Wind Turbine Generator System

Power Performance Test Report

for the

Whisper H40

in

Golden, Colorado

by

National Wind Technology Center National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401

Trudy Forsyth, Arlinda Huskey

December 18, 2001

Trudy Forsyth, NREL Test Engineer

Date

Approval By:

Arlinda Huskey, NREL Test Engineer

Approval By:

Approval By:

Harold F. Link, NREL Certification Senior Test Engineer

1

Date

Date

1.0 Table of Contents

1.0	TABLE OF CONTENTS	2
2.0	TABLE OF TABLES	2
3.0	TABLE OF FIGURES	2
4.0	DISCLAIMER	3
5.0	TEST SUMMARY	3
6.0	RESULTS	6
6.1	DC Power Performance	6
6.1.1	DC Performance at Site Average Air Density	6
6.1.2	DC Performance at Sea-Level Air Density	9
6.2	AC Power Performance	12
6.2.1	AC Performance at Site Average Air Density	12
6.2.2	AC Performance at Sea-Level Air Density	
6.3	Impaired Power Performance	18
6.4	Other Characterizations of Performance Data	
7.0	DISCUSSION OF RESULTS	23
8.0	EXCEPTIONS	23
8.1	Exceptions to Standard	23
8.2	Exceptions to NWTC-CT Quality Assurance System	23
8.3	Deviations from the Test Plan	23
APPE	ENDIX A: PICTURES OF TEST SITE	A1
APPE	ENDIX B: WHISPER H40 POWER PERFORMANCE TEST PLAN	B1
APPE	ENDIX C: POST-TEST CALIBRATION SHEETS	C1

2.0 Table of Tables

Table 1. DC Power Performance at Site Average Air Density, 1.007 kg/m ³	7
Table 2. DC Annual Energy Production at Site Average Air Density, 1.007 kg/m ³	8
Table 3. DC Power Performance at Sea-Level Air Density, 1.225 kg/m ³	10
Table 4. DC Annual Energy Production at Sea-Level Air Density, 1.225 kg/m ³	11
Table 5. AC Power Performance at Site Average Air Density, 1.007 kg/m ³	13
Table 6. AC Annual Energy Production at Site Average Density, 1.007 kg/m ³	14
Table 7. AC Power Performance at Sea-Level Air Density, 1.225 kg/m ³	16
Table 8. AC Annual Energy Production at Sea-Level Air Density, 1.225 kg/m ³	17
Table 9. DC Power Performance Based on ALL Data at Sea-Level Air Density, 1.225 kg/m ³	19
Table 10. DC Annual Energy Production based on ALL Data at Sea-Level Air Density, 1.225 kg/m ³	20

3.0 Table of Figures

Figure 1. DC power curve summary	4
Figure 2. AC power curve summary	
Figure 3. DC power curve at site average air density, 1.007 kg/m ³	6
Figure 4. DC power curve at sea-level air density, 1.225 kg/m ³	9
Figure 5. AC power curve at site average air density, 1.007 kg/m ³	12
Figure 6. AC power curve at sea-level air density, 1.225 kg/m ³	15
Figure 7. DC power curve based on ALL data at sea-level air density, 1.225 kg/m ³	18
Figure 8. Scatter plot of DC power data	21
Figure 9. Coefficient of performance at sea-level air density (using DC power), 1.225 kg/m ³	22

4.0 Disclaimer

This report was prepared as an account of work sponsored by an agency of the U.S. government. The test results documented in this report define the characteristics of the test article as configured and under the conditions tested.

The U.S. government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Nor do they assume legal liability or responsibility for the performance of the test article or any similarly named article when tested under other conditions or using different test procedures.

Neither Midwest Research Institute nor the U. S. government shall be liable for special, consequential, or incidental damages. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the U.S. government or any agency thereof.

The National Renewable Energy Laboratory (NREL) is a national laboratory of the U. S. Department of Energy (DOE), and as an adjunct of the U. S. government, cannot certify wind turbines. The information in this report is limited to NREL's knowledge and understanding as of this date.

This report shall not be reproduced, except in full, without the written approval of NREL.

5.0 Test Summary

Figure 1 is a summary of the results of the power performance test using DC power. Figure 2 is a summary of the results of the power performance test using AC power. These results are normalized to sea-level air density. Further details of these results are given in Section 6.0: Results

This test was conducted on the Whisper H40 wind turbine located at the National Wind Technology Center (NWTC) in Boulder, Colorado. This test began on March 11, 2000, and ended on May 21, 2001. A total of 3,399.3 hours of available data were collected during that time. The highest wind speed bin filled was the 20.0 m/s bin. According to the IEC standard, enough data were collected to construct a complete power curve.

ATN .			Bin Wind	Bin	Number	Ср
	NSEL		Speed	Power	Data	
			(m/s)	(W)	Points	
•			2.03	-4.63	2332	-0.26
Power Perfo	rmance Test		2.49	-4.56	2687	-0.14
Southwest V	Vind Power Whisper H40)	2.98	-3.72	2070	-0.0
		3.49	-0.11	1529	0.00	
Sea-Level De	ensity DC Power Curve	3.99	9.65		0.0	
			4.50	28.95		0.1
Report Create	ed:June 18, 2	5.00	53.84	1128	0.20	
			5.49	87.68	941	0.2
			5.99	125.58	871	0.28
Turbine Spec	fications:		6.50	170.52	764	0.29
			6.99	215.74		0.30
	ated Power:	900 W	7.49	263.61	522	0.30
	ut-in Wind Speed:	3.4 m/s	7.99	310.60	475	0.29
	ut-out Wind Speed:	25 m/s	8.49	353.44		0.2
	ated Wind Speed:	12.5 m/s	8.97	396.66		0.26
	otor Diameter:	2.1 m/s	9.50	433.94	244	0.24
C	ontrol Type:		9.99	462.13	191	0.22
			10.49	487.12	158	0.20
Pi	itch Setting:	13° at root to 1° at tip	10.99	503.81	109	0.18
			11.50	509.09	106	0.16
			11.97	518.99	109	0.14
Site Condition	ns:		12.49	525.92	101	0.13
			12.99	532.54	76	0.11
A	verage Air Density:	1.007 kg/m^3	13.51	531.85	65	0.10
M	easurement Sectors:	240 - 357	14.00	539.30		0.09
			14.47	549.98		0.09
			15.00	572.91	48	0.08
Test Statistics	<u>s:</u>		15.51	590.76		0.0
			16.00	610.85		0.07
St	tart Date:	March 11, 2000	16.50	630.79		0.07
E	nd Date:	May 21, 2001	16.99	622.76	31	0.06
A	mount of Data Collected:	3399.3 hours	17.50	630.12		0.06
H	ighest Bin Filled:	20.0 m/s	17.97	640.08		0.0
Te	est Completed?	Yes	18.44	680.39	16	0.0
			19.01	674.09	10	0.05
			19.53	715.79	11	0.0
			19.97	725.74	6	0.04

