

Innovation for Our Energy Future

Solar Energy: *What's next for Solar Technology*

John P. Benner

Group Leader, Electronic Materials and Devices National Center for Photovoltaics

National Renewable Energy Laboratory

November 6, 2007 20th NREL Industry Growth Forum

NREL/PR-520-42453

Presented at the 20th NREL Industry Growth Forum on November 6-8, 2007 held Denver, Colorado

What's next for Solar Technology?

- Market Growth
- DOE Programs
- Efficiency Cost Reliability
- NREL: Industry's Partner
- **Thin films**
- Concentrators
- Silicon
- Technologies for future generations

PV has historically been a marginal power source, but incentives drove steep growth in demand from 2001-2005

Incentive-driven demand is expanding production, but creating Si supply bottlenecks.

In 2006, installations totaled ~2GW, largely from grid-tied installations in Germany, Spain, Japan, and California

Cumulative installed grid-connected and off-grid PV power in the reporting countries - Years 1992-2006

Source: International Energy Agency.

Incentive-driven demand is expanding production, but creating Si supply bottlenecks.

In the past five years, installed PV capacity has grown both in the U.S. residential and commercial sectors

In 2006, the commercial sector accounted for 60% of total installed capacity, up from 13.5% in 2001. Government incentives have driven this growth.

- Involving over 50 companies, 14 universities, 3 non-profits and 2 national laboratories in 20 states across the U.S. (subject to change)
- Teams will contribute well over 50% of the funding for these projects.

PrimeStar Solar: Production Scale-Up of World Record CdTe/CdS Cell

Technologies Addressed

CdTe Thin Film

Target Market

Utility and Commercial

Description

Develop commercial CdTe module production based on the NREL 16.5% world record CdTe laboratory solar cell technology. The increased module energy conversion efficiency will lower installation costs and open new markets for CdTe based thin film modules.

16.5% Efficient CdTe Solar Cells

NREL – PrimeStar

Cooperative Research and Development Agreement

- PrimeStar negotiates a limited exclusive license to NREL's record efficiency CdTe solar cell structure and process
- Joint development of production scale processes to implement lab scale methods proven by NREL

PrimeStar benefits

- **NREL experience**
- **Device fabrication from 1st stage absorber development**
- **Measurements**
- **Comparative performance assessment of multiple processes**

NREL benefits

- **First hand experience in scale-up**
- **Improved understanding of production process constraints**
- **Comparative performance assessment of multiple processes**
- **Baseline PDIL interactions**

CIGS *Thin Film Technology*

Industry $1.1 \mu m$ in 5 min $n \frac{3.5}{6}$

NREL High Performance

NREL Emulating Industry 1.5µm in 6 min η**~5%**

> **NREL Closing the Gap 2 µm in 6 min** η **>15%**

PDIL Process Development and Integration Lab

an an ma

•11000 sq ft, 6 bays •Silicon Thin-Film Cluster Tool •Future deposition and analytical tools •Visiting Industry Process Prototypes

Industry growth is currently constrained by Si availability Reduce semiconductor material by concentrating the light

Concentrating Photovoltaic Systems

Concentration:

- 1. Reduces semiconductor use
- 2. Allows use of higher efficiency cell (higher system efficiency)

Why multijunction? Power = Current X Voltage

Highest efficiency: Absorb each color of light with a material that has a band gap equal to the photon energy Multijunction cells use multiple materials to match the solar spectrum

Success of GaInP/GaAs/Ge cell

Mars Rover powered by multijunction cells

This very successful space cell is currently being engineered into systems for terrestrial use

Refractive optical designs

Fresnel lenses focus light on small cells Passive cooling

Small lenses and small cells can lead to thin designs and "flat-plate" cooling

Multijunction CPV industry press

Cell orders

- **Spectrolab to Solar Systems - 11 MW, announced Aug. 2006**
- **Spectrolab to SolFocus - >10 MW, announced Aug. 2006**
- **EMCORE to Green & Gold Energy - \$24M for 105 MW; delivery by end of 2008**
- **Planned projects**
	- **Solar Systems 154 MW for \$420M, completion 2013**
	- **Green & Gold reports orders for 430 MW**
	- **GreenVolts - 2 MW for PG&E; 1st phase in 2008, completion 2009**
	- **~2 MW in Spain: SolFocus, Concentrix, Isofoton**

NREL CPV

- New higher performance cell development
- Systems driven component design
- Cell and module reliability
- Facilitate development of codes and standards
- Concentrator industry resource center

PV is not your typical electronics business

Dealing with the Silicon Shortage

2005 Module Production of 1.7 GW

- Consumed
	- Half of the electronic grade Si (15,000 tons)
	- 200,000 tons glass
- Contributed < 1% of electronics sales \$
- Delivered <0.01% of global electricity kWh

