APBF-DEC Lubricants Project Status Report and Preliminary Findings

Presented by: Lisa Lanning, *ATL* John Orban, *Battelle* Hsing-Chuan Tsai, *Battelle*

Presented at:APBF-DEC, JCAP, CAFE Joint Meeting Washington, DC October 9, 2002

Government Government

- **DOE**
- **NREL**
- **ORNL**
- **EPA**
- **CARB/SCAQMD**

Participating Companies/ **Organizations**

Automobile Automobile

- **Ford**
- **GM**
- **DaimlerChrysler**
- **Toyota**

Emission Control Emission Control

• MECA • Johnson Matthey •• 3M • **Engelhard • Siemens • Benteler • ArvinMeritor • Clean Diesel Tech. • Corning • Donaldson Co. • OMG**• **NGK • Rhodia • Tenneco Automotive**

Technology Technology

• **Battelle**

Engines Engines

- **EMA**
- **Caterpillar**
- **Detroit Diesel**
- **Cummins**
- **John Deere**
- **Mack Trucks**
- **International Truck & Engine**

Energy/Additives Energy/Additives

- **API American Chemistry Council**
	- **BP Castrol Chevron Oronite**
	- **ChevronTexaco Ciba Ergon**
	- **Ethyl ExxonMobil Infineum**
		- **Lubrizol Marathon Ashland**
			- **Motiva NPRA**
			- **Pennzoil-Quaker State**
	- **Shell Global Solutions Valvoline**

Presentation Outline

•

•

•

•

Background and Project Objectives (Lanning) Background and Project Objectives (Lanning)

Experimental Design (Orban) Experimental Design (Orban)

Test Procedures (Lanning) Test Procedures (Lanning)

Phase I (Part 1) Preliminary Findings (Tsai) Phase I (Part 1) Preliminary Findings (Tsai)

Phase I (Part 2) Status Update (Orban)

Background

•

•

 2007 HD standards and Tier 2 LD standards are 2007 HD standards and Tier 2 LD standards are "aftertreatment forcing" "aftertreatment forcing"

Growing concern: lube oil sulfur and ash

- Potential to interfere with catalyst performance
	- NO $_\mathrm{\mathsf{x}}$ adsorber catalyst poisoning
	- Diesel particle filter plugging

A multi-year project was needed to quantify

- Lubricant effects on engine-out emissions, and
- Effects of lubricant-derived emissions on catalyst performance

Two-Phase Approach

Phase I Phase I

Objectives

Determine the impact of lubricant properties and composition on engine-out/catalyst-in emissions

- Part 1: Characterize effects of lubricant properties on engine out emissions
- Part 2: Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Phase II Phase II

Determine if lubricant formulation impacts the performance and durability of diesel engine ECS

Desired Outcome

Determine which (if any) lube derived emission components are detrimental to ECS performance and durability

The results will provide:

Workgroup Participants

Project Leader: Shawn Whitacre (NREL)

- BP
- CARB
- Caterpillar
- ChevronTexaco
- Chevron Oronite
- Ciba Specialty Chemicals
- Cummins
- Shell Mobile Solutions
- Ethyl Corporation
- ExxonMobil
- Infineum
- International Truck and Engine
- John Deere
- Lubrizol
- Mack
- Marathon-Ashland Petroleum
- Motiva
- Pennzoil-Quaker State
- RohMax
- Shell Global Solutions
- Toyota
- Valvoline

Experimental Design

John Orban, Battelle Co-Chair, APBF-DEC Data Committee

Phase I - Part 1Study Questions

1

2

Are there significant differences in engine-out emissions that can be attributed to oil properties?

- If so, how much of an impact is due to properties of the additive package? … base oil?
- Which emissions species can be directly predicted from the properties of the oil and fuel? (e.g., mass balance for metals) 3
- Can we identify indirect (empirical) relationships between engine-out emissions and oil properties (e.g., PM emissions versus oil ash level or sulfur content)? 4

Experimental Design Criteria/Approach

N'P'

Base Oils**Lubricant Selection**

• Group I: Valero (Paulsboro)

- 4800-5600-ppm S, 75% saturates
- Group II: Excel (Lake Charles)
	- <20-ppm S, >99% saturates
- Group III: Motiva (Port Arthur, TX)
	- <5-ppm S, >99% saturates
- Group IV: BP
	- PAO (poly-alpha olefin, synthetic)
	- 0 sulfur
	- 5% ester for additive solubility (from Uniqema)

Lubricant Selection Lubricant Selection Additive Packages

Five suppliers (Ciba, Chevron, Ethyl, Infineum, and Lubrizol) provided specifications on 26 candidate additive packages provided specifications on 26 candidate additive packages

Range of constituents (in Group II base oil)

