing:
significant amount of energy stored in vehicle Energy Storage System (ESS)
energy may be “taken from” or “added to” ESS during the cycle

Therefore, to compare fuel economy and emissions of 
HEV with a conventional vehicle, the net change in 
ESS energy must be less than 5% (ideally less than 
1%) of the fuel energy used over the cycle*

*Reference: SAE J2711 Recommended Practice For Measuring Fuel Economy 
And Emissions Of Hybrid-Electric And Conventional Heavy-Duty Vehicles
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Weighted and Element Cycles
Tend to be Sensitive to SOC Correction

Sensitivity of SOC Correction over WVU City Cycle
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average speed 8.4 mph

one cycle takes ~25 min.

• These values represent the ratio of 
change in battery energy to fuel 
energy used over the cycle for a 
“worst case” scenario.

• It takes several cycles before the 
amount of change in the battery 
energy is low relative to the total 
fuel energy used.

simulated results

To be within 2% energy, need 3-4 cycles (~2 hr), within 1%, need 4-5 cycles (up to 2.5 hr)
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Composite Cycles
Tend to be Less Sensitive to SOC

Sensitivity of SOC Correction over CILCC Cycle
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1 CILCC = 14.15 miles
average speed 55 mph

one cycle takes ~15 min.

• Composite cycles combine several 
element cycles at one time.

• Because of this, composite cycles 
tend to use more fuel energy than a 
single element cycle. 

• This is favorable for SOC 
correction.

simulated results

within 2% at first cycle, within 1% on 2 cycles
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6th Composite Cycle Uses Less 
Resources (dynamometer time)

CRITERION

ease of execution

WVU Weighted Cycles
No SOC Correct

– 1 CSHVR (0.5 hr)
– 1 WVU City (0.4 hr)
– 1 WVU Interstate (0.5 hr)
–– TOTAL: 1.4 hrsTOTAL: 1.4 hrs

for SOC within 1% ess/fuel 
ratio:

– 3 CSHVR (1.5 hr)
– 5 WVU City (2 hr)
– 2 WVU Interstate (1 hr)
–– TOTAL: 4.5 hrsTOTAL: 4.5 hrs

CILCC Composite Cycles
No SOC Correct

– 1 cycle (0.25 hr)

–– TOTAL: 0.25 hrsTOTAL: 0.25 hrs

for SOC within 1% ess/fuel 
ratio:

– 2 cycle (0.5 hr)

–– TOTAL: 0.5 hrTOTAL: 0.5 hr

NOTE: Independent of emissions testing; multiple cycles may need to be run to measure 
emissions properly (2007 emissions targets) J2711 provides for SOC correction calculations if 
within 5%
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the CILCC Cycle Chosen
Composite International Truck Local Cycle and Commuter
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Fuel Economy Improvement
Hybrid Advantage

based on vehicle simulation
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Drive Cycle does 
matter!

The CILCC cycle 
represents a “good” 
choice among 
reasonable options



27

Summary

The CILCC* cycle chosen for Class 4-6 Urban 
Delivery Vehicle testing DOE AHHPS Program**

(Eaton Team)

The CILCC cycle meets basic criterion such as:
– traction power requirements appropriate to the vehicle vocation
– representative of actual customer driving patterns
– ease of execution in both dynamometer and field testing

Messages:
– The CILCC cycle represents a “good” choice among reasonable options
– CILCC is best fit to the data we have from the target customer
– The drive cycle DOES matter!

* CILCC = Combined International Local Cycle and Commuter
**AHHPS = Advanced Heavy Hybrid Propulsion Systems Program
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