

Urea Infrastructure Hurdles: Report on TIAX Selective Catalytic Reduction Urea Infrastructure Study Motor Fuels: Effects on Energy Efficiency & Emissions in the Transportation Sector October 10, 2002 Scott Fable Michael D. Jackson TIAX, LLC 1601 S. De Anza Blvd, Suite 100 Cupertino, California 95014-5363

Reference: 72457 NREL SCR

Introduction
Supply and Demand
Impurities
TS&D Pathways
Costs
Environmental Issues
Conclusions

1

Introduction

Impurities

TS&D Pathways

Costs

Environmental Issues

Project Background and Objectives

- DOE is interested in assessing viable exhaust after-treatment technology for heavy-duty and lightduty diesel engines.
- SCR is one technology that is being developed to reduce NOx emissions to meet 2007 emissions standards.
- A key component of SCR technology is the supply and distribution of urea which is typically dissolved in water at 32.5%wt.
- TIAX determined SCR-Urea infrastructure needs and issues relating to:
 - Pathways for manufacture and distribution of urea-water solutions
 - Urea demand
 - Capital requirements and retail costs
 - Environmental impact of spills
 - Life-cycle greenhouse gas emissions

SCR Catalyst

Integrated Urea/Diesel Tank

3

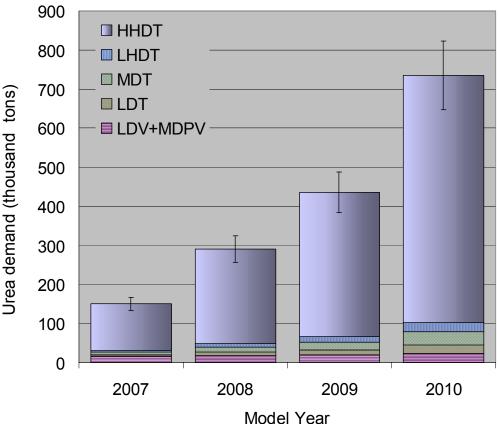
Key issues have been identified among the various aspects of SCR-Urea production and distribution

- SCR and other emissions reduction equipment may not tolerate impurity levels found in some grades of commercially-produced urea.
- Urea distribution costs can range from \$0.70 to \$35/gallon depending on:
 - urea distribution volume
 - number of retail stations
 - product segregation requirements
- Dispensing equipment represents the major part of the distribution costs.
- Standard urea handling precautions and spill cleanup procedures need to be adapted for retail urea dispensing locations.
- The life-cycle greenhouse gas impacts of the urea transportation, storage, and distribution (TS&D) pathways were estimated at up to 1 percent of the current diesel heavy-duty vehicle life-cycle greenhouse emissions.

A comprehensive methodology was used to examine the various aspects of an SCR-Urea Infrastructure

- Contacted various industry participants, including urea manufacturers and distributors, to determine current availability of SCR-compatible urea and existing urea distribution pathways
- Used projected fuel consumption to estimate the amount of urea required to implement SCR in all on-road diesel vehicles meeting federal model year 2007+ emission standards
- Developed a most likely pathways scenario and a range of estimated costs for the implementation of an SCR-urea distribution infrastructure along these pathways
- Used published health and safety standards to estimate the environmental and health impacts from the use of SCR-urea
- Used GREET modeling to determine pathway specific life-cycle greenhouse gas emissions associated with SCR-urea production and distribution infrastructure
- Further details available in NREL publication number: NREL/SR-540-32689 www.ott.doe.gov/pdfs/adl_urea.pdf

Introduction
Supply and Demand
Impurities
TS&D Pathways
Costs
Environmental Issues
Conclusions



In the near-term, sufficient capacity exists to support the estimated SCR-urea demand

- Near-term domestic on-road SCR-urea consumption was estimated from projected on-road diesel consumption.
- Virtually all on-road SCR-urea demand will come from heavy-duty commercial diesel vehicles.
- On-road SCR-urea demand could be met with the current unused production capacity of U.S. manufacturers.
- If 50% of U.S. on-road diesel vehicles use SCR in 2010, the added demand* will be less than the currently unused U.S. production capacity.

*about 2 million tons annually

SCR Urea Demand from Vehicles Meeting Federal MY2007+ Emission Standards

7

Domestic SCR-Urea demand may be supported with a combination of domestic and world urea supply

- Urea production and import levels are heavily influenced by natural gas prices, the main feedstock for urea production.
- The recent rise in domestic natural gas prices has lead to increased supply of urea from foreign markets.
- Roughly one-third of domestic consumption is foreign urea resold by domestic distributors.
- Based on existing and projected suppliers, sufficient urea production capacity exists worldwide to meet the on-road SCR urea demand.

