

Heavy Vehicle Auxiliary Load Electrification for the Essential Power System Program: Benefits, Tradeoffs, and Remaining Challenges

presented by

Michael P. O'Keefe and Terry J. Hendricks National Renewable Energy Laboratory

at the

SAE 2002 International Truck & Bus Meeting & Exhibition

20 November 2002

Cobo Center Detroit, Michigan, USA

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel

Introduction

- Dr. Terry J. Hendricks, co-author
 - Task Leader,

Heavy Vehicle Power & Propulsion Systems Team, CTTS

- Michael P. O'Keefe, speaker & primary contact
 - Heavy Vehicle Power & Propulsion Systems Team, CTTS
- National Renewable Energy Laboratory
 - U.S. Department of Energy's national lab (Golden, CO)
 - Only national lab *dedicated* to renewable energy & energy efficiency R&D

Presentation Overview

• Essential Power System (EPS) =

intelligent management of *auxiliary power*

- Energy savings potential significant
- Systems approach is key

Outline

- Background on EPS Concept
- Scope of Analysis
- Auxiliary and Vehicle Duty Cycles
- EPS Energy Tradeoff
- Simulated **EPS Benefits** from ADVISOR
- Conclusions

Duty Cycles • Conclusions

The Essential Power System Concept

- Essential ~ only supply that power essential to meeting your needs when you need it
- Efficient satisfaction of non-propulsion power needs
 - vehicle both in-use and idling
 - optimization/sys. analysis
- Mechanical to electrical auxiliary transformation
- Alternative power strategies provide electricity
 - integrated generation
 - waste energy recovery
 - energy storage
 - auxiliary power units (generator, fuel cell)
 - shore power
 - hybridization

The Essential Power System Concept

OBJECTIVE:

Energy Savings

using

Commercially Viable Solutions

Scope of Auxiliary Loads Addressed

Platform: Class 8 nonrefrigerated tractor-trailer

- future studies will examine Classes 3-8

• Aux. Components analyzed

- engine cooling fan
- engine oil pump
- engine coolant pump
- power steering pump
- alternator
- air compressor
- air conditioning compressor

Scope of Auxiliary Load Analysis

- System tradeoffs of auxiliary load electrification identified
- Potential benefit of removing belt-driven mechanical loads quantified in ADVISOR simulation
 - moving vehicle only
 - no extended idling
- Break-even analysis to estimate the impact of electrical auxiliaries with APU conducted
 - fuel economy impact of electric loads not directly quantified
 - electrical device duty cycle & performance not available

ADVISONSIA

Analyzing Mechanical Auxiliary Loads

- Objective: determine baseline fuel consumption with conventional mechanical loads
- Required information:
 - representative vehicle drive cycles
 - representative auxiliary duty cycle
 - mech. auxiliary energy usage by speed
- Drive cycles used:
 - CSHVR (urban driving)
 - Constant 65 mph
 (highway driving)

Analyzing Mechanical Auxiliary Loads

- Auxiliary Duty Cycles from SAE J1343
 - gives typical usage patterns for heavy vehicle accessories
- Energy usage by speed taken from various
 literature sources

air brake compressor

EPS Energy Tradeoff

- Background
- Scope
- **Duty Cycles**
- **EPS Benefits**
- **Conclusions**

Conventional Auxiliary Load Setup

Essential Power System Power Paths

Energy Impacts of Auxiliary Electrification

Energy Impacts of Auxiliary Electrification

Energy Savings Tradeoff

Interaction of Engine Unloading, Resizing, and Auxiliary Removal

Fuel Economy and Cycle Average Engine Efficiency

CSHVR Cycle

Conclusions

http://www.ctts.nrel.gov/analysis

Maximum Fuel Savings

Using Waste Energy to Generate Electricity

System vs. Component Benefit

NOTE: Maximum Savings--Integrated Generation with waste energy recovery or 100% efficient APU

Conclusions

- An Essential Power System (EPS) involves intelligent management of essential vehicle auxiliary power
- Simulation predicts significant increase in fuel economy through EPS
 - » 9-15% maximum on an urban drive cycle
 - >> 5-8% maximum at a constant 65 mph
- Systems approach
 - » system electrification better than single component electrification
 - » optimization of benefits and tradeoffs required

Future Data Needs

- Mechanical accessory duty cycles
 - real-life data
 - especially for extended idle
- Accessory performance requirements
 - e.g., maximum engine temperature a coolant pump must maintain
- Electrical accessory performance
- Better APU models
- Better integrated generation models

Acknowledgements

- David Orr, Caterpillar
- Rich Bergstrand, PACCAR
- Detroit Diesel
- Freightliner
- Susan Rogers and Sid Diamond, DOE
- Jud Virden, PNNL

Thank You!

