Isotopic Tracing of Fuel Components in Combustion Products

Principal Investigator - Bruce Buchholz, LLNL, CAMS

Co-Investigator - Chuck Mueller, SNL, CRF

APBF-DEC - JCAP - CAFE Meeting Motor Fuels: Effects on Energy Efficiency and Emissions in Transportation Washington, DC October 9-10, 2002

Outline

Objectives

- AMS Background
- Results
- Significance
- Future

Objectives

- Determine the propensity of carbon in specific chemical structures to form certain emission products
- Use data to validate combustion modeling
- Exploit measurement capability with other expertise and capabilities at SNL and LLNL

Accelerator Mass Spectrometry (AMS) Measures attomoles of Carbon-14

- Cosmic radiation naturally produces ¹⁴C in the atmosphere
- All bio-derived fuel components have contemporary ¹⁴C label
- Petroleum-derived fuel components are nearly ¹⁴C free
- Trace contemporary level (100 amol ¹⁴C/ mg C) with no radiation hazard
- Count individual ¹⁴C atoms rather than wait for decay

- The Center for AMS at LLNL measures ³H to Pu
- 15,000 ¹⁴C samples measured annually with 100 run days

Counting radioactivity is inefficient: mass spectrometry counts ≥1% of isotopes present

AMS Uses 2 Fundamental Nuclear Physics Techniques, Both Needing MeV Particle Energies

Nuclear isobar identification

Fuel and Engine

- Create a blend which matches combustion behavior of CN80 reference fuel used at SNL
- High concentration of DBM in blend selected to minimize dilution
- Operate optical engine in skip fire mode

Fuel Component	Volume %
dibutyl maleate	88.0
n-hexa decane	7.0
2-ethylhexyl nitrate	5.0

Caterpillar 1.7L, 1 cyl. CRF, SNL

SAE 2002-01-1631

Tracing Flavors of Carbon in Dibutyl Maleate (DBM)

- Position of carbon within a fuel molecule affects its distribution in combustion products
- Nearest neighbors determine molecular fragments produced during combustion

Resolving Impurity Issues with DBM

- Standard Distillation produced tar-like residue
 - Apparent polymerization and thermal decomposition
 - Double distillation using distillate also made residue
 - Vacuum distillation failed due to high boiling point
- No Metal in Filtered Particles Removed from DBM
 - Ion exchange resin from DBM production

Filtrate analyzed by NMR

Evidence of dibutyl fumarate (DBF)

Coping with Deposited Lubrication Oil

- Require Many Motored Runs to Assess Lube Oil Deposition and Removal Effectiveness
- Sustained Heat Removes Lube Oil
 - 320-340 °C for 2 h removes most oil from motored samples
 - Also removes volatile organic fraction (VOF) of soot
- Solvent Extraction Failed to Remove all Lube Oil
- Switch to more Volatile Lube Oil
- Prevention is the Cure

Lube Oil Removal from Motored Carbon Control Filters

Particulate Matter Analysis

- Collect motored and fired (0.1- 0.5 mg soot) samples on quartz filters
- Treat to remove lube oil and save pair as controls
- Measure carbon mass during AMS sample prep
- Measure ¹⁴C content of each sample
- Determine contribution of specific carbon atom in DBM to soot

Volatile organic carbon fraction is susceptible to further catalytic oxidation

Gas Analysis

- Collect Combustion Gas Samples in Tedlar Bags
- Cryogenically Separate CO₂ and Convert to AMS Graphite Sample
- Separate other Combustion Gases with Molecular Sieves or Gas Chromatography
 - ▸ CO (MS) ✓
 - Unburned hydrocarbons (GC) \propto
 - Small aldehydes (GC or LC) \$\$
 - ▶ Air toxics (GC)

Current Capability

Future Development

Comparison of NVOF soot from [1,4 maleate-¹⁴C] and [2,3 maleate-¹⁴C] BM88 fuel

Early Results

- PM generated by [1,4 maleate ¹⁴C] DBM was essentially ¹⁴C free
 - Repeat with gas collection and CO₂ analysis
- Runs with [2,3 maleate ¹⁴C] DBM begun
 - PM ¹⁴C content same as fuel
 - Gas ¹⁴C content comparable to fuel
- Particulate sample size has increased over early runs. Improves AMS sample prep and measurement (heated sampling line)

Converting the Measured Isotope Ratio to a Carbon Contribution

$$R_{sample} = \frac{R_{sample(meas)}}{R_{s tand(meas)}} R_{s tand}$$

Isotope ratio of the sample (R_{sample}) is calculated from the measured ratio of the sample, an average of measured ratios of standards, and the known ratio of the standard.

Tracer, fuel, additives, background, and unknown contamination all contribute to the ratio of a sample

$$\mathsf{R}_{sample} = \frac{{}^{14}C_{tracer} + {}^{14}C_{fuel} + {}^{14}C_{add} + {}^{14}C_{bk} + {}^{14}C_{uk}}{C_{tracer} + C_{fuel} + C_{add} + C_{bk} + C_{uk}}$$

Minimize the Number of Non-Negligible Terms in the Ratio Equation by Prudent Experimental Design

Converting the Measured Isotope Ratio to a Carbon Contribution

$$\mathsf{R}_{\mathsf{sample}} = \frac{{}^{14}\mathsf{C}_{\mathsf{tracer}}}{\mathsf{C}_{\mathsf{tracer}} + \mathsf{C}_{\mathsf{fuel}} + \mathsf{C}_{\mathsf{add}}}$$

Background determined and by series of blanks and controls.

Isotope ratio of the tracer (R_{tracer})is measured. It is the only non-negligible ¹⁴C source.

$$\mathsf{F}_{tracer} = \frac{\mathsf{C}_{tracer}}{\mathsf{C}_{sample}}$$

Fraction of carbon due to the tracer (F_{tracer}) is the ratio of trace carbon to sample carbon.

Ongoing Tasks

- Complete Runs of DBM with ¹⁴C label in three different positions
- Interpret data and compare to computational predictions
- Improve sample collection & compound separation
- Publish Results (SAE 2002-01-1942, 2002-01-1704), several papers in progress
- Continue to improve schemes to trace variety of oxygenates or other fuel components in particulate and gaseous emissions

Significance to Governments, OEMs, Fuel, Additive, and Catalyst Industries

- Use data for model validation
- Leverage LLNL & SNL unique facilities
- Develop analysis methods suitable for any combustion system
- "Non-radioactive" levels of ¹⁴C tracer can be used in any conventional engine lab, dynamometer facility, or open road test

Future Plans

- Use information to design cleaner burning fuels
- Determine combustion fate of carbon from major fuel components (aromatics, alkylated aromatics, cyclo-alkanes, etc.)
- Apply chemical separation and ¹⁴C-AMS to assess quality of combustion in new engines (HCCI)
- Selectively label hydrocarbons for use as tracers in investigating mechanisms on catalysts

buchholz2@llnl.gov

This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.