Current Urea Production and Distribution

	All Urea	Million
	Grades	Tons/Year
	Demand	100
WORLD	Production	110
	Capacity	133
	Demand	9-10
DOMESTIC	Production	6
(U.S.)	Capacity	10

Impurities

TS&D Pathways

Costs

Environmental Issues

Common urea impurities in urea may drive need for a high-purity SCR-Urea grade

- Three main urea grades are available:
 - Agricultural (solid)
 - Industrial grade (solid or liquid)
 - High-quality/Reagent grade (solid or liquid)
- Any of these grades could be produced in sufficient quantity for SCR
- Agricultural and industrial grades of urea are widely distributed to highvolume consumers with significant quantities of additives
- Such additives would be incompatible with SCR emission control systems
- Higher-purity grade urea can be produced by avoiding additive introduction during manufacturing

Sample Compositions of Commercial Urea (Solid)

	Agricultural Grade	Industrial Grade
Form	Granular	Granular
Total Nitrogen (%)	46.0	46.0
Biruet Content (%)	1.2-1.4	1.3
Conditioner (%)	0.3-0.5	1.5
Free Ammonia (ppm)	NA	120
Ash (ppm)	50	60
Iron Content (ppm)	1-2	3

High-Purity Grade		
Form	Crystals	
Biruet Content (%)	0.0	
Iron Content (ppm)	<0.5	
Copper (ppm)	<0.5	
Lead (ppm)	<0.5	
Chloride (ppm)	<5.0	
Sulfate (ppm)	<100	
Urea Assay (%)	>99.5	
Melting Point (°C)	132-135	

An SCR-Urea specification still needs to be developed

- A strict urea purity specification may require refined production and TS&D processes that avoid cross-contamination from other urea grades via transport and storage tanks.
- The contaminant thresholds of the SCR and complement emission control systems will dictate quality of urea needed.
- Vehicle, engine exhaust equipment, and urea manufacturers need to determine compatible SCR urea specification.

Property	Maximum Value	Property	Maximum Value
Alkalinity (%)	0.1	Zinc (ppm)	1.0
Calcium (ppm)	1.0	Chromium (ppm)	1.0
Magnesium (ppm)	1.0	Nickel (ppm)	1.0
Sodium (ppm)	1.0	Silicon (ppm)	2.0
Potassium (ppm)	1.0	Phosphate (ppm)	2.0
Iron (ppm)	1.0	Carbonate (%)	0.1
Copper (ppm)	1.0	Biuret (%)	0.3

Possible SCR Urea Specification*

*Communication with M. Knenlein, FuelTech, April 2002

Impurities

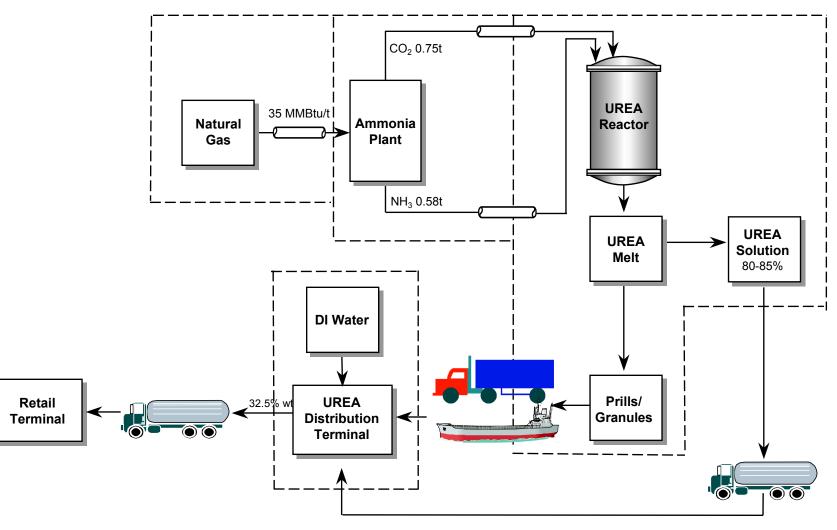
TS&D Pathways

Costs

Environmental Issues

Several aspects of the existing urea distribution pathways may be used for SCR-Urea

- The current urea and petroleum distribution infrastructure are potential models for SCR-urea distribution.
- The most likely short-term pathways include:
 - urea movement from the plants to intermediate terminals by independent contractors and terminal operators
 - distribution from the terminals to the retail points
- If current urea grades can be used to produce SCR-urea, the short- to midterm implementation of an SCR-urea infrastructure will not be limited by the availability of urea or the need for a new distribution network.
- If a higher purity grade than currently available is required, new pathways will need to be developed to ensure minimal contamination.


Several issues pertaining to blending, storage, and dispensing SCR-Urea still need to be resolved

- Solid urea and urea-liquor needs blending with de-ionized water to 32.5%wt solution before dispensing to vehicle.
- Blending facilities' location in the supply chain will be determined by the cost structure.
- Additional storage and dispensing equipment will be required by the dispensing station, and may require development of specialized dispensing technology, such as co-fueling systems.