•

Supplier and source of constituents not specified

Lubricant Selection

•

Additive Packages *continued*

Phase I - Part 1

12 additive packages selected to be statistically representative of the 26 candidates representative of the 26 candidates

- Span the range of constituents and "principal components"
- Representation from each supplier
- All 12 tested in Group II base oil

 6 of 12 packages selected for duplicate testing with 6 of 12 packages selected for duplicate testing with Group II base oil and testing with Groups I, III, and IV Group II base oil and testing with Groups I, III, and IV

One reference oil

- Periodic testing throughout project
- Sulfur level adequate for monitoring oil consumption using measured $SO₂$

Selected Additive Packages

- = Reference package \bullet
- = Packages tested in all four groups (duplicates in group II)
- = Packages tested only in group II

Ash

0

0.5

1

1.5

2

 \circ = Candidate packages not tested

2000

Phase I - Part 1

Initial tests to demonstrate viability

Test Matrix

Back-to-back 4-mode tests – randomized order

Phase I - Part 1

Test Procedures

Lisa Lanning, ATL Principal Investigator

Test Laboratory – Phase I

•

•

Subcontractor: Automotive Testing Subcontractor: Automotive Testing Laboratories, (East Liberty, OH) Laboratories, (East Liberty, OH)

Test Engine

1999 International T444E

• 7.3L OHV V-8

•

- Direct injection, turbocharged w/ wastegate
- HEUI fuel system
- 215 hp at 2400 rpm
- 540 ft-lbs torque at 1500 rpm
- Exhaust gas recirculation (retrofit)
- Closed crankcase ventilation with filter
- Lube system capacity: 18 quarts

Test Modes and Emissions Measurements

Four Mode Steady-State (OICA)

- Mode 1: Rated Condition
- Mode 2: High Torque
- Mode 3: Road Load
- Mode 4: Low Torque

Emissions Measurements

- Gases (HC, CO, CO₂, NO_x, SO₂)
- PM three sampling trains
	- $-$ TPM, SOF, SO $_{\rm 4}$
	- Metals
	- PAHs

Particulate MatterSample Collection

•

•

•

Train $#1$: PM mass (ATL/ORNL)

- 70 mm Pallflex 'Emfab' (glass fiber w/bonded PTFE)
- Analysis for sulfate and soluble organic fraction (ORNL)

Train #2: PM metals

- 47 mm Gelman 'Teflo' (PTFE w/ PMP support)
- Determined by x-ray fluorescence (DRI)

Train #3: Polycyclic Aromatic Hydrocarbons (PAH)

- 70 mm Pallflex 'Fiberfilm' (glass fiber w/bonded TFE)
- Determined by GC-MS (SwRI)

PM Train 1&2 Configuration

PM Train 3 Configuration

Filter Holders

SO2 Analysis - Overview

 \geq SO₂ measured via impingement in aqueous hydrogen peroxide (wet chemistry method)

- \bullet SO₂ converted to SO₄
- Modeled after EPA methods 6, 8, 16
- Post-test quantification of SO4 concentration using ion chromatograph yields SO_2 emission rate (exhaust flow measured)

Phase I - Part 1

Impinging Apparatus

Sampling Parameters

• All plumbing from tunnel to impingers is heated $(113^{\circ}C / 235^{\circ}F)$ – impingers in ice bath to cool vapor and facilitate reaction

• Cell-software controls impinging valves to direct exhaust to appropriate impinger set depending on Mode#

• Primary and secondary impingers used, each 25 ml: very little SO 2 reaches the secondary impinger

• Dilute exhaust is bubbled through impingers at 3.5 L/min and a 30-minute sampling period is used

IC Analysis

•

•

•

•

•

•

•

•

Anion analysis: for $SO₄$ ⁻²

 Large amount of sample Large amount of sample injected to attain ppb detection injected to attain ppb detection

 15-minute chromatogram, 15-minute chromatogram, typically 2 evaluations run in typically 2 evaluations run in overnight analysis overnight analysis

 \geq 9 ppb to 950 ppb – typical impinger levels $SO₄$ ⁻²

Corrected for blank levels Corrected for blank levels

Fluid Analysis

Oil samples collected at the time of actual emissions testing, between the two evaluations, each test day: full oil analysis performed by SwRI

Fuel samples taken from fuel supply line once every other week: analyzed for S at ATL

Other fuel analyses performed at SwRI (metals)

Phase I – Part 1Preliminary Results

Hsing-Chuan Tsai, Battelle Lubricants Project Statistician

Test Matrix

Test Data(e.g., TPM emissions)

Phase I - Part 1

Adjusting for Trends (e.g., Sulfur emissions)

Sulfur emissions dropped after Group II testing primarily due to fuel Sulfur emissions dropped after Group II testing primarily due to fuel change (fuel sulfur 4.5-ppm => 1-ppm) change (fuel sulfur 4.5-ppm => 1-ppm)

34

Phase I - Part 1

Examples of Adjusted Emissions

Adjusted Sulfur Emissions

 $_{\rm 2}$ Emissions

Test data are adjusted for statistically significant trends observed Test data are adjusted for statistically significant trends observed in the reference oil emissions in the reference oil emissions

Data Analysis Questions #1 and #2

 Are there significant differences in engine-out emissions that can be attributed to oil properties?