Total Silicon Yield From Feedstock To Wafer 32-54%

Silicon Yield

Maintaining the Growth Rate in Silicon PV

- ¾ By 2010 PV will take 2/3's of 80,000 MT pure silicon supply
	- • Leading Si suppliers plan to double production by 2010 in conventional Siemens process $32,000$ MT \rightarrow > 64,000 MT
	- • New production technology using directional solidification or chemical/physical treatment of metallurgical grade Si (Elkem, Dow Corning, and others) will add 10,000 to 15,000 MT
- \triangleright Higher cell efficiency, thinner wafers and improved yield will reduce consumption of Silicon to < 3 g/W

Processing thin wafers presents new challenges to avoid bowing and breakage

- ¾Low temperature processes
- ¾Minimize mechanical contact
- **≻Balance strain**
- \blacktriangleright Texture
- ¾Surface passivation
- ¾Improved contacts

100 µm Thin and Flexible Wafer as Cut

Voltage (V)

Innovation for Our Energy Future

Silicon Heterojuncton cell

19.1% on 0.9 cm2 FZ p-type c-Sic-Si sandwich X25 IV System 1521 between thin Si PV Performance Characterization Team Metal40 layers **TCO** $a-Si$ ($p+/n+$) 30 $a-Si(i)$ a-Si:H $c-Si$ 20 $Current(mA)$ $c-Si (n/p)$ V_{oc} = 0.6777 V $I_{max} = 30.312$ mA $\rm V_{max}$ = 0.5688 $\rm V$ $I_{\rm sc}$ = 32.360 mA -1414 $P_{max} = 17.241$ mW J_{sc} = 35.915 mA/cm² 10 Efficiency = $19.14%$ Fill Factor = $78.61%$ $a-Si(i)$ With mask $a-Si(n+/p+)$ θ Thin Si layers Metalwere deposited by -10 HWCVD or PECVD 0.2 0.3 -0.2 -0.1 0.0 0.1 0.4 0.5 0.6 0.7

Printing of Nickel (Piezoelectric Printing)

Dimatix Printer

Piezoelectric inkjet

Drop formation

35 µm Nickel drops on glass

50 µm wide Nickel line on glass

Si Solar Cell Contact Formation

Al back contact

Rapid, High-**Temperature Contact** formation

Solar Cells with Printed Contacts

Dep. temperature : Ann. temperature:

°C 850°C 750 $\rm ^{\circ}C$ 750 $\rm ^{\circ}C$ Cell efficiency 8% 8% 10% 15%

AR-coated Si substrates from Evergreen Solar

Improved processing recently produced a 12% efficient cell

Combinatorial Optimization of TCOs for Wafer-Si Heterojunction Cells

Goal: Improved TCOs for: $\overline{2\text{-Sided Heterojunction Cell}}$

- Materials Compatibility
- Interfaces
- Transparency, Conductivity

Materials: In-Zn-O, Ga:ZnO

- InZnO:

- High Conductivity (σ = 3000 S/cm, 5000 reported May 2007)
- Smooth ($\rm R_{RMS}$ < 0.5 nm)
- Ambient Temperature Deposition (No Interface Diffusion)

Approach:

- Composition Spread Sputtering w/Substrate Bias to Control Ion Damage
- Single Composition Sputtering For Further Optimization

As-dep IZO: Conductivity, Structure, Roughness & Refractive Index

Conductivity maximum occurs in smooth amorphous region and mobility is ~40 cm 2/Vsec across the amorphous region

Avoid high wafer costs with film silicon

An ideal PV material would be 20 μ m of crystal silicon on glass!

NREL approach to crystal silicon on glass

- Initial step: establish good crystal quality with a thin seed layer
- Second step: Quickly thicken the seed layer epitaxially

Research Challenges

- High quality epitaxy at glass-compatible temperatures
- Identification of high-quality, low-cost seed layers
- Final device designs (*p/n* junction, light trapping, electrical contacts)

Demonstrate Epitaxy on seed c-Si/glass

"Black silicon" anti-reflection

- Rapid, inexpensive, process invented at NREL
- Cross-sectional TEM shows continuous density gradient

NREL Photovoltaic Technologies

¾ Portfolio Balance

- \bullet Product solutions
- •Technology development
- •Exploratory research
- ¾ Partnership Opportunities
- **▶ Facility Access**
- ¾ Measurements and Characterization Support
- ▶ Reliability Testing and Accelerated Life Tests

Solutions, Science and Advanced Concepts

PRODUCTS

