APBF-DEC Lubricants Project Status Report and Preliminary Findings

Presented by: Lisa Lanning, ATL John Orban, Battelle Hsing-Chuan Tsai, Battelle

Presented at: APBF-DEC, JCAP, CAFE Joint Meeting Washington, DC October 9, 2002

Government

- DOE
- NREL
- ORNL
- EPA
- CARB/SCAQMD

Participating Companies/ Organizations

Automobile

- Ford
- GM
- DaimlerChrysler
- Toyota

Emission Control

MECA Johnson Matthey
Delphi 3M Engelhard
Siemens Benteler ArvinMeritor
Clean Diesel Tech. Corning
Donaldson Co. OMG
NGK Rhodia
Tenneco Automotive

Technology

• Battelle

Engines

- EMA
- Caterpillar
- Detroit Diesel
- Cummins
- John Deere
- Mack Trucks
- International Truck & Engine

Energy/Additives

- API American Chemistry Council
 - BP Castrol Chevron Oronite
 - ChevronTexaco
 Ciba
 Ergon
 - Ethyl ExxonMobil Infineum
 - Lubrizol
 Marathon Ashland
 Motiva
 NPRA
 - Pennzoil-Quaker State
 - Shell Global Solutions
 Valvoline

Presentation Outline

Background and Project Objectives (Lanning)

Experimental Design (Orban)

Test Procedures (Lanning)

Phase I (Part 1) Preliminary Findings (Tsai)

Phase I (Part 2) Status Update (Orban)

Background

2007 HD standards and Tier 2 LD standards are "aftertreatment forcing"

Growing concern: lube oil sulfur and ash

- Potential to interfere with catalyst performance
 - NO_x adsorber catalyst poisoning
 - Diesel particle filter plugging

A multi-year project was needed to quantify

- Lubricant effects on engine-out emissions, and
- Effects of lubricant-derived emissions on catalyst performance

Two-Phase Approach

Objectives

Determine the impact of lubricant properties and composition on engine-out/catalyst-in emissions

- Part 1: Characterize effects of lubricant properties on engine out emissions
- Part 2: Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Phase II

Determine if lubricant formulation impacts the performance and durability of diesel engine ECS

Desired Outcome

Determine which (if any) lube derived emission components are detrimental to ECS performance and durability

The results will provide:

Guidelines for lubricant formulation	Design guidelines			
Basestock selectionAdditive chemistry	 Engine manufacturers ECS suppliers 			

Workgroup Participants

Project Leader: Shawn Whitacre (NREL)

- BP
- CARB
- Caterpillar
- ChevronTexaco
- Chevron Oronite
- Ciba Specialty Chemicals
- Cummins
- Shell Mobile Solutions
- Ethyl Corporation
- ExxonMobil
- Infineum

- International Truck and Engine
- John Deere
- Lubrizol
- Mack
- Marathon-Ashland Petroleum
- Motiva
- Pennzoil-Quaker State
- RohMax
- Shell Global Solutions
- Toyota
- Valvoline

Experimental Design

John Orban, Battelle Co-Chair, APBF-DEC Data Committee

Phase I - Part 1 Study Questions

- Are there significant differences in engine-out emissions that can be attributed to oil properties?
- If so, how much of an impact is due to properties of the additive package? ... base oil?
- Which emissions species can be directly predicted from the properties of the oil and fuel? (e.g., mass balance for metals)
- Can we identify indirect (empirical) relationships between engine-out emissions and oil properties (e.g., PM emissions versus oil ash level or sulfur content)?