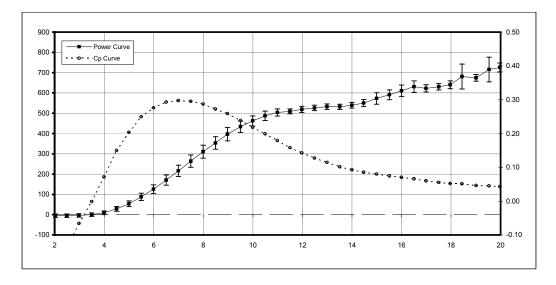


Figure 1. DC power curve summary

		Bin Wind	Bin	Number	Ср
∢(`) *NREL		Speed	Power	Data	
		(m/s)	(W)	Points	
•		2.03	-34.94	2332	-1.98
Power Performance Test		2.49	-37.88	2687	-1.16
Southwest Wind Power Whisper	H40	2.98	-37.23	2070	-0.66
		3.49	-33.89	1529	-0.37
Sea-Level Density AC Power Cu	Sea-Level Density AC Power Curve				-0.18
-		4.50	-5.38	1201	-0.03
Report Created: June	5.00	19.42	1128	0.07	
		5.49	52.94	941	0.15
		5.99	90.08	871	0.20
Turbine Specifications:		6.50	133.59	764	0.23
		6.99	177.02	687	0.24
Rated Power:	900 W	7.49	223.23	522	0.25
Cut-in Wind Speed:	3.4 m/s	7.99	268.05	475	0.25
Cut-out Wind Speed:	25 m/s	8.49	309.79	376	0.24
Rated Wind Speed:	12.5 m/s	8.97	350.42	266	0.23
Rotor Diameter:	2.1 m/s	9.50	385.74	244	0.21
Control Type:		9.99	412.40	191	0.19
		10.49	437.12	158	0.18
Pitch Setting:	13° at root to 1° at tip	10.99	452.61	109	0.16
		11.50	457.96	106	0.14
		11.97	467.21	109	0.13
Site Conditions:		12.49	475.13	101	0.12
		12.99	480.40	76	0.10
Average Air Density:	1.007 kg/m^3	13.51	480.49	65	0.09
Measurement Sectors:	240 - 357	14.00	487.67	56	0.08
		14.47	494.75	51	0.08
		15.00	514.97	48	0.07
Test Statistics:		15.51	532.86		0.07
		16.00	550.23	43	0.06
Start Date:	March 11, 2000	16.50	569.34	39	0.06
End Date:	May 21, 2001	16.99	560.99	31	0.05
Amount of Data Collect		17.50	569.25	29	0.05
Highest Bin Filled:	20.0 m/s	17.97	578.08	23	0.05
Test Completed?	Yes	18.44	616.97	16	0.05
		19.01	614.65	10	0.04
		19.53	645.88	11	0.04
		19.97	655.88	6	0.04

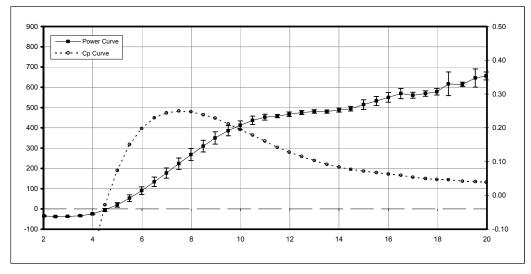


Figure 2. AC power curve summary

6.0 Results

The results of the power performance testing of the H40/Trace turbine system are described in the following sections. The first two sections describe performance based on data obtained when NREL was confident that the turbine was operating in a normal, satisfactory method. The third section describes performance based on all valid data obtained during the test period. The full data set includes data obtained when the turbine was "stuck" in a furled position when it should have returned to an unfurled position. This problem is discussed in more detail in the Whisper H40 Duration Test Report.

6.1 DC Power Performance

All the tables and figures in this section are from measurements taken on the 24-volt DC bus, between the EZ-wire controller and the Trace inverter.

6.1.1 DC Performance at Site Average Air Density

Figure 3 shows the DC power curve using data that have been normalized to the site average air density of 1.007 kg/m3. Each 10-minute data set is normalized by adjusting wind speed prior to binning. Wind speed is adjusted by multiplying measured wind speed by the cube root of the ratio of measured air density to the average air density during the entire power performance test.

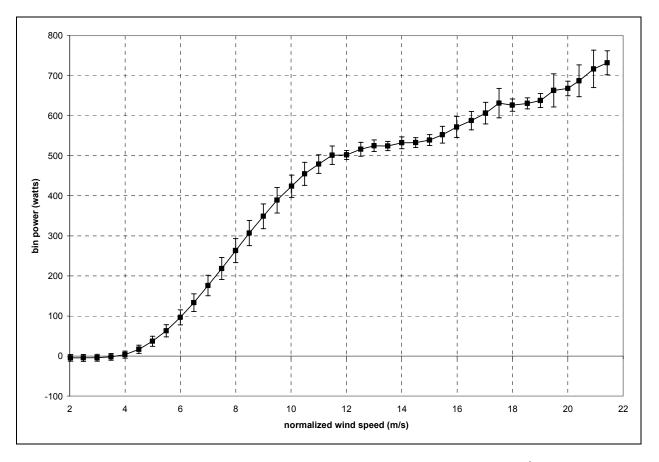


Figure 3. DC power curve at site average air density, 1.007 kg/m³

Table 1 shows the DC power curve at site average air density in tabular form. Figure 3 and this table show results up 21.5 m/s in accordance with the IEC standard, which requires at least three 10-minute data points per bin and contiguous bins. Lack of higher wind data should not be interpreted as an indication that the turbine does not produce power at higher wind speeds.

Bin	Normalized	Power	Number of	Category A	Category B	Combined
	Wind Speed	Output	10-Minute Data Sets	Uncertainty	Uncertainty	Uncertainty
(m/s)	(m/s)	(W)		(W)	(W)	(W)
2	2.03	-4.58	1868	0.03	8.51	8.51
2.5	2.49	-4.65	2644	0.03	8.51	8.51
3	2.99	-4.24	2187	0.04	8.51	8.51
3.5	3.49	-2.06	1578	0.13	8.55	8.55
4	4.00	3.62	1339	0.25	8.78	8.78
4.5	4.50	16.90	1126	0.42	10.09	10.10
5	4.99	37.01	1096	0.52	12.41	12.42
5.5	5.49	62.97	1026	0.60	15.02	15.03
6	6.00	96.44	876	0.65	18.72	18.73
6.5	6.49	133.22	782	0.66	21.92	21.93
7	7.00	175.99	716	0.73	25.52	25.53
7.5	7.49	218.52	635	0.80	27.57	27.58
8	8.00	263.20	489	1.01	29.93	29.94
8.5	8.49	307.07	447	1.22	31.45	31.47
9	9.00	348.93	377	1.44	30.81	30.84
9.5	9.49	389.03	271	2.09	31.76	31.83
10	10.02	423.76	213	2.38	27.61	27.71
10.5	10.49	454.72	205	2.94	28.50	28.65
11	11.00	479.14	157	3.56	22.83	23.10
11.5	11.48	501.33	118	3.95	22.72	23.06
12	12.00	502.02	103	4.82	9.98	11.08
12.5	12.52	516.20	101	5.33	16.65	17.48
13	13.00	524.85	100	4.86	13.55	14.40
13.5	13.49	524.21	85	5.45	10.10	11.48
14	14.00	532.46	67	6.26	13.38	14.77
14.5	14.50	532.69	60	7.05	10.13	12.34
15	15.00	539.10	52	5.47	12.57	13.70
15.5	15.47	552.49	47	7.25	19.72	21.01
16	15.99	571.69	44	7.88	24.92	26.14
16.5	16.51	587.79	44	7.47	21.79	23.03
17	17.03	606.43	42	6.99	25.87	26.80
17.5	17.51	631.34	33	8.51	35.78	36.78
18	17.99	626.42	35	8.66	12.75	15.41
18.5	18.54	630.68	27	6.59	12.04	13.72
19	19.01	637.87	24	8.10	15.40	17.40
19.5	19.49	662.94	19	11.18	39.89	41.43
20	20.00	667.79	8	12.48	13.11	18.10
20.5	20.41	687.13	9	10.49	38.39	39.80
21	20.93	716.65	11	8.88	45.78	46.63
21.5	21.42	732.01	4	11.22	27.88	30.05
>21.5			no c	lata		

Table 1. DC Power Performance at Site Average Air Density, 1.007 kg/m³

Table 2 shows projections of annual energy production (AEP) at sites with average wind speeds varying from 4 to 11 m/s. These projections assume a) that the turbine operates as measured, b) 100% turbine availability, c) that winds correspond to the Rayleigh wind speed distribution shown, and d) that annual average air density is the same as the average air density measured during the test

AEP-measured is based on no power production in winds above the highest wind bin in Table 1. AEPextrapolated is based on power production equal to the highest wind speed bin in Table 1 in winds between that bin and cut-out. For these AEP calculations, cut-out was assumed to be 25 m/s.

