

Southwest Research Institute

APBF-DEC MOTOR FUELS CONFERENCE

Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulations-A Progress Report

Department of Emissions Research
Automotive Products and Emissions
Research Division
October 2002

Participating Companies/Organizations

Automobile:

Ford GM DaimlerChrysler Toyota

Technology:
Battelle

Engines:

EMA

Caterpillar

Detroit Diesel

Cummins

John Deere

Mack Trucks

International Truck

& Engine

Government:

DOE

NREL

ORNL

EPA

CARB/SCAQMD

Emission

Control:

MECA

Johnson Matthey

Delphi

3M

Engelhard

Siemens

Benteler

ArvinMeritor

Clean Diesel Tech.

Corning

Donaldson Co.

OMG

NGK

Rhodia

R. Bosch

STT EMTEC

Tenneco Automotive

Energy/ Additives:

API

American Chemistry

Council

NPRA

BP

Ethyl

ExxonMobil

Marathon Ashland

Pennzoil-Quaker State

Lubrizol

Shell Global Solutions

Castrol

ChevronTexaco

Chevron Oronite

Ciba

Ergon

Valvoline

Motiva

Infineum

APBF-DEC

- Introduction
- Objectives
- Technical Approach
- **♦** Test Setup
- System Components
- **Results**
- Summary & Conclusions

Introduction--APBF-DEC

Adapted From NREL/W. Clark
Presentation 9/26/01

- Introduction
- Objectives
 - Technical Approach
 - **♦** Test Setup
 - System Components
 - **Results**
 - Summary & Conclusions

Objectives

- ◆ To Demonstrate Low Emissions Performance of Advanced Diesels+LPL EGR*+Urea SCR+DPF (2 Different Systems)
- **♦** To Evaluate Sensitivities of The Control System Performance To Fuel Variables
- To Determine The Regulated And Unregulated Emissions W.
 &W/O Emission Controls
- **♦** To Examine The Emission Control System Durability
- **♦** To Sample Toxic Emissions For Analysis By Outside Lab

Emissions Goals: 2007 EPA HDE Standards

- Introduction
- Objectives
- Technical Approach
 - **♦** Test Setup
 - System Components
 - **Results**
 - Summary & Conclusions

Technical Approach--Development (\$\phi\$1)

- Introduction
- Objectives
- Technical Approach
- **Test Setup**
 - System Components
 - **Results**
 - Summary & Conclusions

Test Setup

- Introduction
- Objectives
- Technical Approach
- **♦** Test Setup
- System Components
 - **Results**
 - Summary & Conclusions

System Components--Engine

Engine Description (on consignment to the project)

- Caterpillar C12
- 12.0 L/430 hp
- In-Line/6 Cylinders
- Turbocharged/Intercooled

- Rated Speed: 1800 rpm
- Peak Torque: 1650 lb-ft
- Peak Torque Speed:1200 rpm
- **■**Emission Calibration: MY 2000

System Components--Fuels

- **♦ Fuel 1:** Baseline −3 ppm S
- **♦ Fuel 2: Durability/Emission Eval. --8 ppm S**
- **♦ Fuel 3:** Research/Emission Eval.—15 ppm S
- **•** Fuel 4: BP 15
- **♦** Fuel 5: 30 ppm (Excursions)

System Components--EGR System

Scope of Work--Post-Combustion Emission Controls

- Introduction
- Objectives
- Technical Approach
- **♦** Test Setup
- System Components
- Results
 - Summary & Conclusions

Engine Performance

Steady-State Emissions--350ppm Cert. 2D Fuel

Transient Emissions--350ppm Cert. 2D Fuel -- Hot Starts

Steady-State Emissions Comparison--As-Received W.

Cert. Fuel 350ppm S and W.EGR*--DECSE 3ppm Fuel

Transient Emissions Comparison--As-Received W. Cert.

Fuel 350ppm S and W.EGR*--DECSE 3ppm Fuel -- Hot Starts

Steady-State Emissions Comparison--As Received w. 350 ppm vs. EGR*/CB-DPF/SCR--DECSE 3 ppm Fuel

Transient Emissions Comparison—As Received w. 350 ppm vs. EGR*/CB-DPF/SCR--DECSE 3 ppm Fuel — Hot starts

Short-Term Sensitivity To Fuel Sulfur--Steady-State Composite Emissions --Average of 2 OICA Tests

Short-Term Sensitivity To Fuel Sulfur-Transient Composite Emissions*

- Introduction
- Objectives
- Technical Approach
- **♦** Test Setup
- System Components
- **Results**
- **Summary & Conclusions** ■

Summary and Conclusions

- ◆ The C-12 Caterpillar test engine had an EPA Transient NOx/PM emissions of 3.5/0.07 g/bhp-hr.
- The LPL EGR system was installed and calibrated to yield:
 - -over 50% NOx reduction and,
 - about 90%PM reduction
- ◆ SCR System A was installed and urea injection was optimized for the OICA as well as the transient cycle.
- ◆ System A (including LPL EGR) yielded NOx/PM of 0.18/0.004 g/bhp-hr in the OICA test.
- ◆ System A calibration for the EPA transient test cycle yielded <u>composite</u> results of 0.22 to 0.24 g/bhp-hr NOx and 0.004 to 0.008 g/bhp-hr PM.
- The next step for System A is 6,000 hours of durability.

