

Power Performance Test Report

for the

AOC 15/50 Wind Turbine, Test B

in

Golden, Colorado

Conducted for

United States Department of Energy

Conducted by

National Wind Technology Center National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401

R. Jacobson, M. Meadors, E. Jacobson, H. Link

Revision 3

8August 2003

Approval By: _	Hardl & Til	1/0/1/2003
	Harold F. Link, NREL Certification Test Engineer	Date
Approval By: _	Harold F. Link, NREL Certification Test Manager	1/0ct/2003 Date
Approval By: _	C. P. Butterfield, NREL Certification Quality Manager	6/10/03 Date

1	Table of Contents	
1	TABLE OF CONTENTS	2
2	TABLE OF TABLES	2
3	TABLE OF FIGURES	3
4	DISCLAIMER	3
5	REVISIONS	4
6	TEST SUMMARY	4
7	DESCRIPTION OF WIND TURBINE	6
8	DESCRIPTION OF TEST SITE	8
9	DESCRIPTION OF TEST EQUIPMENT	12
10	DESCRIPTION OF MEASUREMENT AND ANALYSIS PROCEDURES	15
11	POWER CURVE AND AEP AT SEA-LEVEL AIR DENSITY	17
12	POWER CURVE AND AEP AT SITE AVERAGE AIR DENSITY	19
13	ONLINE POWER CURVE AND AEP AT SEA-LEVEL AIR DENSITY	21
14	SUPPLEMENTARY RESULTS	23
15	UNCERTAINTY CALCULATIONS	25
16	DEVIATIONS FROM IEC 61400-12	26
AP	PENDIX A: PICTURES OF TEST SITE	A-1
AP	PENDIX B: CALIBRATION CERTIFICATES	B-1
2	Table of Tables	
Tab	ole 1. Test Turbine Configuration and Operational Data	6
	ole 2. Operating Turbines and Obstructions at Test Site	
Tab	ole 3. Assessment of Test Site Topology	10
Tab	ole 4. Results of Site Calibration	11
Tab	ole 5. Equipment List	13
Tab	ole 6. Test Log	16
Tab	ole 7. Performance at Sea-Level Air Density, 1.225 kg/m³	17
Tab	ole 8. Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³	18
Tab	ole 9. Performance at Site Average Air Density, 1.012 kg/m³	19
Tab	ole 10. Annual Energy Production at Site Average Air Density, 1.012 kg/m³	20
Tab	ole 11. Online Performance at Sea-Level Air Density, 1.225 kg/m³	21
Tab	ole 12. Online Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³	22
Tab	ole 13. Type B Uncertainties in Power Performance Measurements	26

3 Table of Figures

Figure 1. Power curve summary	5
Figure 2. The AOC 15/50 test turbine	6
Figure 3. Map of test site	9
Figure 4. Results of site calibration test.	12
Figure 5. Layout of instrumentation.	14
Figure 6. Detail instrumentation at top of meteorological tower.	14
Figure 7. Detail of instrumentation at base of meteorological tower	15
Figure 8. Power curve at sea-level air density, 1.225 kg/m³	18
Figure 9. Power curve at site average air density, 1.012 kg/m ³ .	20
Figure 10. Online power curve at sea-level air density, 1.225 kg/m³	22
Figure 11. Scatter plot of power data	23
Figure 12. Turbulence intensity and mean wind speed versus wind direction.	24
Figure 13. Relationship of secondary anemometer to primary anemometer.	24
Figure 14. Scatter plot of online power data	25

4 Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

The United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Nor do they assume legal liability or responsibility for the performance of the test article or any similarly named article when tested under other conditions or using different test procedures.

Neither Midwest Research Institute nor the U. S. Government shall be liable for special, consequential or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

The National Renewable Energy Laboratory (NREL) is a National Laboratory of the U. S. Department of Energy, and as an adjunct of the U. S. Government, it cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

NREL is accredited by the American Association for Laboratory Accreditation (A2LA). This test was originally conducted in accordance with NREL's terms of accreditation. However, subsequent to this test and prior to this revision of the test report, many A2LA requirements have changed—specifically,

instrument calibration requirements. Therefore, NREL does NOT claim that this test report is in compliance with our A2LA accreditation, nor is the A2LA logo shown.

This report shall not be reproduced, except in full, without the written approval of NREL.

5 Revisions

Revision 1, April 2000

Test data reanalyzed and report rewritten to include site calibration factors from preliminary site calibration test.

Revision 2, May 2003

Test data reanalyzed to include site calibration factors from final site calibration test. Online data analysis also added to report.

Revision 3, August 2003

Corrected Test Summary (Table 1) to correspond with sea level power performance results shown in Figure 7 and Table 8.

Added text to explain the difference between primary results and online results.

6 Test Summary

This report documents the a power performance test of an AOC 15/50 wind turbine installed at NREL's National Wind Technology Center (NWTC), south of Boulder, Colorado. The test was conducted in accordance with the international standard IEC 61400-12, Edition 1, 1998 and NREL's internal quality assurance program as implemented at the time of the test.

Figure 1 summarizes the test results normalized to sea-level air density. Additional results are given in Sections 11 through 14.

Power Performance Test Summary

AOC 15/50, Test B

Power curve results normalized to sea level air density

Report Created: August 14, 2003

Turbine Specifications:

Rated Power: 50 kW
Cut-in Wind Speed: 4.9 m/s
Cut-out Wind Speed: 22.3 m/s
Rated Wind Speed: 12 m/s
Rotor Diameter: 15 m/s
Control Type: Constant Speed
Fixed Pitch

Pitch Setting: 1.54 deg toward feather

Site Conditions:

Average Air Density: 1.012 kg/m^3

Measurement Sectors: 255-45 deg wrt true north

Test Statistics:

Start Date: 30 December, 1998
End Date: 28 January, 1999
Operating Data Collected: 226.7 hours
Highest Bin Filled: 23.4 m/s
Test Completed? Yes

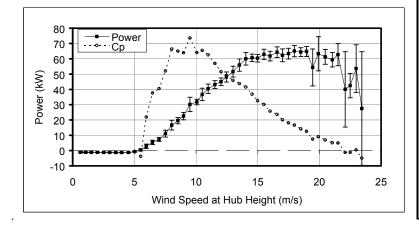


Figure 1. Power curve summary.

7 Description of Wind Turbine

The AOC 15/50 test turbine is shown in Figure 2, and its specifications are listed in Table 1. NREL designates the turbine configuration for this test as "AOC B."

Figure 2. The AOC 15/50 test turbine.

Table 1. Test Turbine Configuration and Operational Data

General Configuration:	
Turbine Make	Atlantic Orient Corporation
Turbine Model	AOC 15/50, 60 hertz
Serial Number	None (this was the third AOC 15/50 turbine installed)
Rotation Axis	Horizontal
Orientation	Downwind
Number of Blades	3
Rotor Hub Type	Rigid

Rotor Diameter (m)	15
Rotor Diameter Verification	None
Hub Height (m)	25
Performance:	2.5
Rated Electrical Power (kW)	50
Rated Wind Speed (m/s)	12.0
Cut-In Wind Speed (m/s)	4.9
Cut-In Wind Speed (III/S) Cut-In Wind Speed Dead Band (m/s)	3.6
Cut-Out Wind Speed (m/s)	22.3
Extreme Wind Speed (m/s)	59.5 (peak survival)
Rotor:	57.5 (peak survivar)
Blade Make:	Merrifield Roberts
Blade Type	Wood-Epoxy
Pitch	Fixed
Swept Area (m ²)	177
Online Rotational Speed (rpm)	65
Coning Angle (deg)	6
	0
Tilt Angle (deg) Blade Pitch Angle (deg)	1.54° toward feather
Power Regulation	stall regulation
Overspeed Control Drive Train:	centrifugal override of tip brake magnets
Gearbox Make	Fairfield/AOC
Gearbox Type Gear Ratio	2-stage planetary 1:28.25
Generator Make	
	Magnatek
Generator Type	3-phase induction
Generator Speed, Nominal (rpm)	1800
Generator Voltage (VAC)	480
Generator Frequency (hertz)	60
Braking System:	G. G. 01 000 H C. C
Mechanical (Parking) Brake: Make, Type,	Sterns Series 81,000, on nacelle aft of generator
Location	
Aerodynamic Brake: Make, Type, Location	AOC, electromagnetic tip brakes, at the tips of all blades
Electrical Brake: Make, Type, Location	AOC, dynamic brake, connected to the tower droop cable at the base of turbine
Yaw System:	enote at the once of thronic
Wind Direction Sensor	None
Yaw Control Method	Free-yaw
Tower:	
Type	Three-legged steel lattice
Height (m)	24.4
	<u> </u>

Control/Electrical System:	
Controller: Make, Model	Koyo, DirectLogic 205
Controller Type	Programmable Logic Controller
Software Version	Round Robin 86
Electrical System:	
Power Converter: Make, Model	none
Electrical Output: Voltage, Frequency,	480 VAC, 60 Hz, 3-phases
Number of Phases	

8 Description of Test Site

The test site for the AOC 15/50 turbine is located at Site 1.1 at the National Wind Technology Center, just south of Boulder, Colorado. The site is at an elevation of 1830 m, with prevailing winds bearing 292° relative to true North. Figure 3 shows the topography and arrangement of the test site during the test period.

Prevailing winds are from directions between 260 and 330 degrees true. The meteorological tower for the AOC 15/50 turbine is 37 meters from the turbine position at a bearing of 292° true. This position is in the center of the prevailing wind direction and 2.5 rotor diameters from the turbine.

The test turbine's wake eliminates use of winds from 66° to 158°. In addition, the operation of one nearby turbine at Site 1.3 affects winds at the test turbine and anemometer (Table 2). Other turbines at the NWTC are sufficiently far away that they have a negligible effect at the test turbine.

The site has several obstructions surrounding the test turbine position, as noted in Table 2, but none of these has a significant effect on the anemometer or test turbine.

Based on the prevailing winds, position of the meteorological tower, and position of operating turbines and other obstructions, the preliminary measurement sector is defined as westerly and northerly winds from 223° to 66°. The preliminary measurement sector is used as the basis to assess the topology.