The standard requires the word "Incomplete" to be used when the measured and calculated AEP differ more then 5%. This indicates that annual energy cannot be estimated closer than 5% because high wind bins were not filled.

It is typical in projections of AEP to have a relatively high percentage uncertainty at low wind speed sites. This is due to a) uncertainty in the power curve at low and moderate wind speeds, and b) small AEP-measured.

Cut-out wind speed: 25 m/s (extrapolation by constant power from last bin)								
Hub Height Annual Avg. Wind Speed	AEP-Measured (from measured power curve)		ual Avg. (from measured of		AEP-Extrapolated (from extrapolated power curve)			
(m/s)	(kWh/yr)		(kWh/yr)	(%)	(kWh/yr)			
4	395	Complete	114	28.9%	395			
5	819	Complete	139	17.0%	819			
6	1,288	Complete	156	12.1%	1,289			
7	1,746	Complete	165	9.5%	1,749			
8	2,156	Complete	170	7.9%	2,175			
9	2,495 Complete		172	6.9%	2,553			
10	2,750	Complete	171	6.2%	2,872			
11	2,917	Incomplete	169	5.8%	3,126			

Table 2. DC Annual Energy Production	at Site Average Air	Density, 1.007 kg/m ³
		, ,

6.1.2 DC Performance at Sea-Level Air Density

Figure 4 shows the DC power curve after normalizing data to an air density of 1.225 kg/m3, which corresponds to a site at sea level. Each 10-minute data set is normalized by adjusting wind speed prior to binning. Wind speed is adjusted by multiplying measured wind speed by the cube root of the ratio of measured air density to the air density at sea level. As noted above, DC measurements are taken on the 24-volt DC bus, between the EZ-wire controller and the Trace inverter.

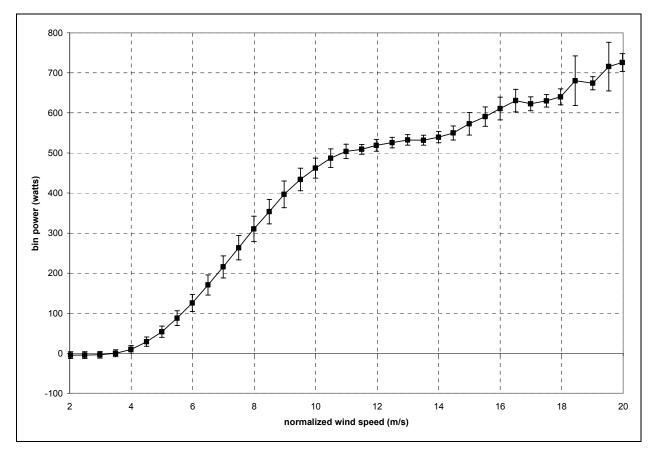


Figure 4. DC power curve at sea-level air density, 1.225 kg/m³

Table 3 shows the DC power curve in tabular form. Both Figure 4 and this table show results up 20 m/s in accordance with the IEC standard, which requires at least three 10-minute data points per bin and contiguous bins. Lack of higher wind data should not be interpreted as an indication that the turbine does not produce power at higher wind speeds.

Bin	Normalized	Power	Number of	Category A	Category B	Combined
	Wind Speed	Output	10-Minute	Uncertainty	Uncertainty	Uncertainty
	_	_	Data Sets		-	_
(m/s)	(m/s)	(W)		(W)	(W)	(W)
2	2.03	-4.63	2332	0.03	8.51	8.51
2.5	2.49	-4.56	2687	0.03	8.51	8.51
3	2.98	-3.72	2070	0.07	8.52	8.52
3.5	3.49	-0.11	1529	0.17	8.60	8.61
4	3.99	9.65	1299	0.33	9.29	9.30
4.5	4.50	28.95	1201	0.48	11.56	11.57
5	5.00	53.84	1128	0.55	13.93	13.94
5.5	5.49	87.68	941	0.63	18.27	18.28
6	5.99	125.58	871	0.68	21.18	21.19
6.5	6.50	170.52	764	0.74	25.28	25.29
7	6.99	215.74	687	0.78	27.68	27.69
7.5	7.49	263.61	522	1.01	30.29	30.31
8	7.99	310.60	475	1.17	31.82	31.85
8.5	8.49	353.44	376	1.48	30.47	30.51
9	8.97	396.66	266	2.13	33.11	33.18
9.5	9.50	433.94	244	2.38	28.02	28.12
10	9.99	462.13	191	3.22	24.69	24.90
10.5	10.49	487.12	158	3.57	22.77	23.05
11	10.99	503.81	109	4.32	17.41	17.94
11.5	11.50	509.09	106	5.30	11.02	12.23
12	11.97	518.99	109	4.82	13.89	14.71
12.5	12.49	525.92	101	5.11	12.02	13.06
13	12.99	532.54	76	5.48	12.05	13.23
13.5	13.51	531.85	65	7.00	10.14	12.32
14	14.00	539.30	56	5.07	13.02	13.98
14.5	14.47	549.98	51	6.87	16.12	17.52
15	15.00	572.91	48	7.63	27.14	28.19
15.5	15.51	590.76	44	7.32	22.96	24.10
16	16.00	610.85	43	7.51	27.21	28.23
16.5	16.50	630.79	39	7.66	27.11	28.17
17	16.99	622.76	31	8.91	15.09	17.53
17.5	17.50	630.12	29	6.15	14.33	15.59
18	17.97	640.08	23	7.79	18.24	19.84
18.5	18.44	680.39	16	11.67	60.65	61.77
19	19.01	674.09	10	9.52	13.57	16.57
19.5	19.53	715.79	11	8.83	60.06	60.71
20	19.97	725.74	6	8.68	20.54	22.30
>20			no o	lata		

Table 3. DC Power Performance at Sea-Level Air Density, 1.225 kg/m³

Table 4 shows projections of AEP at sites with average wind speeds varying from 4 to 11 m/s. These projections assume a) that the turbine operates as measured, b) 100% turbine availability, c) that winds correspond to the Rayleigh wind speed distribution shown, and d) that annual average air density is the same as the average air density measured during the test.

AEP-measured is based on no power production in winds above the highest wind bin in Table 3. AEPextrapolated is based on power production equal to the highest wind speed bin in Table 3 in winds between that bin and cut-out. For these AEP calculations, cut-out was assumed to be 25 m/s.

The standard requires the word "Incomplete" to be used when the measured and calculated AEP differ more then 5%. This indicates that annual energy cannot be estimated closer than 5% because high wind bins were not filled.

It is typical in projections of AEP to have a relatively high percentage uncertainty at low wind speed sites. This is due to a) uncertainty in wind speed measurements, b) high slope of the power curve in moderate winds (small errors in wind speed result in large errors in power), and c) small AEP-measured.

Cut-out wind speed: 25 m/s (extrapolation by constant power from last bin)								
Hub Height Annual Avg. Wind Speed	AEP-Measured (from measured power curve)		nual Avg. (from measured of		of	AEP-Extrapolated (from extrapolated power curve)		
(m/s)	(kV	(kWh/yr)		(%)	(kWh/yr)			
4	502	Complete	122	24.4%	502			
5	976	Complete	146	15.0%	976			
6	1,478	Complete	161	10.9%	1,479			
7	1,947	Complete	168	8.6%	1,957			
8	2,347	Complete	172	7.3%	2,391			
9	2,656	Complete	173	6.5%	2,772			
10	2,864	Incomplete	171	6.0%	3,092			
11	2,979	Incomplete	168	5.6%	3,343			

Table 4. DC Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³

6.2 AC Power Performance

All the tables and figures in this section are from power measurements taken on the AC output of the turbine system, between the Trace inverter and a transformer connected to the NWTC electrical grid. These results include inverter losses of approximately 30 watts when the turbine was not producing power and 6% of the power when the turbine was producing power.