Experimental Design Criteria/Approach

Lubricant Selection	Test Matrix	Emissions Measurements
 Four base oil groups Additive packages represent current and future products Properties span practical ranges of elemental composition and ash levels 	 Randomize test sequence within oil groups Duplicate testing to evaluate repeatability Periodic tests with reference oil to account for testing trends Monitor oil consumption for mass balance analysis 	 Gases (HC, CO, CO₂, NO_x, SO₂) PM (TPM, SOF, SO₄, Metals, PAHs)
		Phase I - Part 1

11

Lubricant Selection Base Oils

Group I: Valero (Paulsboro)

- 4800-5600-ppm S, 75% saturates
- Group II: Excel (Lake Charles)
 - <20-ppm S, >99% saturates
- Group III: Motiva (Port Arthur, TX)
 - <5-ppm S, >99% saturates
- Group IV: BP
 - PAO (poly-alpha olefin, synthetic)
 - 0 sulfur
 - 5% ester for additive solubility (from Uniqema)

Lubricant Selection Additive Packages

Five suppliers (Ciba, Chevron, Ethyl, Infineum, and Lubrizol) provided specifications on 26 candidate additive packages

Range of constituents (in Group II base oil)

Ash	0 - 1.85%	all
Sulfur	0 – 6590-ppm	
Calcium	0 – 4770-ppm	
Zinc	0 – 1900-ppm	
Phosphorus	0 – 1700-ppm	1
Magnesium	0 – 1700-ppm	
Boron	0 – 1235-ppm	

Supplier and source of constituents not specified

13

Lubricant Selection

Additive Packages

Phase I - Part

12 additive packages selected to be statistically representative of the 26 candidates

- Span the range of constituents and "principal components"
- Representation from each supplier
- All 12 tested in Group II base oil

6 of 12 packages selected for duplicate testing with Group II base oil and testing with Groups I, III, and IV

One reference oil

- Periodic testing throughout project
- Sulfur level adequate for monitoring oil consumption using measured SO₂

Selected Additive Packages

7500

5625

3750

1875

S

- Reference package
- Packages tested in all four groups (duplicates in group II)

1875

3750

S

5625

7500

1000

Ρ

Packages tested only in group II

Ash

• = Candidate packages not tested

2000

1000

500

Mg

Initial tests to demonstrate viability

Test Matrix

Back-to-back 4-mode tests – randomized order

		Base Oil						
Testing	Demo							
Order	Runs	Group 2	Group 1	Group 3	Group 4			
1	bbb	rr-age-rr	rr-age-rr	rr-age-rr	rr-age-rr			Reference oil every
2	eee	aa	aa	aa	aa			,
3	bbb	bb	bb	bb	bb 🗭			fourth test
4	eee	cc	сс	cc	сс			
5		rr	rr	rr	rr 🥌			
6		dd	dd	dd	dd	1.0		
7		ee	ee	ee	ee			Periodic 40-hour aging
8		ff	ff	ff	ff			
9		rr-age-rr			rr-age-rr			between reference
10		gg						tests to evaluate
11		hh						
12		ii						a oil concumption
13		rr						 oil consumption
14		jj						
15		kk						 oil aging effects
16		<u> </u>						
17		rr-age-rr						
18		dd						
19		bb						
20		ee						
21 22		rr						
22		cc ff					- Dup	licate tests
23								
# of Tests	12	54	18	18	22			

Test Procedures

Lisa Lanning, ATL Principal Investigator

Test Laboratory – Phase I

Subcontractor: Automotive Testing Laboratories, (East Liberty, OH)

Test Engine

1999 International T444E

- 7.3L OHV V-8
- Direct injection, turbocharged w/ wastegate
- HEUI fuel system
- 215 hp at 2400 rpm
- 540 ft-lbs torque at 1500 rpm
- Exhaust gas recirculation (retrofit)
- Closed crankcase ventilation with filter
- Lube system capacity: 18 quarts

Test Modes and Emissions Measurements

- Four Mode Steady-State (OICA)
 - Mode 1: Rated Condition
 - Mode 2: High Torque
 - Mode 3: Road Load
 - Mode 4: Low Torque

Emissions Measurements

- Gases (HC, CO, CO₂, NO_x, SO₂)
- PM three sampling trains
 - TPM, SOF, SO₄
 - Metals
 - PAHs

Particulate Matter Sample Collection

Train #1: PM mass (ATL/ORNL)