The site has relatively flat terrain close to the turbine and passes the slope and variation requirements out to 4L (four times the distance from the meteorological tower to the turbine) as shown in Table 3. However, a small hillock 200 m southwest of the turbine and a drainage beginning about 300 m northwest of the turbine cause the site to fail the requirements for variation in the preliminary measurement sector between 4L and 8L. Elimination of winds affected by these topological features would not be practical at this test site.

The complexity of the topography between 4L and 8L mandates that a site calibration be conducted at this test site. The calibration was completed in June 1997 and is documented in the revised test report "Site Calibration Test Report for the AOC 15/50 Wind Turbine," dated August 1, 2001. Table 4 and Figure 4 provide the results of the site calibration test.

Figure 4 shows the effect of the small hillock between 230° and 250° and a mild influence from the drainage between 300° and 320°. The hillock effect was strong enough to warrant a reduction in the preliminary measurement sector. In addition, some of the sectors did not have as much data as desired. Therefore, the final measurement sector was reduced to 255° to 45°.

The turbine provides power to the Public Service Company of Colorado utility power grid at a voltage of $480~V \pm 5\%$ and a frequency of $60~Hz \pm 0.1\%$.

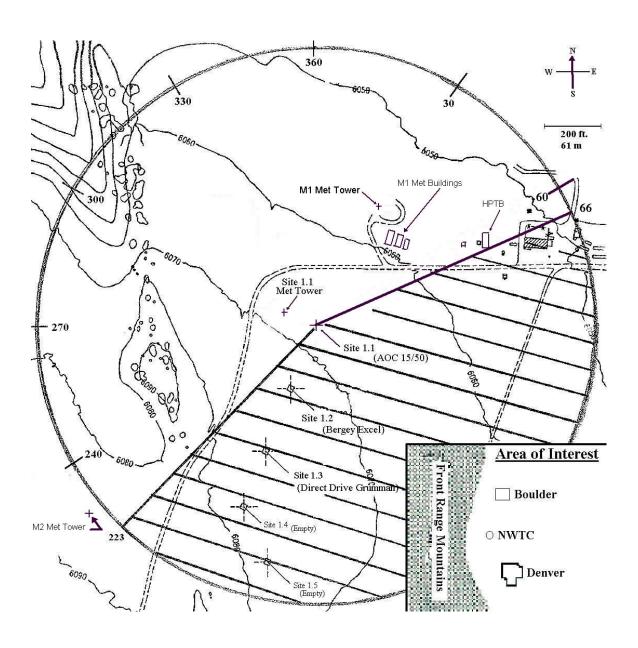


Figure 3. Map of test site.

Table 2. Operating Turbines and Obstructions at Test Site

	Bearing	Distance		Rotor		
	from	from		Dia. or	Start of	End of
	Test	Test		Tower	Excluded	Excluded
Description	Turbine	Turbine	Height	Width	Region	Region
Description	(deg. T)	(m)	(m)	(m)	(deg. T)	(deg. T)
Site 1.2	202	72	30.5	2.5		
M1 (Tower)	340	108	50.0	1.8		
M1 (Buildings)	46	115	3.0	5.3		
Site 1.3	202	147	24.5	10.0	181	223
HPTB	66	196	5.0	8.9		
M2 (Building)	232	300	3.0	2.4		
M2 (Tower)	232	312	50.0	1.8		
	Bearing	Distance				
	from	from				
	Met Tower	Met Tower				
	(deg. T)	(m)				
Test Turbine	112	37	25.0	15.0	66	158
Site 1.2	174	81	30.5	2.5		
M1 (Tower)	359	87	50.0	1.8		
M1 (Buildings)	58	163	3.0	5.3		
Site 1.3	188	152	24.5	10.0	167	209
HPTB	72	279	5.0	8.9		
M2 (Building)	225	283	3.0	2.4		
M2 (Tower)	226	295	50.0	1.8		

Table 3. Assessment of Test Site Topology

Crit- erion	Description	Distance	Sector	Test Site Condition	Pass/Fail
1	Maximum slope of best fit plane <3%	<2L ⁽¹⁾	360°	1.9%	Pass
2	Max variation from best fit plane < 0.08 D ⁽³⁾	<2L	360°	0.009D	Pass
3	Maximum slope of best fit plane <5%	2-4L	Inside prel. meas. Sector	2.9%	Pass
4	Max variation from best fit plane < 0.15 D	2-4L	Inside prel. meas. Sector	0.063D	Pass
5	Maximum slope of steepest slope <10%	2-4L	Outside prel. meas. Sector	2.0%	Pass
6	Maximum slope of best fit plane <10%	4-8L	Inside prel. meas. Sector	3.1%	Pass
7	Max variation from best fit plane < 0.15 D	4-8L	Inside prel. meas. Sector	0.482D	Fail

Crit- erion	Description	Distance	Sector	Test Site Condition	Pass/Fail
8	No operating turbines	2Dn ⁽⁴⁾	360°	None	Pass
9	Met tower out of test turbine wake	All	59.5° – 164.5°	283°	Pass
10	No obstacles	<8L	Inside prel. meas. Sector	None	Pass

- (1) L is the distance for the test turbine to the meteorological tower
- Unable to fit a plane to the topography that also passes through turbine base D is the rotor diameter of the test turbine (2)
- (3)
- Dn is the rotor diameter of a neighboring turbine (4)

Table 4. Results of Site Calibration

Wind Direction Sector	Correction	Hours of	Combined
(degrees from true north)	Factor	Data per Bin	Uncertainty
255° - 265°	0.994	27.5	1.10%
265° - 275°	0.996	42.2	1.01%
275° - 285°	0.994	66.0	1.01%
285° - 295°	0.993	116.7	1.04%
295° - 305°	0.987	177.2	1.05%
305° - 315°	0.981	110.2	1.05%
315° - 325°	0.984	51.3	1.10%
325° - 335°	0.993	29.0	1.11%
335° - 345°	1.001	21.3	1.12%
345° - 355°	0.997	21.0	1.10%
355° - 5°	1.003	31.3	1.31%
5° - 15°	1.001	27.0	1.30%
15° - 25°	1.006	23.7	1.06%
25° - 35°	1.000	27.2	1.06%
35° - 45°	0.998	25.7	1.06%

AOC 15/50 Site Calibration Jan 29 - May 29, 1997

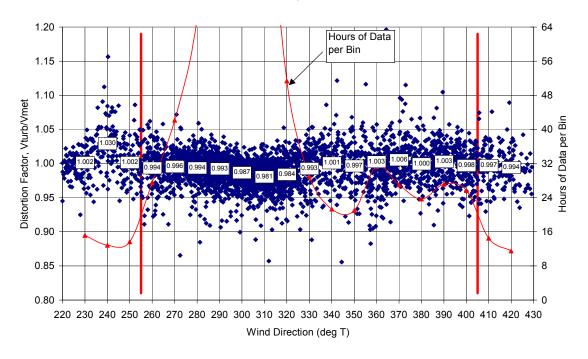


Figure 4. Results of site calibration test.

9 Description of Test Equipment

Table 5 is an equipment list that provides the requirements and specifications for each of the instruments used for performance testing. Figure 5 shows the overall locations of the instrumentation. Figure 6 and Figure 7 show details of the instrument locations at the top and bottom of the met tower, respectively. The second nacelle anemometer was shown to be within tolerance by comparison with the primary anemometer during the first part of the test (see Figure 13).

For this test, one control signal is monitored. It indicates turbine availability and permits application of appropriate data rejection criteria.

Table 5. Equipment List

Power Transducer and CTs					
Make/Model:	OSI, GWV5-008EY05				
Serial Number (Transducer/CTs):	8012365 / 8012365				
Range with CTs:	-120 to 120 kW				
Calibration Due Date:	November 6, 1999				
Primary Anemometer (North)					
Make/Model:	Met One, 010C with Aluminum Cups				
Serial Number:	T2346				
Calibration Due Date:	October 29, 1999				
Met Tower Location:	Height AGL: 25.0 m; % of hub height: 100%				
Secondary Anemometer (South)					
Make/Model:	Met One, 010C with Aluminum Cups				
Serial Number.	R1160				
Calibration Due Date:	Calibration not required				
Met Tower Location:	Height AGL: 25.0 m; % of hub height: 100%				
Primary Wind Direction Sensor (N					
Make/Model:	Met One, 020C with Aluminum Vane				
Serial Number:	U1475				
Calibration Due Date:	December 18, 1999				
Met Tower Location:	Height AGL: 22.6 m; % of hub height: 90.4%				
Barometric Pressure Sensor					
Make/Model:	Vaisala, PTB101B				
Serial Number:	R4230002				
Calibration Due Date:	September 29, 1999				
Met Tower Location:	Height AGL: 22 m; % of hub height: 88.0%				
Atmospheric Temperature Sensor					
Make/Model:	Met One, T-200 RTD				
Serial Number:	544114				
Calibration Due Date:	December 18, 1999				
Met Tower Location:	Height AGL: 22 m; % of hub height: 88.0%				
Precipitation Sensor					
Make/Model:	Campbell Scientific, 237				
Serial Number	N/A				
Met Tower Location:	Height AGL: 1 m; % of hub height: 4%				
Data Logger					
Make/Model:	Campbell Scientific CR23X				
Serial Number:	1214				
Calibration Due Date:	Dec 2, 1999				

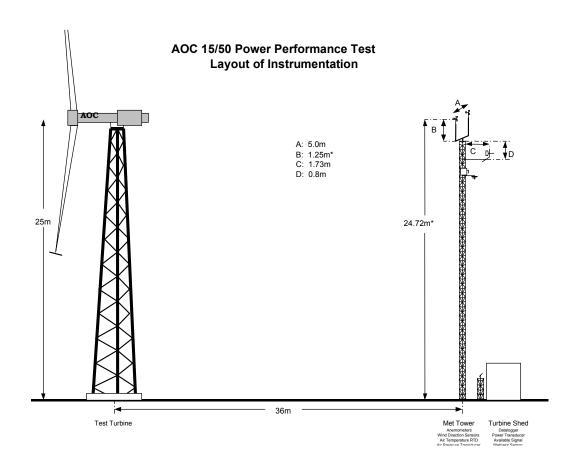


Figure 5. Layout of instrumentation.

