Bifacial efficiency at monofacial cost Building Integrated photovoltaic (BIPV) Energy Solutions for the World

NMM.G

MMASOLAR.C

Rudy J Magasrevy, CEO rudy.magasrevy@gammasolar.com

Value Proposition

- Business Model
- Bifacial Efficiencies at Monofacial Cost
 - 25% 80% Additional Energy Power Advantage
 - Overall Lower Cost Photovoltaic System through Proprietary Technology (2/3 cost of Mono-facial cells/modules)
 - Reduction in Installation Cost
- Bifacial Cells & Modules Are the Best Product for Building Integrated Applications (BIPV)
- Customer Focused Management with Well Established Industry Relationships Worldwide
 - Japan, Germany, China, Korea, UK and Others
- Customers In-hand
- Competitive Intellectual Property Position

Business Model

How Bifacial Works?

GAMMASOLAR Vertical - Applications

GAMMASOLAR Standard Applications

Reflective Albedo: Sunlight that is Scattered and Reflected from Bright Ground Surfaces like Sand, Snow, White Gravel and Other Reflective Materials

Front Glass & Transparent Back Sheet

Target Applications

Market

Building Integrated PV (BIPV) Segment Expected to be 40% of the PV industry (Prometheus Institute, July 2007)

Target Customers

GAMMASOLAR Competitive Advantage

Gamma Solar

- Bifacial Efficiency at Monofacial Cost
 - 25-80% more energy per unit
- Highest Bifacial Conversion Efficiency
 - 17% both sides
- Low Production Cost
 - 2/3 cost per peak watt
- Life Expectancy Guaranteed
- Quicker System Payback

Competition

- Monofacial/Standard –
 Only the Front Generates
 Power
- Other Bifacial Technology
 with Lower Efficiency:
 - Sanyo, Solar Wind and Hitachi
- Thin-Film Lower Efficiency and Undefined Life Expectancy

Solution

BIPV - Building Integrated Photovoltaic "Reduce Cost of Installation with Gamma Solar High Efficiency Bifacial Modules"

Financials

Year	Revenue	EBIDAT
2007	\$1M	(\$250k)
2008	\$10M	(\$0.5M)
2009	\$36M	\$3M
2010	\$60M	\$7M
2011	\$85M	\$12M

- 2007 Revenue on Resale
- Profitable by Year 3
- Growth in Line with the Industry
- Revenue is a Combination of Sales & Licensing Fees/Royalties

GAMMASOLAR Executive Management

Co-Founder & CEO Rudy J. Magasrevy

- International Business Management and Operations
- Assignments in Asia
- Six Sigma Black Belt Certified; Numerous Board Seats on International JV Companies.

Co-Founder & CTO Dr. Toshio Joge

- Developed Streamlined Mass Production of Bifacial Solar Cells & Modules
- Expert in Photovoltaic Bifacial Solar Cells Techniques & Applications

VP Sales & Marketing

- International Business Development Experience in Renewable Power Energy Markets
- Worldwide Energy Industry Network
- Numerous Board Seats for Small Start-ups

CFO (Currently Recruiting)

Board Directors

- Three Founders
- David Hoffman
 - 30 years of Utility Experience plus 10 years in the Energy Sector as a Technology Developer and Entrepreneur
 - Founder of Celerity Energy
 - Corporate Vice President and President of PacifiCorp Development Company responsible for International Development and Corporate Technology Ventures.

Jon Clemens

- Electrical Engineer with a PhD from MIT
- Former President and CEO of Sharp Laboratories of America
- RCA research laboratories spent 21 years in charge of consumer electronics research in multimedia

Technical Advisory Team

Dr. Saitoh

- PhD from Osaka Univ. in Electrical and Crystalline Solar Cells
- Senior Researcher at HCRL (Multicrystalline Silicon Solar Cells)
- Professor at Tokyo University (Electrical & Electronics)

Dr. Warabisako

- PhD from Kyushu University in Electrical Engineering/ High Efficiency & Low-Cost Crystalline Silicon Solar Cells)
- Research Consultant at AIST (*4) (Research Center for Photovoltaics/ Crystalline Si Cell)

Dr. Matsukuma

- PhD from Kyushu University in Electrical Engineering/ High Efficiency & Low-Cost Crystalline Silicon Solar Cells)
- Professor at Sojo University, Venture Business (Simulator of PV System Design)
- Senior Engineer at HITACHI Ltd. (National Project/ Low-Cost Crystalline Silicon Solar Cells)

Trade Secrets and Process Know-How

- Proven Technology for Mass Production
- Patents Pending
 - Process
 - Mass Production (>30 MW/yr) @ Low Cost of Bifacial Cells

Intellectual Property

- Product
 - Thinner Cell at ~160 µm with >17% Efficiency
 - 100% Bifaciality (Front = Rear)
 - Low Cost Bifacial Module Assembly

GAMMASOLAR Investment Opportunity

- \$ 6 Million -- Series A Round to Fund Our 5 MW/YR with **Output Committed into 2009**
- **Business Model Leveraging Strategic Relationships** •
- Gamma Serves a Niche Market within the BIPV Segment •
- **Strong Management Team** •
- Exit Strategy Strategic Merger & Acquisition •
 - Strategic Relationships Evolve into Acquisition
- **Bifacial Efficiency at Monofacial Cost!**

Bifacial efficiency at monofacial cost Building Integrated photovoltaic (BIPV) Energy Solutions for the World

NMM.G

MMASOLAR.C

Rudy J Magasrevy, CEO rudy.magasrevy@gammasolar.com

Support Slides

GAMMASOLAR _____

Competition

Maker	Type of Cell	Cell Size	Cell Efficiency	Production
Gamma Solar	CZ- n+pp+ Boron BSF	125mm x 125mm t: 200 μm	16%(F) /14% (R)	Phase 1: Production starting from Sep 2008
	CZ p+nn+ Phos. BSF	156mm x 156mm Τ: 180 μm	17%(F) / 17%(R)	Phase 2: Production starting from Sep 2009
Hitachi (Japan)	CZ- n [⁺] pp ⁺ Boron BSF	125mm x 125mm t : 210 µm	15.5%(F)/13% (R)	About 5 MW/year
Solar Wind (Russia)	CZ- n ⁺ pp ⁺ Boron BSF	103mm x 103mm t: 350 µm	12.7 -16.1% (F) 7.6-9.8% (R)	Less tahn 5 MW/year
	$CZ-p^{\dagger}nn^{\dagger}$ Phos. BSF	125mm x 125mm t: 250µm	14.5% (F)/ 13% (R)	New Product: < 2 MW/yr
Sanyo (Japan)	CZ-HIT Double Amorphous +n Silicon bulk + Amorphous	125mm x 125mm t: 200µm	18.5% (F)/ 13% (R) (estimated)	Estimated only and not guaranteed because of unstable performance & reliability

Vertical - BIPV

Yearly average of daily power distribution (365 days)

Average daily power distribution per year (365 days)

GAMMASOLAR Future Development

GAMMA SOLAR HIGH EFFICIENCY CELLS DEVELOPMENT

Problem

\$ per kW/h Installed is Too High

- Balance of System & Labor Cost can be 50% of the Installed System
- Average of \$8/Watt Installed PV System

