Advanced Petroleum-Based Fuels -Diesel Emissions Control (APBF-DEC) Program

Diesel SUV / Pick-Up Truck Program Status

Principal Investigators: Cynthia Webb Phillip Weber

Motor Fuels: Energy Efficiency in Transportation October 9, 2002

Program Goals / Objectives Light-Duty SUV / Pick-Up Truck

- Determine the Influence of Diesel Fuel Composition on the Ability of NO_X Adsorber Technology, in Conjunction With Diesel Particulate Filters To Achieve Stringent Emissions Levels

– (i.e. LD Tier 2 Bin 5: NO_X <0.07 g/mi, PM <0.01 g/mi)</p>

Program Goals / Objectives Light-Duty SUV / Pick-Up Truck

 Determine the Influence of Diesel Fuel Composition on the Ability of NO_X Adsorber Technology, in Conjunction With Diesel Particulate Filters To Achieve Stringent Emissions Levels

- (i.e. LD Tier 2 Bin 5: $NO_X < 0.07$ g/mi, PM < 0.01 g/mi)

 Can Regeneration / Desulfurization Strategies be Periodically Reoptimized to Maintain a Given Level of Tailpipe Emissions and Minimize the Fuel Economy Impact?

Program Goals / Objectives Light-Duty SUV / Pick-Up Truck

 Determine the Influence of Diesel Fuel Composition on the Ability of NO_X Adsorber Technology, in Conjunction With Diesel Particulate Filters To Achieve Stringent Emissions Levels

- (i.e. LD Tier 2 Bin 5: $NO_X < 0.07$ g/mi, PM < 0.01 g/mi)

- Can Regeneration / Desulfurization Strategies be Periodically Reoptimized to Maintain a Given Level of Tailpipe Emissions and Minimize the Fuel Economy Impact?
- How Can Engine / Catalyst Systems be More Thoroughly Optimized to Provide Optimal Temperature and Reactants for Emissions Control Systems?

Southwest Research Institute – DEC Pick-Up Truck Program

Scope:

One Pick-Up Truck

+

Two Emissions Control System Configurations

Vehicle and Engine:

Two Emissions Control System Configurations

2002 Shevr Dut Stillerado, 2500 vsithi ESR

SCOPE:

Two Emissions Control System Configurations

ECS-A and ECS-B

Emissions Control System A:

-Smallest Physical Package / Lowest Cost -Requires Full Flow Regeneration -Highest Fuel Economy Penalty

Emissions Control System B:

-Partial Flow Regeneration
-Higher Efficiency
-Higher Cost / Larger Physical Package

Dual-Branch Emissions Control System

Engine-Out Emissions vs. Tailpipe Goals

ECS Control Requirements:

•Temperature: Activity Window

•Inlet Concentration: Capacity and Breakthrough

•Regeneration: Periodic Rich Excursion to Clean Trap

Enabling Systems

Tools developed to allow modification of the exhaust gas character (concentration, mass, temperature) to help achieve the aftertreatment requirements for high system efficiency.

NAC: Management Strategy

ENABLERS

ECS Requirements:

•Temperature: Activity Window

•Inlet Concentration: Capacity and Breakthrough

•Regeneration: Periodic Rich Excursion to clean Trap

Measured Exhaust Temperature - On-Vehicle

Enabling Systems-Thermal Management

- Air Gap Exhaust Components
- Turbocharger Bypass

CONSERVATION

- Exhaust Gas Recirculation (EGR)
- Post Injection (In-Cylinder)
- Intake Throttling
- Increased Idle Speed

ENGINE-BASED

- Pre-Catalyst
- Burner

SUPPLEMENTAL

Approaches in Thermal Management

Goal: Exhaust Gas Temperature 300°C - 400°C

Approach1:Approach2:Heat Generation:Engine-BasedSupplementalConservation:Insulation
and
Loss MinimizationInsulation
and
Loss Minimization