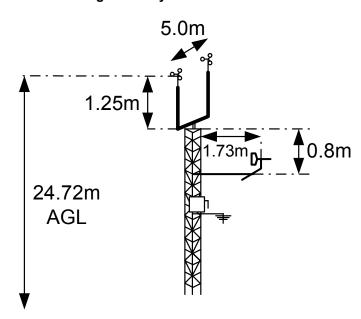


Figure 6. Detail instrumentation at top of meteorological tower.

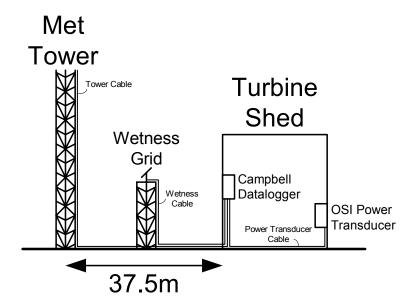


Figure 7. Detail of instrumentation at base of meteorological tower.

10 Description of Measurement and Analysis Procedures

Measurements during the power performance test are obtained automatically by the Campbell data logger. Data are obtained on each channel using a sample rate of 1 hertz. For each 10-minute data set, the data logger records the average, minimum, maximum, and standard deviation of each analog channel. In the case of wind direction, a vector-averaging algorithm is used to ensure that average values close to zero are properly recorded. For channels such as turbine availability, online, and wetness, the data logger records the percentage of the 10-minute period that the signal was "high." The data logger also records power supply voltage for itself, its internal temperature, and the number of seconds in the data set.

On a regular basis during the test, NREL personnel transfer the recorded data from the data logger to office computers and perform data quality checking. NREL quality procedures define the data quality checks that are performed. These include reviewing:

- 1. Time series plots of each recorded channel
- 2. Plots of minimums, maximums, and standard deviations
- 3. Power curve scatter plots, and
- 4. Comparison of anemometers.

Data are excluded from the power curve if:

- 1. External conditions other than wind speed are out of the normal range for turbine operation
- 2. The turbine is faulted
- 3. The turbine is manually shut down or in maintenance operating mode
- 4. Any of the instruments fail, malfunction, or operate out of specification
- 5. The data set is obtained from a record smaller than 10 minutes
- 6. The wind direction is outside of the final measurement sector.

In this test, wind speed measurements are corrected to account for terrain effects based on the results of a site calibration test. Corrected wind speed is determined by multiplying measured wind speed by the appropriate site calibration factor as determined from measured wind direction and Table 4.

In this test, air pressure is measured within 3 m of hub height. Therefore, no correction was applied to this measurement.

Data are normalized to two air densities, sea level (1.225 kg/m³) and site average (reported in Section 12), using the method specified in IEC 61400-12. Since the test turbine is stall-regulated with constant pitch and constant rotational speed, normalization is applied to the power measurements.

After normalization, data are binned in accordance with IEC 61400-12. The results are shown in Sections 11 and 12. Annual energy production is estimated in accordance with IEC 61400-12. Those estimates are also shown in Sections 11 and 12. Finally, the coefficient of performance, Cp, is determined as a function of wind speed using the swept area of the rotor.

In addition to the normal power curve measurements, NREL also evaluated the online performance of the AOC 15/50. "Online" designates that the turbine was connected to the utility grid for the entire tenminute pre-averaging period. Because no online signal was available, NREL used data in which power was greater than zero as the first indication of online power. In addition, NREL eliminated 73 points in which mean power was considerably lower than during normal operation. Most of these were attributable to start-up or yaw misalignment. Figure 14 shows online data relative to all valid data.

Table 6. Test Log

Date	Event
9/16/98	Site assessment completed
12/15/98	In-lab end-to-end instrumentation check completed
12/15/98	Data logger power supply check completed
12/23/98	In-field end-to-end instrumentation check completed
12/31/98	AOCr28.csi Replaced primary anemometer, R1161, with T2346 due to loss of cupset
12/31/98	AOCr28.csi Replaced cupset on secondary anemometer, R1160
12/31/98	AOCr28.csi Fixed wiring problem with power transducer
1/11/99	Disconnected secondary anemometer and secondary wind vane and connected them to
	SOMAT data acquisition for loads test
1/14/99	AOCr48.csi Connected secondary anemometer, secondary wind vane, real and reactive
	power signals to data logger l AND to SOMAT data acquisition for loads test
1/28/99	Data collection ended
2/12/99	Test debriefing completed
2/22/99	Original test report completed with no site calibration factors applied
4/11/00	First revision of test report completed with application of preliminary site calibration
7/11/00	factors
5/22/03	Analysis completed for second revision with application of final site calibration factors
	and online performance

11 Power Curve and AEP at Sea-Level Air Density

Table 7. Performance at Sea-Level Air Density, 1.225 kg/m³

Bin	Hub-Height	Power	Number	Category A	Category B	Combined
Number	Wind	Output	10-Min	Standard	Standard	Standard
	Speed	16144	Sets	Uncertainty	Uncertainty	Uncertainty
1	m/s 0.64	-1.11	9	0.09	KW 0.39	kW 0.40
2			27	0.03	0.18	0.19
	1.06	-1.15		0.04	0.18	0.19
3	1.51	-1.14	63	0.03	0.18	0.19
4	2.01	-1.18	104			
5	2.51	-1.21	98	0.02	0.18	0.19
6	3.00	-1.21	73	0.03	0.18	0.19
7	3.49	-1.29	77	0.08	0.19	0.20
8	3.97	-1.29	66	0.06	0.18	0.19
9	4.52	-1.23	48	0.11	0.19	0.21
10	5.01	-0.66	44	0.16	0.32	0.36
11	5.50	0.44	59	0.26	0.57	0.62
12	5.96	2.84	46	0.43	1.32	1.38
13	6.47	5.43	54	0.53	1.30	1.40
14	7.00	7.30	56	0.74	0.96	1.21
15	7.51	11.08	44	0.96	2.04	2.25
16	8.03	16.62	46	0.97	3.05	3.20
17	8.53	19.58	49	1.07	1.78	2.07
18	8.98	22.55	46	1.31	2.03	2.41
19	9.50	30.18	42	1.04	4.58	4.70
20	10.06	31.75	51	1.36	1.18	1.80
21	10.49	36.70	53	1.28	3.86	4.07
22	10.98	40.41	58	1.33	2.74	3.05
23	11.52	43.13	52	1.56	2.02	2.56
24	12.02	45.02	53	1.72	1.72	2.44
25	12.46	48.10	49	1.70	2.82	3.29
26	13.00	51.63	37	2.19	2.79	3.55
27	13.51	55.89	35	1.97	3.49	4.00
28	14.04	59.99	25	2.24	3.45	4.11
			37	1.85	1.54	2.41
29 30	14.54 14.99	60.67	31	2.02	1.45	2.41
		60.37		2.02	2.60	3.39
31	15.50	62.89	28	2.17	2.60 1.75	3.39
32	16.00	61.79	32	2.80	2.56	3.14
33	16.57	64.34	26	3.26	2.56	3.45 4.20
34	17.00	62.28	24			
35	17.50	63.36	21	2.97	1.83	3.49
36	17.97	65.07	17	2.87	2.36	3.72
37	18.49	64.38	24	2.38	1.65	2.90
38	18.96	64.80	18	2.83	1.60	3.25
39	19.46	54.32	18	4.77	11.07	12.06
40	19.91	63.32	13	3.24	10.70	11.18
41	20.47	61.27	10	4.12	2.49	4.81
42	21.04	59.34	17	4.07	2.34	4.69
43	21.51	62.73	5	5.71	4.42	7.22
44	22.09	40.02	8	9.21	22.82	24.60
45	22.49	42.47	10	7.01	3.75	7.95
46	22.97	53.63	5	6.47	14.15	15.56
47	23.44	27.51	3	13.29	34.63	37.09

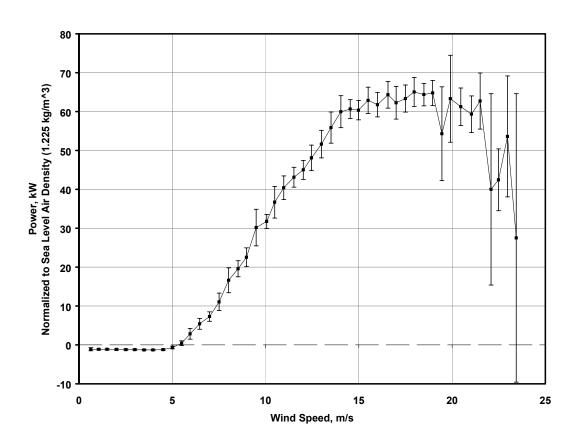


Figure 8. Power curve at sea-level air density, 1.225 kg/m³.