6.2.1 AC Performance at Site Average Air Density

Figure 5 shows the AC power curve using data that have been normalized to the site average air density of 1.007 kg/m³. Each 10-minute data set is normalized by adjusting wind speed prior to binning. Wind speed is adjusted by multiplying measured wind speed by the cube root of the ratio of measured air density to the average air density during the entire power performance test.

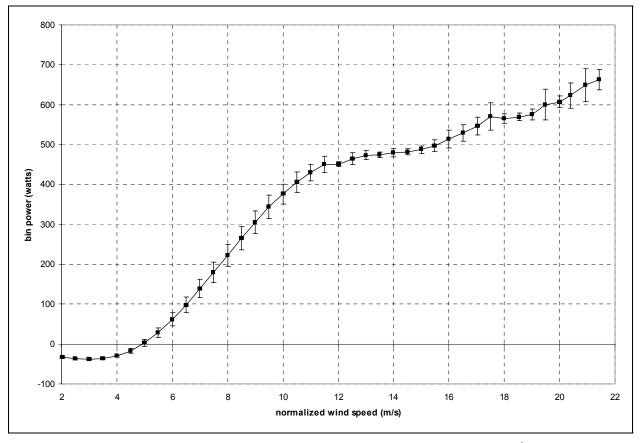


Figure 5. AC power curve at site average air density, 1.007 kg/m³

Table 5 shows the AC power curve at site average air density in tabular form. Both Figure 5 and this table show results up 21.5 m/s in accordance with the IEC standard, which requires at least three 10-minute data points per bin and contiguous bins. Lack of higher wind data should not be interpreted as an indication that the turbine does not produce power at higher wind speeds.

Bin	Normalized	Power	Number of	Category A	Category B	Combined
	Wind Speed	Output	10-Min Sets	Uncertainty	Uncertainty	Uncertainty
(m/s)	(m/s)	(W)		(W)	(W)	(W)
2	2.03	-33.83	1868	0.15	1.83	1.84
2.5	2.49	-37.37	2644	0.15	2.11	2.12
3	2.99	-37.67	2187	0.16	1.79	1.79
3.5	3.49	-35.99	1578	0.23	1.88	1.89
4	4.00	-30.24	1339	0.31	2.81	2.82
4.5	4.50	-17.22	1126	0.46	5.58	5.60
5	4.99	2.62	1096	0.56	9.08	9.09
5.5	5.49	28.68	1026	0.63	12.53	12.54
6	6.00	61.39	876	0.68	16.36	16.38
6.5	6.49	97.59	782	0.72	19.93	19.95
7	7.00	139.00	716	0.77	23.32	23.33
7.5	7.49	179.51	635	0.87	25.00	25.01
8	8.00	222.72	489	1.04	27.74	27.76
8.5	8.49	264.90	447	1.23	29.10	29.13
9	9.00	305.04	377	1.42	28.36	28.40
9.5	9.49	343.59	271	2.01	29.38	29.45
10	10.02	376.13	213	2.31	24.55	24.66
10.5	10.49	405.49	205	2.77	25.71	25.86
11	11.00	429.33	157	3.44	20.54	20.83
11.5	11.48	450.20	118	3.79	19.70	20.06
12	12.00	450.96	103	4.60	4.39	6.36
12.5	12.52	464.64	101	4.88	13.58	14.42
13	13.00	473.23	100	4.61	10.06	11.07
13.5	13.49	473.51	85	5.08	4.53	6.80
14	14.00	479.76	67	5.85	8.06	9.96
14.5	14.50	481.61	60	6.31	5.02	8.06
15	15.00	487.58	52	4.70	8.30	9.54
15.5	15.47	496.97	47	6.44	12.73	14.26
16	15.99	513.99	44	6.95	20.68	21.81
16.5	16.51	529.92	44	6.53	19.58	20.64
17	17.03	545.94	42	6.16	20.92	21.81
17.5	17.51	570.27	33	7.32	33.78	34.57
18	17.99	564.95	35	7.68	9.22	11.99
18.5	18.54	568.82	27	5.63	7.32	9.23
19	19.01	575.82	24	7.00	12.00	13.89
19.5	19.49	600.00	19	9.36	37.43	38.58
20	20.00	607.10	8	9.37	12.00	15.22
20.5	20.41	622.60	9	8.87	30.03	31.32
21	20.93	648.89	11	7.16	39.97	40.61
21.5	21.42	662.80	4	7.95	23.86	25.15
>21.5			no c	lata		

Table 5. AC Power Performance at Site Average Air Density, 1.007 kg/m³

Table 6 shows projections of AEP at sites with average wind speeds varying from 4 to 11 m/s. These projections assume a) that the turbine operates as measured, b) 100% turbine availability, c) that winds correspond to the Rayleigh wind speed distribution shown, and d) that annual average air density is the same as the average air density measured during the test

AEP-measured is based on no power production in winds above the highest wind bin in Table 5. AEPextrapolated is based on power production equal to the highest wind speed bin in Table 5 in winds between that bin and cut-out. For these AEP calculations, cut-out was assumed to be 25 m/s.

The standard requires the word "Incomplete" to be used when the measured and calculated AEP differ more then 5%. This indicates that annual energy cannot be estimated closer than 5% because high wind bins were not filled.

It is typical in projections of AEP to have a relatively high percentage uncertainty at low wind speed sites. This is due to a) uncertainty in wind speed measurements, b) high slope of the power curve in moderate winds (small errors in wind speed result in large errors in power), and c) small AEP-measured.

Cut-out wind speed: 25 m/s (extrapolation by constant power from last bin)								
Hub Height Annual Avg. Wind Speed	(from	Measured measured er curve)		ertainty of Aeasured	AEP-Extrapolated (from extrapolated power curve)			
(m/s)	(kWh/yr)		(kWh/yr)	(%)	(kWh/yr)			
4	104	Complete	72	69.6%	104			
5	511	Complete	102	20.0%	511			
6	963	Complete	122	12.6%	963			
7	1,403	Complete	132	9.4%	1,406			
8	1,797	Complete	138	7.7%	1,814			
9	2,124	Complete	140	6.6%	2,176			
10	2,371	Complete	140	5.9%	2,482			
11	2,537	Incomplete	138	5.4%	2,725			

Table 6. AC Annual Energy Production at Site Average Density, 1.007 kg/m³

6.2.2 AC Performance at Sea-Level Air Density

Figure 6 shows the AC power curve after normalizing data to an air density of 1.225 kg/m³, which corresponds to a site at sea level. Each 10-minute data set is normalized by adjusting wind speed prior to binning. Wind speed is adjusted by multiplying measured wind speed by the cube root of the ratio of measured air density to the air density at sea level. As noted above, AC measurements are taken on the AC output of the turbine system, between the Trace inverter and a transformer connected to the NWTC electrical grid.

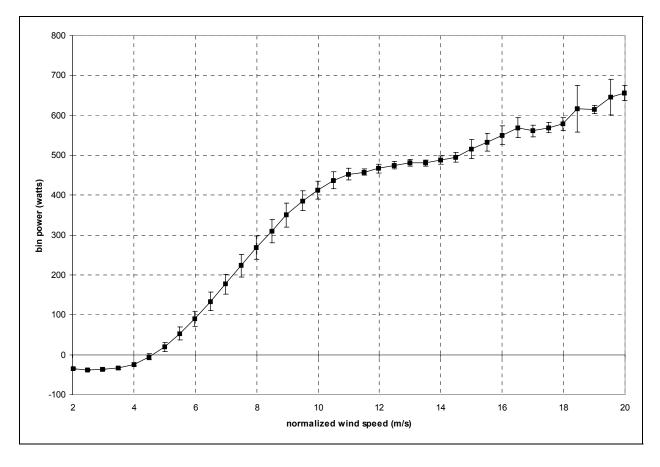


Figure 6. AC power curve at sea-level air density, 1.225 kg/m³

Table 7 shows the AC power curve in tabular form. Both Figure 6 and this table show results up 20 m/s in accordance with the IEC standard, which requires at least three 10-minute data points per bin and contiguous bins. Lack of higher wind data should not be interpreted as an indication that the turbine does not produce power at higher wind speeds.