Approach 1: EO modification UDDS Interpretation on Engine

Approaches in Thermal Management

Goal: Exhaust Gas Temperature 300°C - 400°C

Approach1:Approach2:Heat Generation:Engine-BasedSupplementalConservation:Insulation
and
Loss MinimizationInsulation
and
Loss Minimization

Approach 2: Burner modification

UDDS Interpretation on Engine

Cost of Thermal Management

$\dot{\mathbf{m}} \mathbf{x} \mathbf{c}_{\mathbf{p}} \mathbf{x} \Delta \mathbf{T} =$ Theoretical Energy Req. $\dot{\mathbf{m}} \mathbf{x} \mathbf{c}_{\mathbf{p}} \mathbf{x} \Delta \mathbf{T} \mathbf{x} \mathbf{\eta} =$ Actual Energy Req.

Efficiency of Converting Fuel Energy to Exhaust Gas Heat

• Temperature Requirements

- Inlet Mass / Concentration NO_X, PM
 - Volume Considerations
 - Opportunities for Reducing Engine-Out Levels

PM / NO_X Tradeoff - Test Cell Runs

- Temperature
- Inlet Conditions
- NAC Regeneration Requirements
 - NO_X Regeneration Requires Reductant to Inlet of NAC
 - Desulfurization Requires Elevated Temperatures and Preferably a Reducing Environment

Progress in NAC Management

Steady-State Development of Regeneration Strategies for High Conversion

Progress in NAC Management

Regeneration Goals:

·λ<1
·Reductant Into NAC
·Reduced O₂ into NAC
·Manageable Exotherm within Catalysts

Regeneration Control: SFI + Burner + Flow Control

NAC: Progress in Regeneration Management

1000 RPM / 20% APP

NO_X Efficiency

Progress in NAC Management

1000 RPM / 20% APP

Next Steps in NAC Management

Participating Companies/Organizations

Automobile: Ford

GM DaimlerChrysler Toyota

Engines:

EMA Caterpillar Detroit Diesel Cummins John Deere Mack Trucks International Truck & Engine

Technology: Battelle

Emission Control:

MECA Johnson Matthey Delphi DeGussa 3M Engelhard Siemens Benteler

Government:

DOE NREL ORNL EPA CARB/SCAQMD

Energy/Additives: API American Chemistry Council **NPRA** BP Ethyl ExxonMobil Marathon Ashland Pennzoil-Quaker State Lubrizol Equilon Texaco **Chevron Oronite** Ciba **Chevron Products** Ergon Valvoline Motiva Infineum Castrol

• NO + $1/2O_2 => NO_2$ (NO to NO₂ Conversion)

•
$$NO_2 + MO^{\times} => MNO_3$$

(NO_2 Trapping)

Too Low: Catalytic Activity Low

• NO + $1/2O_2 => NO_2$ (NO to NO₂ Conversion)

•
$$NO_2 + MO^{\times} => MNO_3$$

(NO_2 Trapping)

In Range: High Conversion and Trapping

- <u>Temperature Requirements</u>
 NAC Operating Window
 - NO + ¹/₂O₂ => NO₂ (NO to NO₂ Conversion)
 - NO₂ + MO[×] => MNO₃ (NO₂ Trapping)

Too High: Thermal Desorption

- Temperature Requirements
 NAC Operating Window
 - NO + $1/_2O_2 => NO_2$ (NO to NO₂ Conversion)
 - $NO_2 + MO^{\times} => MNO_3$ (NO_2 Trapping)

• NO₃⁻ + Red. => N₂ + H₂O (*Nitrate Reduction*)

Temperature Requirements

- NAC Operating Window (3 Distinct Functions)

- NO + $1/_2O_2 => NO_2$ (NO to NO₂ Conversion)
- NO₂ + MO^X => MNO₃ (NO₂ Trapping)
- NO_3^- + Red. => N_2 + H_2O_- (Nitrate Reduction)

NAC: Inlet Mass Needs

Progress in NO_X Management