Table 8. Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³

	Estimated Annual	Energy F	Production	
	Reference air density:	1.225	kg/m^3	
	Cut-out wind speed:	22.3	m/s	
Hub-Height Annual Average Wind Speed (Rayleigh)	AEP-Measured (from measured power and zero from last bin to cut-out)		Uncertainty in Measured	AEP-Extrapolated (from measured power and constant power from last bin to cut-out)
m/s	MWh	MWh	%	MWh
4	11	5	44%	11
5	42	8	19%	42
6	83	10	13%	83
7	128	13	10%	128
8	172	14	8%	172
9	211	15	7%	211
10	243	15	6%	243
11	268	15	6%	268

12 Power Curve and AEP at Site Average Air Density

Table 9. Performance at Site Average Air Density, 1.012 kg/m³

Speed m/s KW Sets Uncertainty KW KW KW kW Location KW Location KW KW KW Location KW KW Location KW KW Location KW Location KW KW Location Location KW Location Location KW Location Location	Bin	Hub-Height	Power	Number	Category A	Category B	Combined
m/s	Number	Wind	Output	10-Min	Standard	Standard	Standard
1 0.64 -0.93 9 0.09 0.39 0.4 2 1.06 -0.96 27 0.04 0.18 0.1 3 1.51 -0.95 63 0.03 0.18 0.1 4 2.01 -0.98 104 0.02 0.18 0.1 5 2.51 -1.01 98 0.02 0.18 0.1 6 3.00 -1.01 73 0.03 0.18 0.1 7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 <th></th> <th>•</th> <th>ΚW</th> <th>Sets</th> <th></th> <th></th> <th>Uncertainty kW</th>		•	ΚW	Sets			Uncertainty kW
2 1.06 -0.96 27 0.04 0.18 0.1 3 1.51 -0.95 63 0.03 0.18 0.1 4 2.01 -0.98 104 0.02 0.18 0.1 5 2.51 -1.01 98 0.02 0.18 0.1 6 3.00 -1.01 73 0.03 0.18 0.1 7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.3 1.4 4	1			0			
3 1.51 -0.95 63 0.03 0.18 0.1 4 2.01 -0.98 104 0.02 0.18 0.1 5 2.51 -1.01 98 0.02 0.18 0.1 6 3.00 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 4 7.00 6.05 56 0.74 0.96 1.2 16 8.03 13.77 46 0.97 3.05 3.2 17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4 2.01 -0.98 104 0.02 0.18 0.1 5 2.51 -1.01 98 0.02 0.18 0.1 6 3.00 -1.01 73 0.03 0.18 0.1 7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.11 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 2.36 46 0.43 1.32 1.3 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03							
5 2.51 -1.01 98 0.02 0.18 0.1 6 3.00 -1.01 73 0.03 0.18 0.1 7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 4 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6 3.00 -1.01 73 0.03 0.18 0.19 7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.11 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 4 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.63 16.20 49 1.07 1.78 2.0 18<							
7 3.49 -1.07 77 0.08 0.19 0.2 8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 4.5 20<							
8 3.97 -1.07 66 0.06 0.18 0.1 9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20							
9 4.52 -1.02 48 0.11 0.19 0.2 10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8							
10 5.01 -0.55 44 0.16 0.32 0.3 11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
11 5.50 0.37 59 0.26 0.57 0.6 12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 <							
12 5.96 2.36 46 0.43 1.32 1.3 13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 22 10.98 33.43 58 1.33 2.74 3.0							0.36
13 6.47 4.50 54 0.53 1.30 1.4 14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5							0.62
14 7.00 6.05 56 0.74 0.96 1.2 15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4							1.38
15 7.51 9.17 44 0.96 2.04 2.2 16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5							1.40
16 8.03 13.77 46 0.97 3.05 3.2 17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0							1.21
17 8.53 16.20 49 1.07 1.78 2.0 18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.25</td></tr<>							2.25
18 8.98 18.65 46 1.31 2.03 2.4 19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3.20</td></t<>							3.20
19 9.50 24.97 42 1.04 4.58 4.7 20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 <			16.20				2.07
20 10.06 26.28 51 1.36 1.18 1.8 21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3	18	8.98	18.65	46	1.31		2.41
21 10.49 30.34 53 1.28 3.86 4.0 22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1	19		24.97	42	1.04	4.58	4.70
22 10.98 33.43 58 1.33 2.74 3.0 23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4	20	10.06	26.28	51	1.36	1.18	1.80
23 11.52 35.68 52 1.56 2.02 2.5 24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2	21	10.49	30.34	53	1.28	3.86	4.07
24 12.02 37.21 53 1.72 1.72 2.4 25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4	22	10.98	33.43	58	1.33	2.74	3.05
25 12.46 39.79 49 1.70 2.82 3.2 26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7	23	11.52	35.68	52	1.56	2.02	2.56
26 13.00 42.72 37 2.19 2.79 3.5 27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9	24	12.02	37.21	53	1.72	1.72	2.44
27 13.51 46.18 35 1.97 3.49 4.0 28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2	25	12.46	39.79	49	1.70	2.82	3.29
28 14.04 49.59 25 2.24 3.45 4.1 29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 40 19.91 52.31 13 3.24 10.70 11.1	26	13.00	42.72	37	2.19	2.79	3.55
29 14.54 50.16 37 1.85 1.54 2.4 30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1	27	13.51	46.18	35	1.97	3.49	4.00
30 14.99 49.88 31 2.02 1.45 2.4 31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8	28	14.04	49.59	25	2.24	3.45	4.11
31 15.50 51.96 28 2.17 2.60 3.3 32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	29	14.54	50.16	37	1.85	1.54	2.41
32 16.00 51.05 32 2.60 1.75 3.1 33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	30	14.99	49.88	31	2.02	1.45	2.49
33 16.57 53.18 26 2.31 2.56 3.4 34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	31	15.50	51.96	28	2.17	2.60	3.39
34 17.00 51.48 24 3.26 2.66 4.2 35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	32	16.00	51.05	32	2.60	1.75	3.14
35 17.50 52.34 21 2.97 1.83 3.4 36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	33	16.57	53.18	26	2.31	2.56	3.45
36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6		17.00	51.48	24	3.26	2.66	4.20
36 17.97 53.76 17 2.87 2.36 3.7 37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6	35	17.50	52.34	21	2.97	1.83	3.49
37 18.49 53.19 24 2.38 1.65 2.9 38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6							3.72
38 18.96 53.54 18 2.83 1.60 3.2 39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6		18.49	53.19	24	2.38		2.90
39 19.46 44.87 18 4.77 11.07 12.0 40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6							3.25
40 19.91 52.31 13 3.24 10.70 11.1 41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6		19.46					12.06
41 20.47 50.62 10 4.12 2.49 4.8 42 21.04 49.03 17 4.07 2.34 4.6							11.18
42 21.04 49.03 17 4.07 2.34 4.6							4.81
							4.69
TO 41.01 01.04 0 0.71 4.42 7.2	43	21.51	51.82	5	5.71	4.42	7.22
							24.60
							7.95
							15.56
							37.09



Figure 9. Power curve at site average air density, 1.012 kg/m³.

Table 10. Annual Energy Production at Site Average Air Density, 1.012 kg/m³

Estimated Annual Energy Production							
	Reference air density:	1.012	kg/m^3				
	Cut-out wind speed:	22.3	m/s				
Hub-Height Annual Average Wind Speed (Rayleigh)	AEP-Measured (from measured power and zero from last bin to cut-out)	Standard Uncertainty in AEP-Measured		AEP-Extrapolated (from measured power and constant power from last bin to cut-out)			
m/s	MWh	MWh	%	MWh			
4	9	5	54%	9			
5	35	8	22%	35			
6	69	10	15%	69			
7	106	13	12%	106			
8	142	14	10%	142			
9	175	15	8%	175			
10	201	15	7%	201			
11	221	15	7%	221			

13 Online Power Curve and AEP at Sea-Level Air Density

The online power curve indicates performance achieved by the turbine using data obtained only when it is connected to the grid for the entire 10-minute preaveraging period.

Table 11. Online Performance at Sea-Level Air Density, 1.225 kg/m³

Bin Number	Hub-Height Wind Speed m/s	Power Output KW	Number 10-Min Sets	Category A Standard Uncertainty KW	Category B Standard Uncertainty KW	Combined Standard Uncertainty kW
1	4.57	0.80	3	0.35	0.19	0.40
2	5.04	1.51	9	0.42	0.39	0.58
3	5.52	2.94	24	0.33	0.74	0.81
4	5.96	4.77	31	0.40	1.05	1.13
5	6.48	7.95	39	0.38	1.56	1.61
6	7.04	11.52	37	0.54	1.71	1.79
7	7.50	15.33	32	0.59	2.28	2.36
8	8.04	19.01	40	0.71	1.99	2.11
9	8.52	22.82	41	0.71	2.35	2.46
10	8.98	26.33	39	0.82	2.36	2.49
11	9.50	31.07	40	0.90	2.92	3.05
12	10.05	35.05	44	0.97	2.46	2.64
13	10.49	38.19	51	1.01	2.48	2.68
14	10.98	42.27	55	1.04	2.99	3.16
15	11.52	45.99	47	1.24	2.64	2.92
16	12.02	48.79	47	1.36	2.33	2.70
17	12.46	50.19	46	1.42	1.66	2.18
18	13.00	54.41	34	1.75	3.24	3.68
19	13.52	56.98	34	1.81	2.36	2.97
20	14.04	59.99	25	2.24	2.74	3.54
21	14.55	61.16	35	1.89	1.73	2.56
22	14.99	60.78	30	2.03	1.48	2.51
23	15.50	62.89	28	2.17	2.33	3.18
24	16.00	63.83	31	2.09	1.72	2.71
25	16.57	64.34	26	2.31	1.57	2.79
26	17.00	65.04	23	2.49	1.71	3.02
27	17.51	65.11	20	2.78	1.54	3.18
28	17.97	65.07	17	2.87	1.53	3.26
29	18.49	64.38	24	2.38	1.65	2.90
30	18.96	64.80	18	2.83	1.60	3.25
31	19.48	63.50	15	3.08	1.99	3.67
32	19.91	63.32	13	3.24	1.50	3.57
33	20.45	63.71	9	4.02	1.55	4.31
34	21.06	63.14	16	2.84	1.57	3.25
35	21.51	62.73	5	5.71	1.57	5.92
36	22.07	61.54	5	5.59	1.90	5.90
37	22.49	60.49	5	5.43	2.07	5.81
38	23.02	61.56	3	7.67	1.89	7.90

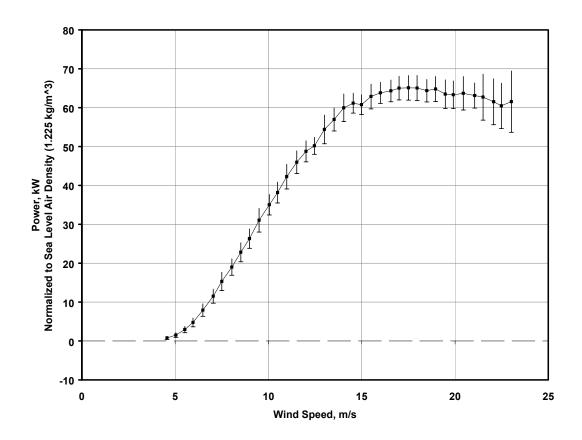


Figure 10. Online power curve at sea-level air density, 1.225 kg/m³.