•

1

•2

 If so, how much of an impact is due to properties of the additive package? … base oil?

Total PM – Some Differences Among Oils

4-Mode OICA Weighted

• Some statistically significant differences between Groups (across additive packages)

• Some statistically significant differences between additive packages (across Groups)

Phase I - Part 1

Contributions of Total PM Components

• No significant differences in total PM emissions among Group II oils

• Negligible contributions of SO_4 and SOF

NO_x Emissions – Some Significant Differences Among Group II Oils

Phase I - Part 1

${\bf SO_2}$ Emissions – Significant Additive and Base Oil Effects

**Post-aging.

- Significant base oil effect – Group 1 highest
- Magnitude of the effects do not directly correlate with sulfur content of oil

Phase I - Part 1

40

4-Mode OICA Weighted

Elemental Sulfur Emissions

Phase I - Part 1

Ca, Zn and P Emissions

42

Phase I - Part 1

Data Analysis Question #3

a3

 Which emissions species can be directly predicted from the properties of the oil and fuel?

Mass Balance

•Emissions from fuel and oil consumptions and wear metals

•

 Recovery rates obtained by comparing measured emissions with calculated values based on fuel and oil properties

44

44

Phase I - Part 1

Ca Mass Balance

 Ca emissions directly Ca emissions directly correlated with correlated with concentration in oil concentration in oil

•

•

•

•

•

•

 No apparent composition No apparent composition effects effects

42% recovery rate 42% recovery rate

Zn Mass Balance

 Zn emissions directly Zn emissions directly correlated with correlated with concentration in oil concentration in oil

•

•

 Possible composition effects – zinc in oil l2 is preferentially consumed preferentially consumed Possible composition effects – zinc in oil l2 is

38% recovery rate 38% recovery rate

- P Mass Balance
	- P emissions directly P emissions directly correlated with correlated with concentration in oil concentration in oil

•

•

•

•

•

•

- Oil c2, c3 and c4 deviate Oil c2, c3 and c4 deviate significantly significantly
- 86% recovery rate (excl. Oils c2, c3 and c4) 86% recovery rate (excl. Oils c2, c3 and c4)

Phase I - Part 1

47

APBF.DEC

Sulfur Mass Balance

Sulfur Mass Balance (continued)

S emissions directly correlated with concentration in oil S emissions directly correlated with concentration in oil

•

Data Analysis Question #4

a4 Can we identify indirect (empirical) relationships between engine-out emissions and oil properties?

Under investigation

PMversusoil ash?

PMversusoil sulfur level?

 NO_{x} versus principal components?

Phase I Preliminary Observations

• Lubricant formulation has modest effects on regulated emissions

- \bullet $~\pm 10\%$ for CO and NO_x, $\pm 20\%$ for PM, and $\pm 30\%$ for HC
- Sulfur content in the oil has significant effects on sulfur emissions.
- However, oil formulation (beyond oil sulfur content) can have a significant impact on SO₂ emissions (e.g. oils c and i)

 \geq Metals (S, P, Zn, Ca) emissions correlate with concentration in oil

51

Phase I - Part 1

Phase I – Part 2

Status and Early Results

John Orban, Battelle

APBF-DEC

Phase I – Part 2

Objective Objective

Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Approach Approach

Test three oil types using three different oil consumption acceleration methods (blending with fuel, direct injection and combination)

Study Questions

How do emissions change as a function of oil consumption rate? (for each oil type and acceleration method)

How are these changes affected by oil consumption method (blending, injection, combination)?

3

1

Can the differences among methods be predicted from the combined estimated effects of each method? (i.e., interactions)

Test Matrix

Early Results

•

•

Confirms unusually high SO₂ emissions with oil i

Emissions correlate with oil concentration in fuel Emissions correlate with oil concentration in fuel

Mass Balance Results

Acknowledgements Special thanks to:

- Shawn Whitacre (NREL), Project Leader
- Additive suppliers (Ciba, Ethyl, Chevron, Infineum, Lubrizol)
- Base oil suppliers (Valero, Excel, Motiva, BP)
- International Truck and Engine
- APBF-DEC Lubricants Project Workgroup
- U.S. Department of Energy (John Garbak and Steve Goguen)
- **APBF-DEC Funding Partners**: ACC, API, CARB, DOE, EMA, MECA, SCAQMD