- 70 mm Pallflex 'Emfab' (glass fiber w/bonded PTFE)
- Analysis for sulfate and soluble organic fraction (ORNL)

Train #2: PM metals

- 47 mm Gelman 'Teflo' (PTFE w/ PMP support)
- Determined by x-ray fluorescence (DRI)

Train #3: Polycyclic Aromatic Hydrocarbons (PAH)

- 70 mm Pallflex 'Fiberfilm' (glass fiber w/bonded TFE)
- Determined by GC-MS (SwRI)

PM Train 1&2 Configuration

PM Train 3 Configuration

Filter Holders

SO₂ Analysis - Overview

SO₂ measured via impingement in aqueous hydrogen peroxide (wet chemistry method)

- SO₂ converted to SO₄
- Modeled after EPA methods 6, 8, 16
- Post-test quantification of SO₄ concentration using ion chromatograph yields SO₂ emission rate (exhaust flow measured)

26

Impinging Apparatus

Sampling Parameters

All plumbing from tunnel to impingers is heated (113°C / 235°F) – impingers in ice bath to cool vapor and facilitate reaction

Cell-software controls impinging valves to direct exhaust to appropriate impinger set depending on Mode#

Primary and secondary impingers used, each 25 ml: very little SO₂ reaches the secondary impinger

Dilute exhaust is bubbled through impingers at 3.5 L/min and a 30-minute sampling period is used

28

IC Analysis

Anion analysis: for SO₄-2

Large amount of sample injected to attain ppb detection

15-minute chromatogram, typically 2 evaluations run in overnight analysis

9 ppb to 950 ppb – typical impinger levels SO₄-2

Corrected for blank levels

Fluid Analysis

Oil samples collected at the time of actual emissions testing, between the two evaluations, each test day: full oil analysis performed by SwRI

Fuel samples taken from fuel supply line once every other week: analyzed for S at ATL Other fuel analyses performed at SwRI (metals)

Phase I – Part 1 Preliminary Results

Hsing-Chuan Tsai, Battelle Lubricants Project Statistician

Test Matrix

		Base Oil							
Testing	Demo								
Order	Runs	Group 2	Group 1	Group 3	Group 4				
1	bbb	rr-age-rr	rr-age-rr	rr-age-rr	rr-age-rr				
2	eee	aa	aa	aa	aa				
3	bbb	bb	bb	bb	bb				
4	eee	сс	сс	сс	сс				
5		rr	rr	rr	rr				
6		dd	dd	dd	dd				
7		ee	ee	ee	e e				
8		ff	ff	ff	ff				
9		rr-age-rr			rr-age-rr				
10		gg							
11		hh							
12		ii							
13		rr							
14		jj							
15		kk							
16		11							
17		rr-age-rr							
18		dd							
19		bb							
20		ee							
21		rr							
22		cc							
23		ff							
24		aa							
# of Tests	12	54	18	18	22				

Test Data (e.g., TPM emissions)

Phase I - Part 1

Adjusting for Trends (e.g., Sulfur emissions)

Sulfur emissions dropped after Group II testing primarily due to fuel change (fuel sulfur 4.5-ppm => 1-ppm)

34

Phase I - Part 1

Examples of Adjusted Emissions

Adjusted Sulfur Emissions

Adjusted SO₂ Emissions

Test data are adjusted for statistically significant trends observed in the reference oil emissions

Data Analysis Questions #1 and #2

Are there significant differences in engine-out emissions that can be attributed to oil properties?

2

If so, how much of an impact is due to properties of the additive package? ... base oil?

Total PM – Some Differences Among Oils

4-Mode OICA Weighted

 Some statistically significant differences between Groups (across additive packages) Some statistically significant differences between additive packages (across Groups)

Contributions of Total PM Components

No significant differences in total PM emissions among Group II oils Negligible contributions of SO₄ and SOF

38

NO_x Emissions – Some Significant Differences Among Group II Oils

SO₂ Emissions – Significant Additive and Base Oil Effects

- Significant base oil effect – Group 1 highest
- Magnitude of the effects do not directly correlate with sulfur content of oil

4-Mode OICA Weighted

*Pre-aging. **Post-aging.