Table 12. Online Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³

Estimated Annual Energy Production						
	Reference air density:	1.225	kg/m^3			
	Cut-out wind speed:	22.3	m/s			
Hub-Height Annual Average Wind Speed (Rayleigh)	AEP-Measured (from measured power and zero from last bin to cut-out)		Uncertainty in Measured	AEP-Extrapolated (from measured power and constant power from last bin to cut-out)		
m/s	MWh	MWh	%	MWh		
4	26	5	20%	26		
5	60	8	13%	60		
6	102	11	10%	102		
7	147	12	9%	147		
8	191	14	7%	191		
9	230	14	7%	230		
10	262	14	6%	262		
11	285	14	6%	285		

14 Supplementary Results

The below scatter plot shows the mean powers for both cases when the turbine is wet (the wetness sensor shows wet for the entire 10-minute data set) and when the turbine is dry.

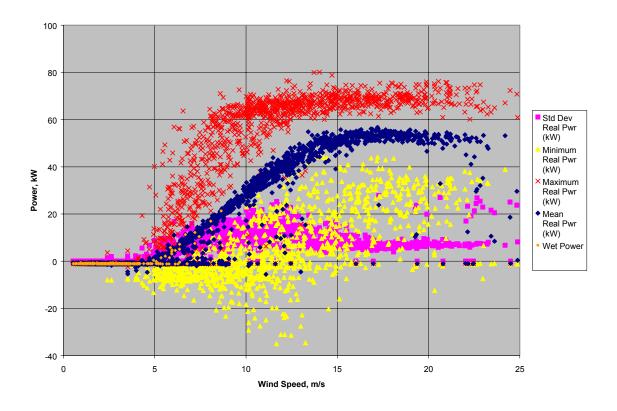


Figure 11. Scatter plot of power data.

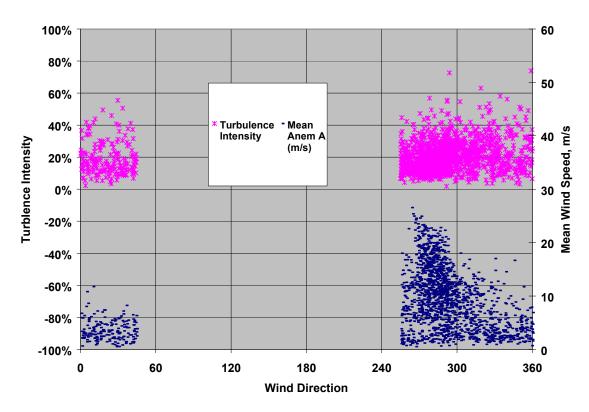


Figure 12. Turbulence intensity and mean wind speed versus wind direction.

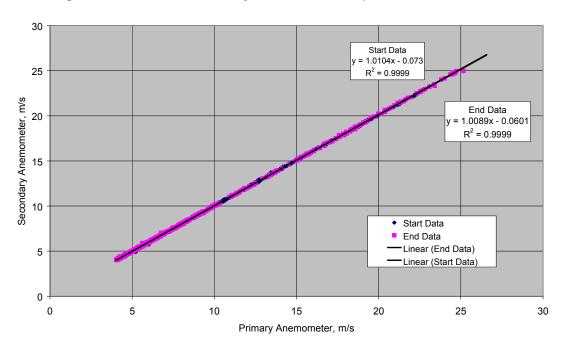


Figure 13. Relationship of secondary anemometer to primary anemometer.

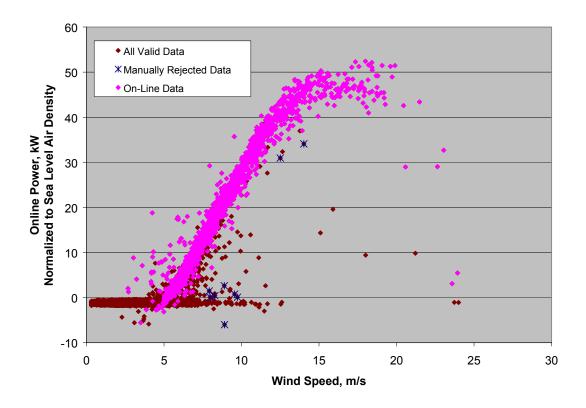


Figure 14. Scatter plot of online power data.

15 Uncertainty Calculations

NREL uses the procedure defined in IEC 61400-12 to define measurement uncertainty for power curves, AEP, and site calibration. Uncertainty is expressed in terms of a "standard uncertainty," which corresponds to a coverage factor of 1 and a level of confidence of approximately 68%. Standard uncertainty is the root sum squared of Type A (determined by statistical means) and Type B (determined by other than statistical means) uncertainty components.

For power curve measurements, Type A is calculated for each wind speed bin as the standard deviation of the 10-minute mean power values divided by the square root of the number of data sets. Type B uncertainty is determined from the uncertainty components listed in Table 13. Because all components are assumed to be uncorrelated, they are combined using the root-sum-squared method. Sensitivity factors are used to express all uncertainty in terms of measured power. The sensitivity factor for wind speed is the local slope of the power versus wind speed curve. The sensitivity for air pressure at sea-level air density is bin average power divided by sea-level barometric pressure (101.3 kPa) or bin average power divided by 388.15° K.

Uncertainty for site calibration is calculated for each wind direction bin using the following components:

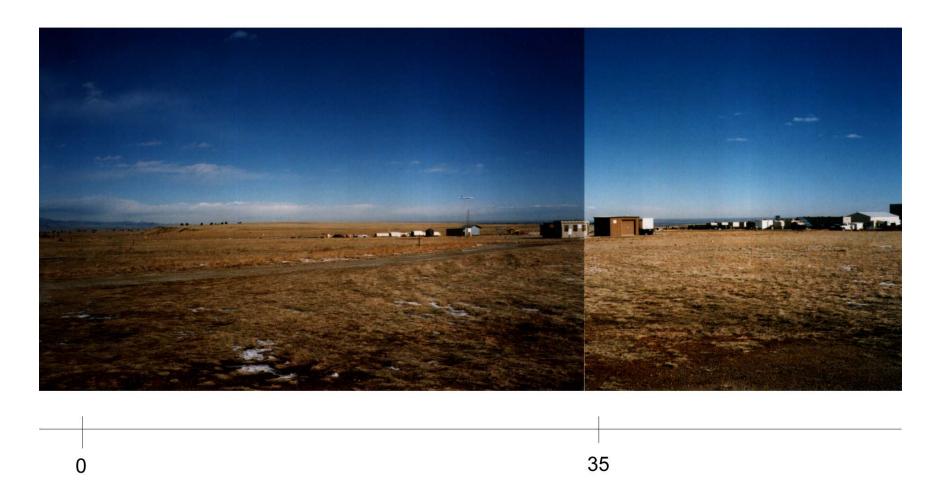
- Anemometer calibration as a percentage at a nominal average wind speed of 10 m/s
- Data acquisition for both anemometers
- Wind direction times the local slope of the correction factor plotted against wind direction, and

 Type A as calculated by the standard deviation of the correction factor divided by the number of points.

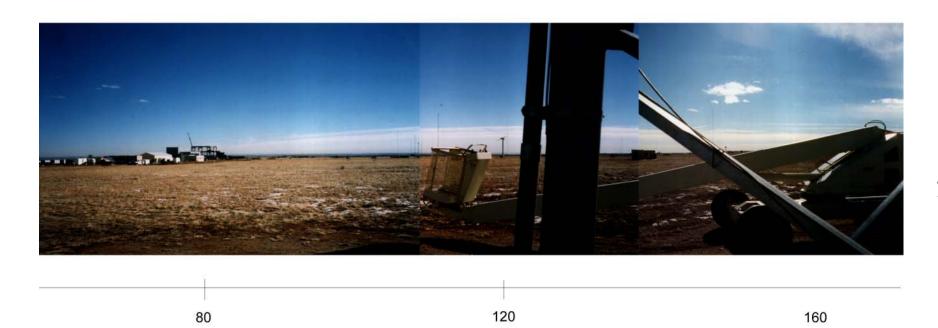
To simplify the power performance analysis, the uncertainties for individual correction factors were not weight averaged by the number of data points in each wind direction bin. Instead, the worst-case uncertainty, 1.31%, was applied to all wind speed measurements (as shown in Table 13).