An example urea production and distribution pathway

Impurities

TS&D Pathways

Costs

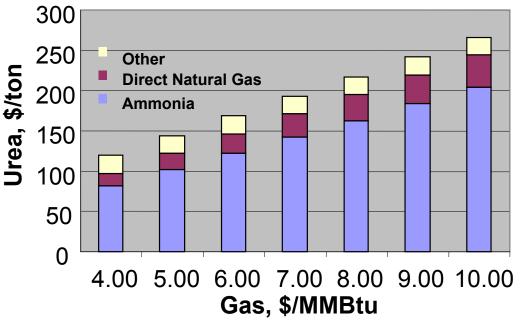
Environmental Issues

The cost envelope for offering retail SCR-grade urea encompasses a wide range of implementation scenarios

- Production costs are expected to range between \$0.12 to \$0.30/gallon of SCR-urea solution.
- Distribution costs of urea can range from \$0.70 to about \$35 per gallon of 32.5%wt urea depending upon:
 - -the degree of TS&D infrastructure development
 - -the cost of urea production
 - -the impact of the SCR-grade urea specification
- Dealer profit mark-up is estimated to range between \$0.05 to \$0.10/gal based on typical diesel supply chain mock-ups.

Envelope of Urea Costs*

SCR-Urea Costs	\$/ton	\$/gal
Production	80 to 200	0.12 to 0.30
Distribution	500 to 24,000	0.70 to 35
Dealer mark- up along the supply chain	_	0.05 to 0.10


*Ranges above reflect range of cost between establishing SCR-grade urea dispensing at about 5,000 retail locations serving a large population of SCR-equipped vehicles and about 50,000 LD vehicle retail stations serving a small population of SCR-equipped vehicles.

The cost to purchase and manufacture SCR-Urea influenced strongly by natural gas prices

- Retail urea price will vary with the price of natural gas and the supply-chain pathway.
- In the U.S., urea market price closely follows the natural gas price.
- Currently, urea is traded as a commodity.
- Due to the seasonal demand characteristics, urea supplydemand is not always in equilibrium.
- Although a steady SCR-urea demand may help stabilize domestic production, its stabilizing effect on urea basket price is uncertain.

Urea Manufacture Cost vs Natural Gas Price — U.S.*

*The 2000 and 2001 average natural gas price for the U.S. was \$4/million Btu. The 2002 average todate is \$3/million Btu.

Costs of transportation, storage, and distribution of SCR-Urea vary depending upon distribution of the retail market

- The cost of distributing urea can range from \$0.70 to \$35/gallon depending on:
 - volume of urea distributed throughout the system
 - number of retail points
 - level of product segregation required.
- The lower end of the price range represents urea distribution focused at truck stops serving a large population of SCR-equipped vehicles
- The upper part of the price range represents urea distribution at light-duty retail outlets with low urea throughput.
- Distribution and retail costs are reduced if SCR-urea dispensing infrastructure is installed in fewer retail stations with relatively higher urea throughput.
- Dispensing equipment costs represent the major part of the distribution costs.

Impurities

TS&D Pathways

Costs

Environmental Issues

Environmental issues: spills along pathways

- Given existing urea production facilities and extensive distribution pathways, SCR-urea should not have significant incremental spill incidents or well-totank greenhouse gas emissions.
- Urea is considered a stable and safely transportable product and degrades quickly in soil, water, and air.
- However, ingested or absorbed in large quantities, it can be hazardous to plant and animal life.
- Spill clean-up procedures are well-established and will have to be modified and/or updated to accommodate new locations where urea will be used.

Agency Listing	Hazardous	Not Hazardous	Carcinogenic	Not Carcinogenic
EPA		Х		Х
OSHA	X ^a			Х
DOT		Х		
Federal Hazardous Waste Regulations (40 CFR 261)		Х		

Listing of Urea as Hazardous and/or Carcinogenic by Federal Agency

^aSome of the manufacturers' MSDS surveyed indicate that urea is not hazardous under OSHA Hazard Communication Standard (22 CFR 1910.1000).

21

Environmental issues: greenhouse gas (GHG) emissions

- The life-cycle GHG impacts of SCR-Urea TS&D pathways were estimated at up to 1 percent of the current heavy-duty diesel vehicle life-cycle GHG emissions.
- This impact represents much less than 0.1% of the current US GHG emissions inventory.
- Issues to be addressed:
 - N₂O emissions
 - life-cycle cost of non-GHG emissions generated

GHG Emissions Along the Production and Distribution Pathways

Impurities

TS&D Pathways

Costs

Environmental Issues

Areas that Require Further Study

- Development of an SCR-urea specification
- Need for refined production and TS&D processes that avoid crosscontamination from other urea grades and contamination from transport and storage tanks
- Availability of appropriate dispensing and storage equipment at the retail level
- Level of penetration of SCR-urea at the retail stations
- Life-cycle cost implications to the diesel vehicles or fleets using SCR
- Life-cycle criteria pollutant cost evaluations

Distribution issues that will need to be resolved

- Potential barriers to urea distribution that need further investigation:
 - Who will establish SCR distribution and dispensing?
 - Who will invest in this infrastructure?
 - Will the steady demand for urea lead to parallel and independent SCR urea distribution systems?
 - Will existing retail fueling stations/truck stops show interest in dispensing urea?
 - How will the urea be dispensed into the vehicle? Vehicle dispensing mechanisms are still being considered, such as co-fueling of diesel and urea.