Bin	Normalized	Power	Number of	Category A	Category B	Combined
	Wind Speed	Output	10-Minute	Uncertainty	Uncertainty	Uncertainty
		_	Data Sets		-	
(m/s)	(m/s)	(W)		(W)	(W)	(W)
2	0.59	-34.94	2332	0.14	1.94	1.94
2.5	1.06	-37.88	2687	0.14	2.02	2.03
3	1.54	-37.23	2070	0.18	1.80	1.80
3.5	2.03	-33.89	1529	0.26	2.12	2.13
4	2.49	-24.38	1299	0.39	4.03	4.05
4.5	2.98	-5.38	1201	0.52	7.90	7.91
5	3.49	19.42	1128	0.58	11.10	11.12
5.5	3.99	52.94	941	0.66	16.09	16.11
6	4.50	90.08	871	0.71	19.06	19.08
6.5	5.00	133.59	764	0.78	23.08	23.10
7	5.49	177.02	687	0.83	25.31	25.33
7.5	5.99	223.23	522	1.04	28.06	28.08
8	6.50	268.05	475	1.19	29.24	29.27
8.5	6.99	309.79	376	1.45	28.46	28.50
9	7.49	350.42	266	2.08	30.05	30.12
9.5	7.99	385.74	244	2.30	25.23	25.33
10	8.49	412.40	191	3.07	21.83	22.04
10.5	8.97	437.12	158	3.41	20.73	21.01
11	9.50	452.61	109	4.15	13.95	14.55
11.5	9.99	457.96	106	4.95	6.43	8.11
12	10.49	467.21	109	4.46	10.01	10.96
12.5	10.99	475.13	101	4.79	8.74	9.97
13	11.50	480.40	76	5.15	6.93	8.63
13.5	11.97	480.49	65	6.31	4.58	7.79
14	12.49	487.67	56	4.32	9.11	10.08
14.5	12.99	494.75	51	6.12	9.51	11.31
15	13.51	514.97	48	6.71	22.66	23.63
15.5	14.00	532.86	44	6.38	21.09	22.03
16	14.47	550.23	43	6.69	22.29	23.27
16.5	15.00	569.34	39	6.59	24.45	25.33
17	15.51	560.99	31	7.86	12.29	14.59
17.5	16.00	569.25	29	5.34	11.95	13.09
18	16.50	578.08	23	6.62	14.13	15.61
18.5	16.99	616.97	16	9.05	57.84	58.54
19	17.50	614.65	10	8.84	6.44	10.93
19.5	17.97	645.88	11	7.75	44.59	45.25
20	18.44	655.88	6	6.67	18.28	19.46
>20			no o	•		

Table 7. AC Power Performance at Sea-Level Air Density, 1.225 kg/m³

Table 8 shows projections of AEP at sites with average wind speeds varying from 4 to 11 m/s. These projections assume a) that the turbine operates as measured, b) 100% turbine availability, c) that winds correspond to the Rayleigh wind speed distribution shown, and d) that annual average air density is the same as the average air density measured during the test.

AEP-measured is based on no power production in winds above the highest wind bin in Table 7. AEPextrapolated is based on power production equal to the highest wind speed bin in Table 7 in winds between that bin and cut-out. For these AEP calculations, cut-out was assumed to be 25 m/s.

The standard requires the word "Incomplete" to be used when the measured and calculated AEP differ more then 5%. This indicates that annual energy cannot be estimated closer than 5% because high wind bins were not filled.

It is typical in projections of AEP to have a relatively high percentage uncertainty at low wind speed sites. This is due to a) uncertainty in wind speed measurements, b) high slope of the power curve in moderate winds (small errors in wind speed result in large errors in power), and c) small AEP-measured.

Cut-out wind speed: 25 m/s (extrapolation by constant power from last bin)								
Hub Height Annual Avg.	AEP-N (from	ertainty of	AEP-Extrapolated (from extrapolated					
Wind Speed	e			Aeasured	power curve)			
(m/s)	(kWh/yr)		(kWh/yr)	(%)	(kWh/yr)			
4	206	Complete	82	39.9%	206			
5	663	Complete	111	16.8%	663			
6	1,145	Complete	128	11.2%	1,146			
7	1,596	Complete	137	8.6%	1,605			
8	1,981	Complete	140	7.1%	2,021			
9	2,280 Complete		141	6.2%	2,385			
10	2,484 Incomplete		140	5.6%	2,690			
11	2,602	Incomplete	137	5.3%	2,931			

Table 8. AC Annual Energy Production at Sea-Level Air Density, 1.225 kg/m³

6.3 Impaired Power Performance

This section quantifies the performance obtained from the turbine during the entire test period. It includes data obtained when the turbine was experiencing a problem with the furling mechanism that caused it to remain furled in low wind speeds. Results are presented in terms of DC power output normalized to sea-level air density. They can be compared with the results shown in Section 6.1.2.

Figure 7 shows the DC power curve using ALL performance data (including impaired performance data) after normalizing data to an air density of 1.225 kg/m3, which corresponds to a site at sea level. Each 10-minute data set is normalized by adjusting wind speed prior to binning. Wind speed is adjusted by multiplying measured wind speed by the cube root of the ratio of measured air density to the air density at sea level. As noted above, DC measurements are taken on the 24-volt DC bus, between the EZ-wire controller and the Trace inverter.

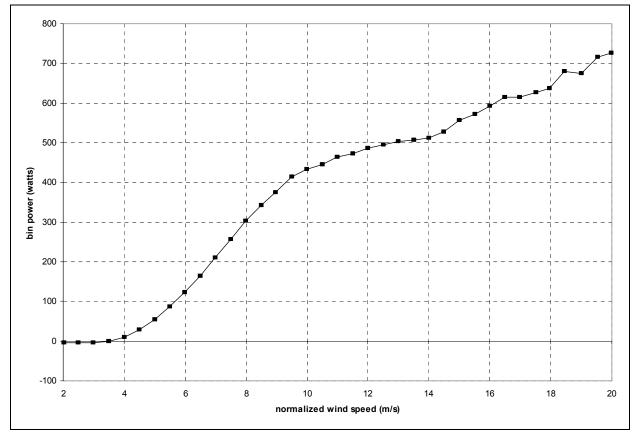


Figure 7. DC power curve based on ALL data at sea-level air density, 1.225 kg/m³

Table 9 shows the DC power curve in tabular form. This table is based on ALL performance data (including impaired performance data) after normalizing data to an air density of 1.225 kg/m³, which corresponds to a site at sea level. Both Figure 7 and this table show results up 20 m/s in accordance with the IEC standard, which requires at least three 10-minute data points per bin and contiguous bins. Lack of higher wind data should not be interpreted as an indication that the turbine does not produce power at higher wind speeds.