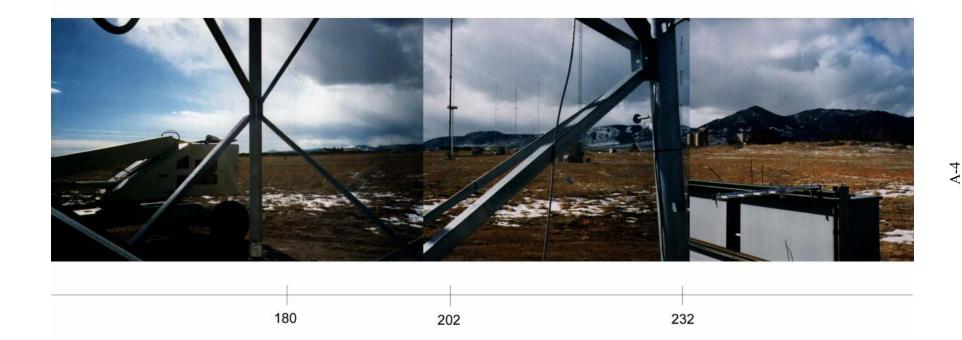
Table 13. Type B Uncertainties in Power Performance Measurements

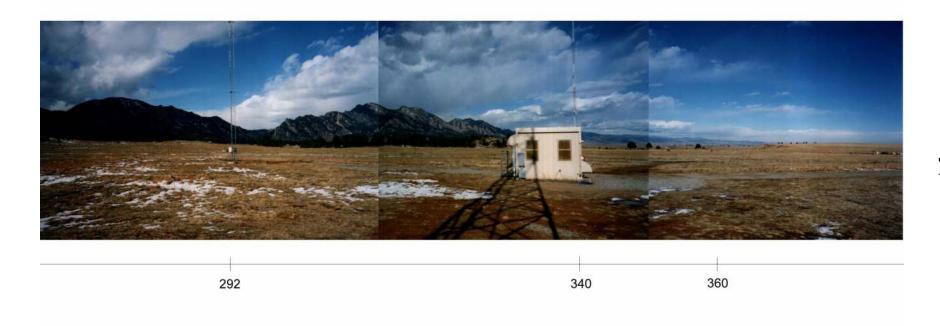
Measurement	Component	Uncertainty		Source
Power	power transducer (>37.5 kW)*	0.075	kW	calibration
	power transducer (>=37.5 kW)*	0.20%		calibration
	data acquisition	0.165	kW	manual
	resistor	1.00%		measured
Wind Speed	anemometer	0.20	m/s	calibration
	operational characteristics	2.00%		assumption
	mounting effects	0.03%		assumption
	terrain effects	1.31%		site calibration
	data acquisition	0.00	m/s	manual
Air Temperature	temperature sensor	0.05%		specifications
	radiation shielding	2.00	K	assumption
	mounting effects	1.16	K	assumption
	algorithm	0.00	K	DAS manual
	data acquisition	0.02%		manual
Air Pressure	pressure sensor	2.00	hPa	calibration
	mounting effects	0.41	hPa	10% of correction
	data acquisition	0.03	hPa	manual
 	rtainty includes uncertainty in current train			


Power performance instrumentation deviates from the IEC standard as follows:

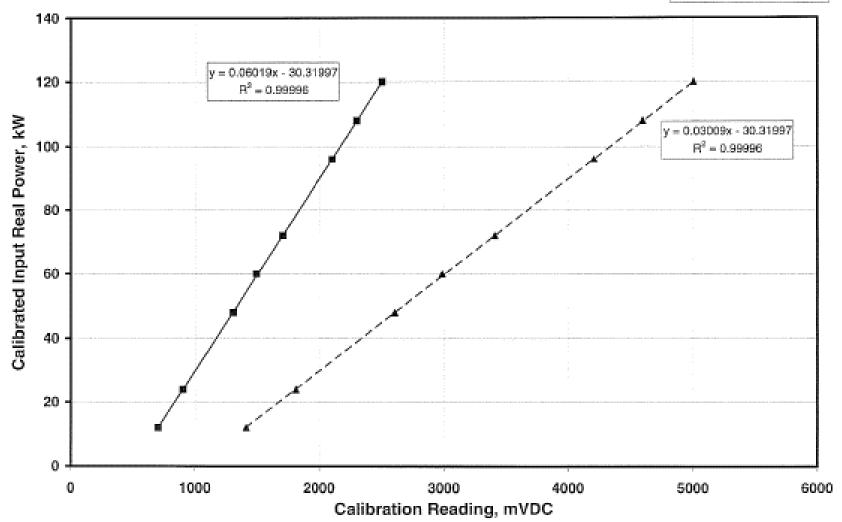
- 1. The power transducer was not tested for compliance with IEC 688.
- 2. The current transformers were not tested for compliance with IEC 185.


¹⁶ Deviations from IEC 61400-12


Appendix A: Pictures of Test Site


The bearings given in these pictures are relative to true north and correspond to the map in Figure 3.

160



Appendix B: Calibration Certificates

NWTC-CT Instrument Calibrations OSI Power Transducer

GWV5-008EY31 SN:8012365 - September 13, 1999

■ 125 Ohms
■ 250 Ohms
■ Linear (125 Ohms)
■ Linear (250 Ohms)

OHIO SEMITRONICS, INC.

4242 REYNOLDS DRIVE • HILLIARD, OHIO 43026 Telephone (614) 777-1005 FAX (614) 777-4511

CERTIFICATE OF COMPLIANCE

MODEL GVVV5-L	JUBE 131	COMP	ANY NREL					
SERIAL NO. 801:	2365 PO#	4486-8600	-0005-853	OSI PO#	NA R	MA# 11556		
		DATE	9-13-99					
are in conforma	s hereby certified, th nce with all applicab changes related then	le require	des in the quant ments and spe	ities as called f cifications as ou	or on the ab itlined in tha	ove order t order and		
Accuracy has been established by comparison with standards traceable to the National Institute of Standards and Technology.								
EQUIPMENT USED	D:							
MFG	MODEL		SAN	CAL. DATE	DUE DATE			
OTEK EWLETT PACKARD	811A 34401A		717 3146A581	5-13-99 51 6-16-99	5-13-00 12-16-99			
ABOVE EQUIPMEN	NT IS TRACEABLE TO:							
MFG	MODEL		SIN	CAL. DATE	DUE DATE	REPORT NO.		
OTEK OTEK	811A 710		717 115	5-13-99 7-12-99	5-13-00 11-12-99	20835 20893		
TEMP. 72°F	_			RONICS, INC.				
HUM. 68%			Company Quality Assur	Meitur f	1 /			
Dwg. #A-7003-02				/ /	, <u> </u>			

B-3

THE LEADER IN POWER MEASUREMENT

0986 1086

Page 35 of 49

CALIBRATION DATA

Dwg.# A-7003-15

Ohio Semitronics, Inc. 4242 Reynolds Drive Hilliard, OH 43026

CUSTOMER NREL				·
CUSTOMER NO. 44	186-8600-0005-863			DATE 9-13-99
OSI NO. RMA 11550	3 Watts	X VARS	Amps	PF
Model No. GVVV-00	9EY31	Serial No. 8012365		Data taken by D EWING
Specified Accuracy	GAL FOR BEST ACCURACY	Output Load	0-500 Ω	Data Certified By
Input at Rated Outpu	0-120 kWac INPUT @ 60 H	iz=4-20 mAdc OUTPUT		Title QUALITY ASSURANCE

	INPUT				OUTPU'	Γ		
Volts	Amps	PF	Watts IN kW	Nominal Reading In <u>mAdc</u> WATTS VARS	Actual Reading in <u>mAdc</u> WATTS	VARS PF	ACTUAL I IN <u>mAde</u> LEAD(-)	READING LAG (+)
240	166.7	1	120	20.000	20.000			
240	133.3	1	96	16.800	16.808			
240	100,0	1	72	13.500	13.616			
240	66.7	1	48	10,400	10,428			
240	33.3	1	24	7.200	7.232		1	
240	16.7	1	12	5.600	5.636			
240	166.7	.5 LAG	120	12.000	11.932		1	
240	166.7	.9 LAG	120	18.400	18.368			
						-		

Remarks (AFTER CALIBRATION) PAGE 1 OF 5

Page 36 of 49

CALIBRATION DATA

Dwg.# A-7003-15

Ohio Semitronics, Inc. 4242 Reynolds Drive Hilliard, OH 43026

CUSTOMER NREL		
CUSTOMER NO. 4486-8600-0005-863		DATE 9-13-99
OSI NO. RMA 11556	Watts VARS X Amps	PF
Model No. GWV5-008EY31	Serial No. 8012365	Data taken by D EWING
Specified Accuracy CAL FOR BEST AC	CURACY Output Load 0-500 Ω	Data Certified By
Input at Rated Output _ 0-120 kvar ac INP	UT @ 60 Hz=4-12-20 mAdc OUTPUT	Title QUALITY ASSURANCE

INPUT				OUTPUT			
Volts	Amps	PF	Watts IN KW	Rominal Reading in <u>mAdo</u> WATTS VAVIS	Actual Reading in <u>mAde</u> WATTS	VARS PF	ACTUAL READING IN <u>måde</u> LEAD(-) LAG (+)
240	166.7	.9	120	15.486		.9	15.496
240	166.7	.7	120	17.712		.7	17.724
240	166.7	.5	120	18.926		.5	18.940
240	166.7	.3	120	19.630		.3	19.640
240	166.7	.1	120	19.958		.1	19.964
240	166.7	0	120	20.000		0	20.000

Remarks (AFTER CALIBRATION) FORWARD POWER LAG PF PAGE 2 OF 5

Page 37 of 49

CALIBRATION DATA

Dwg.# A-7003-15

Ohio Semitronics, Inc. 4242 Reynolds Drive Hilliard, OH 43026

CUSTOMER NREL				,	
CUSTOMER NO. 448	8-8600-0005-863			DATE 9-13-99	_
OSI NO. RMA 11556	Watts	VARS X	Amps	PF	
Model No. GWV5-008	8EY31	Serial No. 801238	5	Data taken by D EWING	- ,
Specified Accuracy	CAL FOR BEST ACCURACY	Output Load	0-500 Ω	Data Certified By	
Input at Rated Output	0-120 kvar ac INPUT @ 60	Hz=4-12-20 mAdo		Title QUALITY ASSURANCE	

	INPUT				OUTPUT				
Volts	Amps	PF	Watts IN kW	Mominal Reading In <u>mAdc</u> WATTS VARS	Actual Reading in <u>made</u> WATTS	VARS PF	ACTUAL F IN mAde LEAD(-)	LAG (+)	
240	166.7	.9	120	15.486		.9	15.492		
240	166.7	.7	120	17.712		.7	17.716		
240	166.7	.5	120	18.926		.5	18.932		
240	166.7	.3	120	19.630		.3	19.636		
240	166.7	.1	120	19.958		.1	19.968		
240	166.7	a	120	20,000		0	20.000		