Phase I - Part 1

40

Elemental Sulfur Emissions

Ca, Zn and P Emissions

42

Data Analysis Question #3

3

Which emissions species can be directly predicted from the properties of the oil and fuel?

Mass Balance

Emissions from fuel and oil consumptions and wear metals

Recovery rates obtained by comparing measured emissions with calculated values based on fuel and oil properties

Ca Mass Balance

Ca emissions directly correlated with concentration in oil

No apparent composition effects

42% recovery rate

Zn Mass Balance

Zn emissions directly correlated with concentration in oil

Possible composition effects – zinc in oil l2 is preferentially consumed

38% recovery rate

- **P** Mass Balance
 - P emissions directly correlated with concentration in oil
 - Oil c2, c3 and c4 deviate significantly

86% recovery rate (excl. Oils c2, c3 and c4)

Sulfur Mass Balance

Sulfur Mass Balance (continued)

S emissions directly correlated with concentration in oil

Data Analysis Question #4

Can we identify indirect (empirical) relationships between engine-out emissions and oil properties?

Under investigation

PM versus oil ash?

4

PM versus oil sulfur level? NO_x versus principal components?

Phase I Preliminary Observations

- Lubricant formulation has modest effects on regulated emissions
 - <u>+10% for CO and NO_x, +20% for PM, and +30% for HC</u>
- Sulfur content in the oil has significant effects on sulfur emissions.
- However, oil formulation (beyond oil sulfur content) can have a significant impact on SO₂ emissions (e.g. oils c and i)
- Metals (S, P, Zn, Ca) emissions correlate with concentration in oil

Phase I – Part 2

Status and Early Results

John Orban, Battelle

Phase I – Part 2

Objective

Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Approach

Test three oil types using three different oil consumption acceleration methods (blending with fuel, direct injection and combination)

Study Questions

How do emissions change as a function of oil consumption rate? (for each oil type and acceleration method)

- How are these changes affected by oil type (reference oil, oil i, oil c)
- How are these changes affected by oil consumption method (blending, injection, combination)?

1

Can the differences among methods be predicted from the combined estimated effects of each method? (i.e., interactions)

Test Matrix

	Oil Consumption Acceleration Technique								
	Blending			Injection			Combination		
Testing									
Order*	Oil r2	Oil i2	Oil c2	Oil r2	Oil i2	Oil c2	Oil r2	Oil i2	Oil c2
1	2X, 2X	2X, 2X	2X, 2X	2X, 2X	2X, 2X	2X, 2X	2X, 2X	2X, 2X	2X, 2X
2	4X, 4X	4X, 4X	4X, 4X	4X, 4X	4X, 4X	4X, 4X	4X, 4X	4X, 4X	4X, 4X
3	8X, 8X	8X, 8X	8X, 8X	8X, 8X	8X, 8X	8X, 8X	8X, 8X	8X, 8X	8X, 8X
4	2X, 2X			2X, 2X			2X, 2X		
5	8X, 8X			8X, 8X			8X, 8X		
6	4X, 4X			4X, 4X			4X, 4X		
# of Tests	12	6	6	12	6	6	12	6	6

	Tests completed				
2X	2 times base rate				

Early Results

Confirms unusually high SO₂ emissions with oil i

Emissions correlate with oil concentration in fuel

4-Mode OICA Weighted

56

Mass Balance Results

Acknowledgements

Special thanks to:

- Shawn Whitacre (NREL), Project Leader
- Additive suppliers (Ciba, Ethyl, Chevron, Infineum, Lubrizol)
- Base oil suppliers (Valero, Excel, Motiva, BP)
- International Truck and Engine
- APBF-DEC Lubricants Project Workgroup
- U.S. Department of Energy (John Garbak and Steve Goguen)
- APBF-DEC Funding Partners: ACC, API, CARB, DOE, EMA, MECA, SCAQMD