Bin	Normalized	Power	Number of	Category A	Category B	Combined		
	Wind Speed	Output	10-Minute	Uncertainty	Uncertainty	Uncertainty		
	_	_	Data Sets		_			
(m/s)	(m/s)	(W)		(W)	(W)	(W)		
2	2.03	-4.63	2,332	0.03	1.75	1.75		
2.5	2.49	-4.56	2,687	0.03	1.75	1.75		
3	2.98	-3.72	2,070	0.07	1.77	1.78		
3.5	3.49	-0.11	1,529	0.17	2.15	2.16		
4	3.99	9.65	1,299	0.33	4.11	4.13		
4.5	4.50	28.95	1,201	0.48	8.02	8.03		
5	5.00	53.84	1,128	0.55	11.16	11.17		
5.5	5.49	86.96	949	0.68	15.89	15.91		
6	5.99	122.44	894	0.93	18.23	18.25		
6.5	6.50	164.47	796	1.29	22.30	22.34		
7	6.99	209.90	711	1.43	26.53	26.57		
7.5	7.49	256.07	542	2.00	28.13	28.20		
8	7.99	303.70	492	2.09	31.24	31.31		
8.5	8.49	341.60	401	2.93	25.63	25.80		
9	8.98	374.50	296	4.72	24.48	24.93		
9.5	9.50	414.91	274	4.25	28.91	29.22		
10	9.99	432.66	226	5.72	14.81	15.88		
10.5	10.49	445.32	204	6.41	11.21	12.92		
11	10.99	464.42	136	8.02	17.18	18.96		
11.5	11.50	473.08	134	7.58	8.78	11.60		
12	11.98	486.15	133	7.62	13.35	15.37		
12.5	12.50	494.47	121	8.02	9.11	12.14		
13	12.99	503.35	92	8.27	10.11	13.06		
13.5	13.51	507.62	77	8.87	6.43	10.96		
14	13.99	512.42	68	8.51	7.20	11.14		
14.5	14.48	527.80	61	8.83	18.09	20.13		
15	14.99	556.87	53	9.87	33.10	34.54		
15.5	15.51	571.83	52	8.80	17.88	19.92		
16	16.00	591.89	50	9.36	25.86	27.50		
16.5	16.49	614.77	44	9.69	29.47	31.02		
17	16.98	615.43	33	9.80	5.80	11.39		
17.5	17.51	627.26	30	6.59	16.16	17.45		
18	17.96	636.72	24	8.18	15.42	17.46		
18.5	18.44	680.39	16	11.67	64.06	65.12		
19	19.01	674.09	10	9.52	10.13	13.90		
19.5	19.53	715.79	11	8.83	59.37	60.02		
20	19.97	725.74	6	8.68	18.40	20.35		
>20	no data							

Table 9. DC Power Performance Based on ALL Data at Sea-Level Air Density, 1.225 kg/m³

Table 10 shows projections of annual energy production (AEP) at sites with average wind speeds varying from 4 to 11 m/s. These projections assume a) the turbine operates as measured, b) 100% turbine availability, c) that winds correspond to the Rayleigh wind speed distribution shown, and d) that annual average air density is the same as the average air density measured during the test.

AEP-measured is based on no power production in winds above the highest wind bin in Table 9. AEPextrapolated is based on power production equal to the highest wind speed bin in Table 9 in winds between that bin and cut-out. For these AEP calculations, cut-out was assumed to be 25 m/s.

The standard requires the word "Incomplete" to be used when the measured and calculated AEP differ more then 5%. This indicates that annual energy cannot be estimated closer than 5% because high wind bins were not filled.

It is typical in projections of AEP to have a relatively high percentage uncertainty at low wind speed sites. This is due to a) uncertainty in wind speed measurements, b) high slope of the power curve in moderate winds (small errors in wind speed result in large errors in power), and c) small AEP-measured.

Cut-out wind speed: 25 m/s (extrapolation by constant power from last bin)								
Hub Height Annual Avg. Wind Speed	(from	Measured measured er curve)	Uncertainty of AEP-Measured		AEP-Extrapolated (from extrapolated power curve)			
(m/s)	(kWh/yr)		(kWh/yr)	(%)	(kWh/yr)			
4	486 Complete		80	24.4%	486			
5	939	Complete	108	15.0%	939			
6	1,413	Complete	125	10.9%	1,414			
7	1,857	Complete	134	8.6%	1,868			
8	8 2,240 Complete		140	7.3%	2,284			
9	2,538 Complete		143	6.5%	2,655			
10	2,742	Incomplete	144	6.0%	2,970			
11	2,857	Incomplete	142	5.6%	3,221			

Table 10. DC Annual Energy Production based on ALL Data at Sea-Level Air Density, 1.225 kg/m³

6.4 Other Characterizations of Performance Data

In accordance with the IEC standard, this section reports other characterizations of performance data. Normally these characterizations would include graphs of:

- a. The statistical parameters of the power measurements (mean, standard deviation, minimum, and maximum) as a function of wind speed
- b. Mean wind speed and turbulence intensity as a function of wind direction
- c. Coefficient of performance as a function of wind speed.

This test report reports only the scatter plot of the 10-minute mean power readings and the coefficient of performance as a function of wind speed. Figure 8 shows the scatter plot for 10-minute averages of the DC power data. Dark blue data points shown in this graph that do not have a corresponding light purple point in the middle are points where the turbine appeared to have a furling or other operational problem.

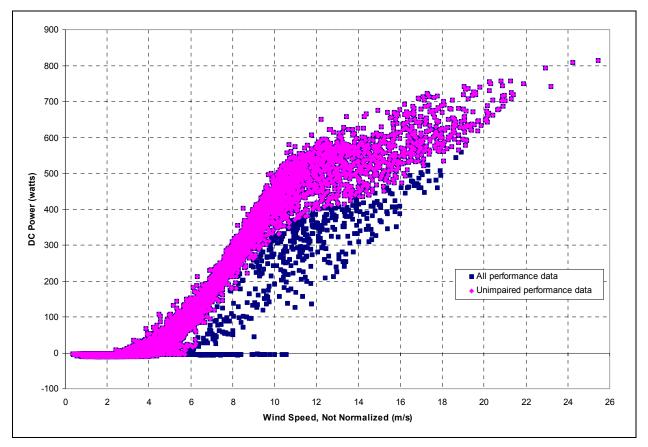


Figure 8. Scatter plot of DC power data

Figure 9 shows the coefficient of performance as a function of wind speed normalized to sea-level air density and DC power. Inclusion of data from the times that the turbine exhibited some performance impairment causes the Cp curve to be lowered slightly.

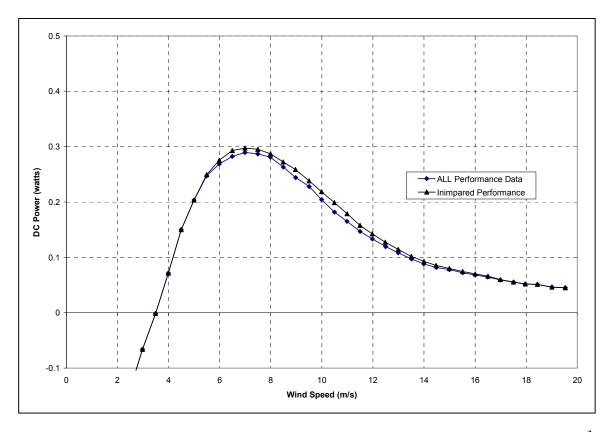


Figure 9. Coefficient of performance at sea-level air density (using DC power), 1.225 kg/m³

7.0 Discussion of Results

The power curve (see Figure 3) shows a flattening around 11 m/s, which is probably due to furling. But even after furling, the power continues to rise, possibly due to the slight vertical furl incorporated in the patented Angle Governor.

The power curve scatter plot (see Figure 8) shows the effect of furling. The lower bounds of the data scatter indicate the power production when furled. The upper bounds indicate power level when unfurled. Data between these limits provide a coarse indication of the percentage of time that the turbine was furled during the data set. When the turbine exhibited a furling problem, the percentage of time was significantly increased during moderate wind operation.

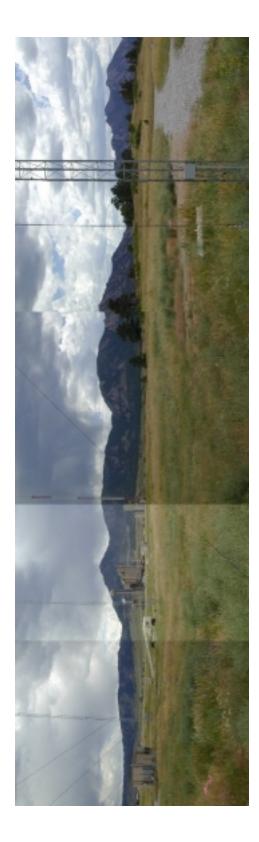
8.0 Exceptions

8.1 Exceptions to Standard

The following exceptions were taken from the IEC standard:

- Data normalization was performed using monthly averages of temperature and pressure as recorded by instruments at an adjacent test site. Pressure measurements were adjusted for the difference in pressure sensor height from the hub height of the Whisper H40 test turbine. And NREL added additional uncertainty. This method should cause no significant biasing error. It does add slightly to scatter of the normalized data.
- 2. Plots of standard deviation, minimum, and maximum power levels for each 10-minute data set were not reported.
- 3. A plot of mean wind and turbulence intensity as functions of wind direction was not reported.