Remarks (AFTER CALIBRATION) REVERSE POWER LEAD PF PAGE 30F5

Page 38 of 49

CALIBRATION DATA

Dwg.# A-7003-15

Ohio Semitronics, Inc. 4242 Reynolds Drive Hilliard, OH 43026

CUSTOMER NREL	_	
CUSTOMER NO. 4486-8600-0005-863	-	DATE 9-13-99
OSI NO. RMA 11556	Watts VARS X Amps	PF
Model No. GWV5-008EY31	Serial No. 8012365	Data taken by D EWING
Specified Accuracy CAL FOR BEST ACC	URACY Output Load 0-500 Ω	Data Certified By
Input at Rated Output 0-120 kvar ac INPU	JT @ 60 Hz=4-12-20 mAdc OUTPUT	Title QUALITY ASSURANCE

	INPUT					OUTPUT				
Volts	Amps	PF	Watts In kW		ni Reading mådo Walks	io in <u>mAdo</u>		ACTUAL F IN made LEAD(-)	LAG (+)	
240	166.7	.9	120		8,513		.9		8.524	
240	166.7	.7	120		6.287		.7		6.296	
240	166.7	.5	120		5.072		.5		5.080	
240	166.7	.3	120		4.369		.3		4.376	
240	166.7	.1	120		4.041		.1		4.052	
240	166.7	D	120		4.000		0		4.008	
					ľ					

Remarks (AFTER CALIBRATION) REVERSE POWER LAG PF PAGE 40F5

CALIBRATION DATA

Dwg.# A-7003-15

Ohio Semitronics, Inc. 4242 Reynolds Drive Hilliard, OH 43026

CUSTOMER NREL						
CUSTOMER NO. 444	86-8600-0005-863				DATE	9-13-99
OSI NO. RMA 11556	W	atts VAR	s X	Amps	PF	
Model No. GWV5-00	8EY31	Serial No.	8012385		Data take	en by DEWING
Specified Accuracy _	CAL FOR BEST ACCUI	RACY Outp	ut Load	0-500 Ω	Data Certified	i By Whileford Melany
Input at Rated Output	0-120 kvar ac INPUT	@ 60 Hz=4-12-20	mAdc OUTPI	UT	Tir	Ne QUALITY ASSURANCE

INPUT				OUTPUT				
Amps	PF	Watts IN KW	Nominal Reading in <u>mAds</u> WATTS VARS	Actual Reading in <u>mAda</u> WATTS	VARS PF	ACTUAL I IN <u>mAde</u> LEAD(-)	READING LAG (+)	
166.7	.9	120	8.513		.9	8.524		
166.7	.7	120	6.287		.7	6.304		
166.7	.5	120	5.072		5	5.084		
166.7	.3	120	4.369		.3	4.380		
166.7	.1	120	4.041		.1	4.048		
166.7	0	120	4.000		۵	4.008		
						ļ		
					-			
-								
	Amps 166.7 166.7 166.7 166.7	Amps PF 186.7 .9 166.7 .7 166.7 .5 166.7 .3 166.7 .1	Amps PF Watts IN KW 166.7 .9 120 166.7 .7 120 166.7 .5 120 166.7 .1 120 166.7 .1 120 166.7 0 120	Amps PF Watts IN KW Nentinal Reading in made warts 166.7 .9 120 8.513 166.7 .7 120 6.287 166.7 .5 120 5.072 166.7 .3 120 4.389 166.7 .1 120 4.041 166.7 0 120 4.000	Amps PF Watts IN KW Nominal Reading in mAde watts Actual Reading in mAde watts 166.7 .9 120 8.513 166.7 .7 120 6.287 166.7 .5 120 5.072 166.7 .3 120 4.369 166.7 .1 120 4.041 166.7 0 120 4.000	Amps PF Watts IN KW Newthol Reading in mAds watts Actual Reading in mAds watts VARS watts 166.7 .9 120 8.513 .9 168.7 .7 120 6.287 .7 166.7 .5 120 5.072 .5 166.7 .3 120 4.369 .3 166.7 .1 120 4.041 .1 166.7 0 120 4.000 0	Amps PF Watts IN KW Nominal Reading in mAde watts Actual Reading in mAde watts VARS watt	

Remarks __(AFTER CALIBRATION) FORWARD POWER LEAD PF PAGE 5 OF5

Annemometer Calibration Report

Calibration Laboratory:

National Wind Technology Center - Cert. Team National Renewable Energy Laboratory 1617 Cele Boulevard Golden, Colorado 80401

Calibration Location:

National Wind Technology Center

Side-by-Side Anemometer Calibration Facility

Report Number:

CR-anno-98-4-T3

Page: 1 of 1

Item Calibrated:

Manufacturer

Met One Instruments, Inc.

Model

010C T2346

Cup Serial Number Cup Material

Aluminum

Condition

Refurbished 15 Sep 98

Estimated Uncertainty:

Wind 4 - 5 m/s Cres UncerTotal Uncert: 0.083 0.096

5 - 10 m/s 10 - 15 m/s 0.067 0.078 0.083

Customer:

National Wind Technology Center - Certification Team

National Renewable Energy Laboratory

1617 Cole Boulevard Golden, Colorado 80401

Dates of Calibration:

Test Start:

1-Opt-98

Test End:

28-Oct-98

Report:

6-Nov-96

Procedure:

NWTC-CT: GI21-98237, Field Calibrate Anemometers

Deviations from procedure;

None

Results:

Stope:

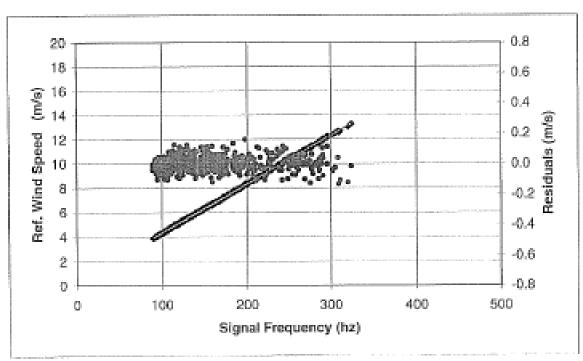
0.0399 m/s/hertz

Offset: 0.3247 m/s

Traceability:

Reference Cup:

Met One, 010C, s/n: U2645


Calibrated by: Calibration date: CRES, Pikermi, Greece

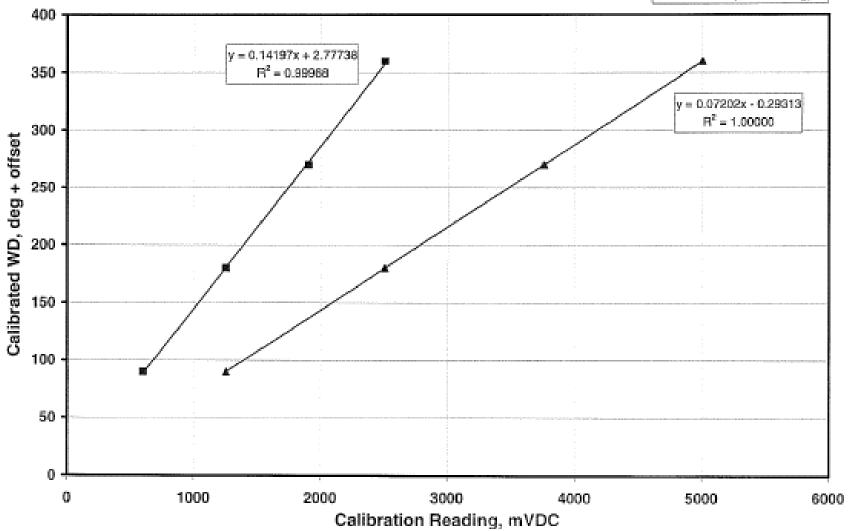
11-Mar-98

Approved:

Hall Link

6Nov98

NWTC Instrument Calibrations Met One Wind Direction Sensor


020C SN:U1475 - November 3, 1998

■ 2.5 V Setting

▲ 5,0 V Setting

--- Linear (2.5 V Setting)

- Linear (5.0 V Setting)

Certificate of Calibration

COMPANY NAME: CERTIFICATION #: National Renewable Energy Lab

981023192 IRL Depot

CALIBRATION LOCATION:

MANUFACTURER Met One	MODEL NUMBER 020C	P.O. NUMBER
SERIAL NUMBER U1475	CALIBRATION ID # 17815	CUSTOMER ID #

RECEIVED		Within Tolerance Out Of Tolerance	☐ Operational Failure ☐ Physical Damage
DETUDNISD	25	Within Tolerance	Limited
RETURNED		Other	
CALIBRATION		Due	11/03/99
STANDARD(S)		Used	MD1 FL8
CALIBRATION P	RO	CEDURE USED	MPGR Cal Procedure

Instrument Repair Labs, Inc. does hereby certify that the above listed instrument meets or exceeds all manufacturer's or agreed upon local specifications. The instrument has been calibrated using standards whose accuracies are traceable to N.I.S.T. within the limitation of their calibration services, or have been derived from accepted values of natural physical constants. Our "Calibration System Requirements" satisfy ANSI/NCSL Z540, MIL-STD-45662A, FDA GMP 820.61 and ISO Guide 25. The calibration environment was 70°F × 5°F and <70% RH unless otherwise noted. This report is not to be reproduced, except in full, without the written approval of Instrument Repair Labs' Quality Manager.

CERTIFIED BY: Mark Shann

DATE CALIBRATED: 11/03/98

QUALITY MANAGER: BILL HEDRICK

2100 W. 6th Ave. • Broomfield, CO 80020 (303) 469-5375 or (800) 345-6140 FAX (303) 469-5378

page 1 of 2

form 67, flow, 03, 3-26-96

Report of Calibration

Customer		MET CALL Calibration # 78/0-8/9
Model #	Serial # <u>4 14 75</u>	//28/5 Tech /8
Date// - 3 - 98	Due //-3-99	Ambient*F % RH
	.⊠C As Received	∠a As Returned
	READIN	IGS
SVAC DOTPUT	RENDING	2.510c OUTPUT RENDING
MARK AUGUED	2,5069	1.2542
CW 900	3,7527	1.9012
CW 180°	4,9995	2,5026
CW 270°	1,2539	6.6025
CW 360°	2,5023	/,25/5
BARK ALLGAED	2,5005	1.2495
CCW 270°	1.2540	16072
CCW 1800	5,0039	2:5010
CCW 900	3:7573	1 , 8 999
ccu o°	2.5009	1,2495
704 FR4	ICE = T/- 3°	
SV MUTE	T = +/- 1042	2 \
	T = +/- ,021	
213,04,70	7 702	

2100 W. 6th Ave. • Broomfield, CO 80020 (303) 469-5375 or (800) 345-6140 FAX (303) 469-5378

Gertificate of Galibration

COMPANY NAME: CERTIFICATION #: National Renewable Energy Laborator

980925781 IRL Depot

CALIBRATION LOCATION:

MANUFACTURER Vaisala	MODEL NUMBER PTB101B	P.O. NUMBER
SERIAL NUMBER	CALIBRATION ID 8	CUSTOMER ID A
R4230002	17392	02520C

RECEIVED		Within Tolerance Out Of Tolerance		☐ Operational Failure ☐ Physical Damage
RETURNED	ři	Within Tolerance Other		Limited 3
CALIBRATION		Due		/28/99
STANDARD(S)		Used FI	.14, F	L21, FL6, DR1
CALIBRATION F	RO	CEDURE USED	MFG	R Cal Procedure

Instrument Repair Labs, Inc. does hereby certify that the above listed instrument meets or exceeds all manufacturers or agreed upon local specifications. The instrument has been calibrated using standards whose accuracies are traceable to N.I.S.T. within the limitation of their calibration services, or have been derived from accepted values of natural physical constants. Our "Calibration System Requirements" satisfy ANSI/NCSL Z540, MIL-STD-45662A, FDA GMP 820.61 and ISO Guide 25. The calibration environment was 70°F ½ 5°F and <70% RH unless otherwise noted. This report is not to be reproduced, except in full, without the written approval of Instrument Repair Labs' Quality Manager.

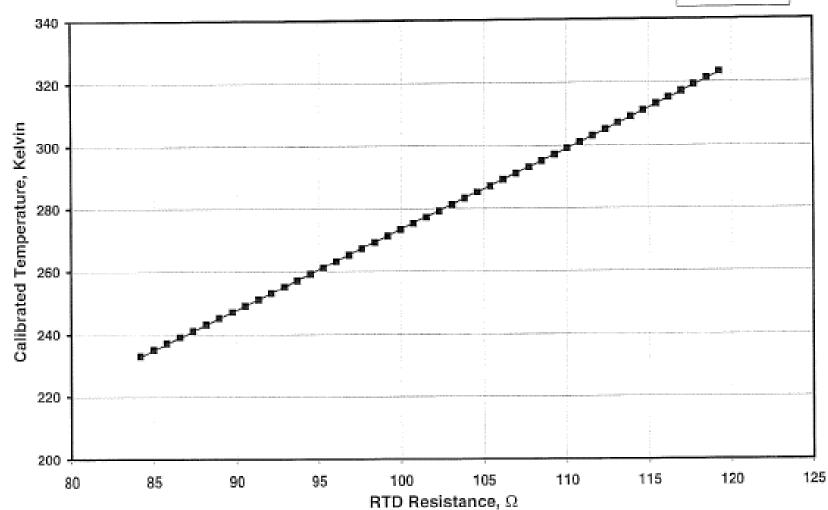
CERTIFIED BY: Ronald Horton

DATE CALIBRATED: 09/28/98

QUALITY MANAGER: BILL HEDRICK

2100 W. 6th Ave. * Broomfield, CO 80020 [303) 469-5375 or (800) 345-6140 FAX (303) 469-5378

Report of Calibration


Customer NREL	Manufactu	rer <u>VA</u>	ISALA	Calibration #					
Model # PTB101B	Serial # Shu R	YZ3000Z	102520c/	cg, 17392 Tech <i>MUH-3</i>					
Date 9-28-98	Due 9-28-	99_	Ambient	58 °F <u>38</u> %RH					
ø.	As Received		🛚 As Return	ed					
READINGS									
	Λ	()		READ (WE)					
	Actual			JBOUZ VDC					
INPUT		_mpar	OUTTPUF						
	691.16			5,000,5000					
	789.13			0.9997					
	87542			1,4998					
	968.41			2.0045					
	1059,42			2,4985					
	837.71	ATMOS.		1.2950					

2100 W. 6th Ave. • Broomfield, CO 80020 (303) 469-5375 or (800) 345-6140 FAX (303) 469-5378

NWTC Instrument Calibrations Met One Temperature Probes

T-200 SN:544114 - October 13, 1998

y = 2.5669x + 16.731 $R^2 = 1$

Gertificate of Galibration

COMPANY NAME: CERTIFICATION #: CALIBRATION LOCATION: National Renewable Energy Lab 980918521

980918521 Subcontractor

MANUFACTURER MODEL NUMBER P.O. NUMBER
Met One T=200

SERIAL NUMBER CALIBRATION ID # CUSTOMER ID #

17350

CUSTOMER ID #

RECEIVED	Within Tolerance ☐ Operational Failure Out Of Tolerance ☐ Physical Damage	
RETURNED	Within Tolerance Limited	
CALIBRATION	V Due10/13/99	
STANDARD(S	SUBCONTRACT SEE - ATTACHE	}
CALIBRATION	PROCEDURE USED MPGR Cal Procedure	

Instrument Repair Labs, Inc. does hereby certify that the above listed instrument meets or exceeds all manufacturer's or agreed upon local specifications. The instrument has been calibrated using standards whose accuracies are traceable to N.I.S.T. within the limitation of their calibration services, or have been derived from accepted values of natural physical constants. Our "Calibration System Requirements" satisfy ANSI/NCSL Z540, MIL-STD-45662A, FDA GMP 820.61 and ISO Guide 25. The calibration environment was 70°F ½ 5°F and <70% RH unless otherwise noted. This report is not to be reproduced, except in full, without the written approval of Instrument Repair Labs' Quality Manager.

CERTIFIED BY: Subcontractor

DATE CALIBRATED: 10/13/98

QUALITY MANAGER: BILL HEDRICK

2100 W. 6th Ave. • Broomfield, CO 80020 (303) 469-5375 or (800) 345-6140 FAX (303) 469-5378

Form 07, Rev. 03, 3-26-98

23X Calibration Report

Datalogger Type 23X

Serial Number:

1214 RMA# 22883

Contract #:

When Received, this instrument was found as follows:

In Tolerance: X

Out of tolerance

Operational failure

(No incoming tolerance declared)

		Single Ended measurements		Differential measurements		
Range	Input	Before	After	Before	After	
5	-5000mv	-4999.1	-5000.7	-4999.9	-5000.6	
5	5000mv	5000.8	5000.7	4999.8	5000.3	
4	1000mv	1000.25	1000.37	999.96	1000.10	
3	200mv	200.043	200.043	199.988	200.007	
2	50mv	49.997	49.991	49,998	50.003	
1	10mv	10.0014	10.0004	9.9994	10.0012	
1	-10mV	-9.9992	10.0036	-9.9996	10.0013	

Note: X = Out of tolerance

Time Clock Deviation (PPM) Before

After n

Test Details...

Test Doc/Rev.; PRC23A Rev/21

Temperature: 23.8C RH: 14.8

Calibrated By:

Title: Customer Service Technician

Calibration equipment used: (NIST traceable through certified documents on file

Make/ Model#

S/N

NIST#

Voltage Source:

DATA PRECISION 8200

A031748

0269A17

Frequency source RTD Ref.:

OSCILATEK TXCO/112

8786

01411WWVB

ROSEMONT-ADSR544

1265

CSI certifies the above instrument meets or exceeds published specifications and has been calibrate using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology, an accepted value of a natural physical constant or a ratio calibration technique. The measurement uncertainty of the calibration process exceeds a 4:1 accuracy ratio. The policies and procedures at this calibration facility comply with ISO-9001.

Calibration date: Thursday, December 02, 1999 Calibration due: Saturday, December 02, 2000

CSI DATALOGGER MODEL: CR23X 4M Item #10917 FINAL DATALOGGER TEST REPORT AND CALIBRATION CERTIFICATION

Serial # 1214 Test Panel Position 2

TEST	ANALOG INPUTS PA	SS/FA	IL I	NPUT	MEASURED	- 1	TEST
# 1		_		v.	mV.	ERROR	
2	Diff.Range 5 (+-0.05% FSR*) P		5	4997.2	.03	-25 C
3	Channel Multiplexing	P			5000.0	0.00	+50 C
4	Panel Temperature	P					
5	Battery Voltage	P					
-							
6	ANALOG OUTPUTS						
7	Switched (+-0.05% FSR*)	P			5000.4	.00	-25 C
á	Continuous (+-0.05% FSR*)	_			4996.4	.04	+50 C
9	ouncindeda (+-0.03% FSR*)	P			4999.5	.01	-25 C
10	Excit. Multiplexing	p			4995.7	. 04	+50 C
11	CAO Channels	P					
*FSR	= +-5V range	_					
12	PULSE COUNTERS						
1.22	FOLSE COUNTERS	P					
13	DIGITAL CONTROL OUT	P					
		-					
1.4	CPU AND INTERFACE						
15	Memory Serial I/O	P					
16	Clock	P					
100	to the following	P					
	SYSTEM POWER			MEAST	ID HD		
				CURRI			
17	Quiescent (2.2mA typ.)	P		1.880			
18	Measurement (loaded)	P		152.0	A.m.C		
	(70 mA typ., 150 mA loaded ty	p.)					
	TEMPERATURE RANGE	т	NPUT	MIRA	SURED &	age on a	
			v.		. ERRO	TE:	
19 20	Diff Range 5 Cold (Derated)		5		6,5 0.03	4.5	0 6
20	Diff Range 5 Hot (Derated)		5	500			5-5
						لللفسند س	200

NOTE: The collective measurement uncertainty of the calibration process exceeds a 4:1 accuracy ratio.

TEST STANDARDS USED:

Test Procedure TST10517C Rev. 13

Environmental Chamber:

DC Calibrator S/N A005541 (Traceable to NIST 2396111)
Oscillatek S/N 41957 TCXO (Traceable to NIST 0141/WWVB)

Final Report Validation By

12/02/99