8.2 Exceptions to NWTC-CT Quality Assurance System


1. This test was conducted for purposes other than wind turbine certification. So several quality assurance procedures were not followed. In particular, forms used for laboratory/client interactions and to document instrumentation checks were not completed.

8.3 Deviations from the Test Plan

No exceptions were taken from the Whisper H40 Power Performance Test Plan.

Appendix A Pictures of Test Site

Appendix B Whisper H40 Power Performance Test Plan

B1

Wind Turbine Generator System

Power Performance Test Plan

for the

Whisper H40

in

Golden, Colorado

by

National Wind Technology Center National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401

Trudy Forsyth

June 29, 2001

B2

Approval By:

Trudy Forsyth, NRFL Test Engineer and FYP Project Leader

1

Date

6/29/01

29 Jun 01

Approval By:

Harold F Link, NREL Certification Test Manager

Date

1.0 Table of Contents

1.0 TABLE OF CONTENTS	
2.0 TABLE OF TABLES	B3
3.0 TABLE OF FIGURES	B3
4.0 TEST OBJECTIVE	B4
5.0 BACKGROUND	B4
6.0 TEST TURBINE	B4
7.0 TEST SITE	
7.1 General Description	
7.2 Evaluation of Obstructions	B8
7.3 Evaluation of Terrain	
8.0 DESCRIPTION OF TEST EQUIPMENT	B10
9.0 MEASUREMENT PROCEDURES	B14
10.0 ANALYSIS METHODS	B15
11.0 REPORTING	B18
12.0 UNCERTAINTY	B18
13.0 EXCEPTIONS TO STANDARD PRACTICE	B20
14.0 ROLES AND RESPONSIBILITIES	B21
APPENDIX A: INSTRUMENT CALIBRATION SHEETS	

2.0 Table of Tables

Table 1. Test Turbine Configuration and Operational Data	B5
Table 2. Obstructions Close to Whisper H40 Test Turbine	B9
Table 3. Criteria for Acceptance of Test Site without Site Calibration Testing	B9
Table 4. Power performance test instrumentation	B10
Table 5. Category B uncertainties for DC Power	B19
Table 6. Category B uncertainties for AC Power	B19

3.0 Table of Figures

Figure 1.	Overall Configuration of the Test Turbine, the Whisper H40	B5
Figure 2.	Location and Plot Plan of Whisper H40 Test Site	B7
Figure 3.	View of Test Turbine Toward the Prevailing Wind Direction (292°)	B8
Figure 4.	Locations of power, voltage and current sensors	B13
Figure 5.	Locations of meteorological instruments	B14

B3

4.0 Test Objective

The objective of this test is to obtain the power performance characteristics of the Whisper H40 (900 W) wind turbine for participation in the DOE/Golden Field Office (DOE/GO) Field Verification Project testing program.

5.0 Background

The Whisper H40 was developed by World Power Technologies, the turbine and it's technology was then purchased by Southwest Windpower. The test turbine, located at the National Wind Technology Center, is owned by Windward Engineering in Spanish Forks, Utah. As part of the DOE/GO Field Verification Project each turbine must pass a suite of IEC tests including: duration, system safety and function, power performance and noise tests. This turbine was erected at the NWTC in December 1999. This test was conducted in accordance to the IEC standard, Wind Turbine Generator Systems, Part 12: Wind Turbine Power Performance Testing, Edition 1, IEC 61400-12 (hereafter referred to as the IEC standard).

6.0 Test Turbine

The Whisper H40 has a rotor diameter 2.1 m and a peak power rating of 900 watts. Figure 1 shows the Whisper H40 wind turbine as it was installed at Site 1.3 at the National Wind Technology Laboratory. The Whisper H40 is a three-bladed, upwind, variable speed turbine that uses furling for power regulation and overspeed control. The turbine is mounted on a 10-cm (4-in) tube tower at a hub height of 9.1 m (30 ft.). The tower is supported by four guy wires and can be easily lowered to ground level for turbine inspection and maintenance.

The turbine uses a direct-drive, permanent magnet, brushless alternator to produce three-phase, variable-frequency, variable-voltage, and AC power. This, "wild AC" power is directed through slip rings in the nacelle to the turbine's EZ Wire controller.

The EZ wire is a proprietary, SCR-based rectifier and features turbine control and a dump load. In this test, it was configured to produce 24 volts DC. DC voltage is stabilized with four batteries. A Trace sine-wave inverter (model number SW4024) converts the DC power to 120 volts AC and feeds it to the NWTC electrical grid. In case of a utility outage or inverter failure, the resistive dump load dissipates energy from the turbine. A manual switch provides braking for the turbine by disconnecting it from the load and shorting two of the generator leads together.

Table 1 lists configuration and operational data for the Whisper H40.

The test turbine's electrical interface with its external environment is at the turbine side of the isolation switch, LP 1.3. This switch connects the turbine to the utility or isolates it from the utility grid. Therefore this is the location for measuring AC power output. However, in order to document the turbine's DC power output, voltage and current will be measured on the DC bus between the EZ Wire and the inverter.

Figure 1. Overall Configuration of the Test Turbine, the Whisper H40

General Configuration:	
Make, Model, Serial Number	World Power Technologies, Whisper H40
	S/N:
Rotation Axis	Horizontal
Orientation	Upwind

B5

Number of Blades	3
Rotor Hub Type	Rigid
Rotor Diameter (m)	2.13
Hub Height (m)	9.1
Performance:	
Rated Electrical Power (W)	900
Rated Wind Speed (m/s)	12.5
Cut-in Wind Speed (m/s)	3.4
Rotor:	
Swept Area (m ²)	3.6
Cut-in Rotational Speed (rpm)	300
Maximum Rotational Speed (rpm)	1200
Tilt Angle (deg)	7
Blade Pitch Angle (deg)	0 (non-linear 13° at root to 1° at tip)
Direction of Rotation	CCW
Overspeed Control	Furling
Braking System:	
Electrical Brake: Make, Type, Location	Electrical single pole
Yaw System:	
Wind Direction Sensor	Tail vane
Tower:	
Туре	Guyed tube tilt-down
Height (m)	9.1
Control / Electrical System:	
Controller: Make, Type	EZ-wire system 120 SW4024
Power Converter: Make, Type	Trace
Electrical Output: Voltage, Frequency,	480 VAC, 60 Hz, 1-phase
Number of Phases	

7.0 Test Site

7.1 General Description

The Whisper H40 wind turbine under test is located at Test Site 1.3 of the National Wind Technology Center (hereafter referred to as the test site), approximately 8 km south of Boulder, Colorado. The site is located in somewhat complex terrain at an approximate elevation of 1850 m above sea level. Figure 2 shows a plot plan of the test site with topography lines listed in feet above sea level.

The meteorological tower is located 6.4 m from the test turbine at an azimuth of 291 degrees true. This is three rotor diameters from the turbine in measurement sector as required by the IEC standard.

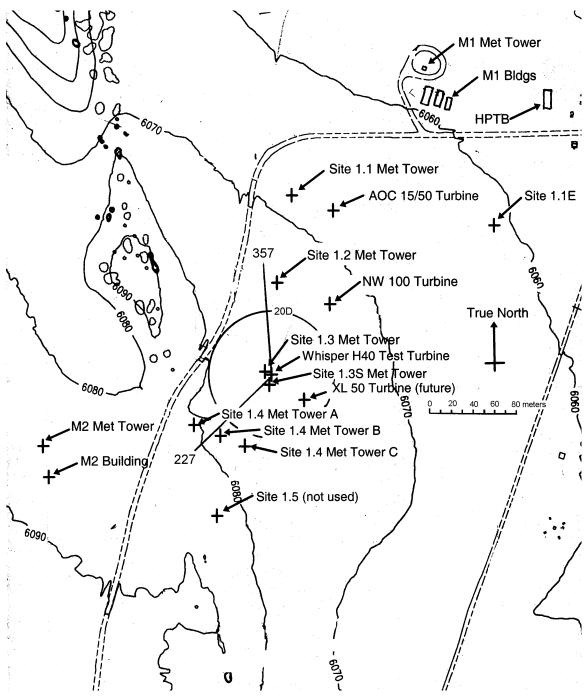


Figure 2. Location and Plot Plan of Whisper H40 Test Site

Figure 3. View of Test Turbine Toward the Prevailing Wind Direction (292°)

7.2 Evaluation of Obstructions

The IEC standard uses the expression, "measurement sector," to define wind directions that can be used for power performance measurements. NREL defines a "preliminary measurement sector" as part of the site assessment procedure. Using data obtained during site calibration or the power performance test, NREL may change the measurement sector to avoid wind directions where terrain or obstacles affect the wind.

B8

The first step in defining the measurement sector is to consider historic wind data, if available. Experience at the NWTC has shown that the prevailing wind direction is 292° for winds above 4 m/s. These winds usually come during the "wind season", which normally lasts from November to April.

Next we analyze the site to estimate the wakes from obstructions. The preliminary measurement sector should avoid wake effects on the turbine and the meteorological tower. This includes the potential for the turbine wake to affect the anemometers on the meteorological tower. Table 2 lists the positions and characteristics of structures close to the Whisper H40 and the preliminary measurement sector. This table does not include the data shed as the IEC standard permits small data acquisition sheds within the measurement sector. NREL will evaluate the effect of this shed using the power performance data. If we find that the shed has a significant effect, the measurement sector will be adjusted accordingly. Based on the effects of the obstructions listed in Table 2, the preliminary measurement sector is 227° to 358° true.

		Rotor	Distance	Bearing	Start of	End of
Description	Tower	Diameter	from	From	Excluded	Excluded
	Height	(equiv.	Test	Test	Region	Region
		or real)		Turbine		
	<i>(m)</i>	<i>(m)</i>	<i>(m)</i>	(deg true)	(deg true)	(deg true)
AOC 15/50 Turbine	25	15	146	22	358	47
Site 1.3S Met Tower	37	0.5	9	201	177	226
BWC XL10 Turbine	37	7	64	202	177	227
		Rotor	Distance	Bearing	Start of	End of
Description	Tower	Diameter	From	From	Excluded	Excluded
	Height	(equiv.	Test	Met	Region	Region
		or real)		Tower		
	<i>(m)</i>	<i>(m)</i>	<i>(m)</i>	(deg true)	(deg true)	(deg true)
Whisper H40	9.1	2.1	6	110	67	153
AOC 15/50 Turbine	25	15	147	24	0	49
Site 1.3S Met Tower	37	0.5	11	167	145	190
BWC XL10 Turbine	37	7	64	196	171	221

Table 2. Obstructions Close to Whisper H40 Test Turbine

7.3 Evaluation of Terrain

To conduct a performance test without a site calibration, the terrain surrounding the test turbine must meet all of the criteria listed given in Section A.1 of the IEC standard. Table 3 lists these criteria and the results of the NWTC-CT's assessment. The site failed criterion #2 because any terrain irregularity over 17 cm exceeds the 0.08 D limit. In this case, NREL chose to forgo the site calibration. We will evaluate the power performance data to see if small obstructions have any influence on the power curve measurements.

 Table 3. Criteria for Acceptance of Test Site without Site Calibration Testing

Criterion	Description	Distance	Sector	Test Site Condition	Pass/Fail
1	Maximum slope of best fit plane <3%	<2L ⁽¹⁾	360°	2%	Pass
2	Max variation from best fit plane $< 0.08 D^{(3)}$	<2L	360°	0.14D	Fail
3	Maximum slope of best fit plane <5%	2-4L	Inside prel. meas. sector	2%	Pass

B9

Criterion	Description	Distance	Sector	Test Site Condition	Pass/Fail
4	Max variation from best	2-4L	Inside prel.	0.14D	Pass
5	fit plane < 0.15 D Maximum slope of steepest slope <10%	2-4L	meas. sector Outside prel. meas. sector	2%	Pass
6	Maximum slope of best fit plane <10%	4-8L	Inside prel. meas. sector	9.6%	Pass
7	Max variation from best fit plane < 0.15 D	4-8L	Inside prel. meas. sector	0.124D	Pass
8	No operating turbines	2Dn ⁽⁴⁾	360°		Pass
9	Met tower out of test turbine wake	L	67° – 153°	292°	Pass
10	No obstacles	<8L	Inside prel. meas. sector	None	Pass

(1) L is the distance for the test turbine to the meteorological tower

- (2) Unable to fit a plane to the topography that also passes through turbine base
- (3) D is the rotor diameter of the test turbine
- (4) Dn is the rotor diameter of a neighboring turbine

8.0 Description of Test Equipment

Table 4 lists the instruments to be used in this power performance. Figure 4 shows the locations for the power, voltage, and current sensors. Figure 5 shows the locations of the anemometers and wind vane on the meteorological tower. The temperature and pressure sensors are located at Site 1.1 (AOC 15/50 test site) and Site 1.4 (Bergey XL10 test site) approximately 150 and 65 meters from the test turbine, respectively.

In addition to the instruments listed in Table 2, the performance test requires a signal to determine turbine operational status. The controller of the Whisper H40 has no automatic fault sensing or indicators. Therefore NREL installed a three-position manual switch connected to the datalogger. In position 1, the turbine and system are considered OK for power performance purposes. If a test engineer or technician note that the turbine has a fault condition, they turn the status switch to position 2 to indicate that the turbine is not available. If the test engineer or technician note that external conditions are not suitable for the turbine to operate (i.e., grid outage, turbine turned off for testing), they turn the status switch to position 3 to indicate that the system is not available. The datalogger records what percentage of the 10 averaging time that the switch is in either position 2 or position 3.

Power Transducer				
Make / model:	OSI, GWV5-001EY24/1			
Serial number (Transducer/CTs):	0010301			
Range with CTs:	0 - +/-1			
Calibration Due Date:	1/5/01			
Reactive Power Transducer				
Make / model:	OSI, GWV5-001EY24/2			
Serial number (Transducer/CTs):	0010301			
Range with CTs:	0 - +/-1			
Calibration Due Date:	1/5/01			
Turbine Speed				

Make / model:	Action Pak				
Serial number:	B7YSV				
CT range:	0-1000 RPM				
Calibration Due Date:	2/18/01				
DC Bus Voltage	2/10/01				
Make / model:	OSI VT7-003E				
Serial number:	9111995				
CT range:	0-50 Vdc				
Calibration Due Date:	1/3/01				
	1/3/01				
DC Bus Amps Make / model:	OSI CTA212				
Serial number:	0010126				
CT range: Calibration Due Date:	0-50 Amp 1/3/01				
	1/3/01				
Battery Amps Make / model:	OSI CT 4 212v42				
Serial number:	OSI CTA212y42 00125				
CT range:	0 - +/-50 Amp				
Calibration Due Date: 1/3/01					
Met Anemometer 2/9/2000 to 11/2					
Make / model:	Met One, 010C with Aluminum Cups				
Serial number.	W1231				
Calibration Due Date:	2/9/01				
Met Tower Location:	6.7 meters upwind				
Met Anemometer 11/29/2000 to cu					
Make / model:	Met One, 010C with Aluminum Cups				
Serial number.	W1240				
Calibration Due Date:	4/21/01				
Met Tower Location:	6.7 meters upwind				
Secondary Met Anemometer					
Make / model:	Met One, 010C with Aluminum Vane				
Serial number:	W1232				
Calibration Due Date:	2/9/01				
Met Tower Location:					
Met Tower Location: Wind Direction Sensor	2/9/01 6.7 meters upwind				
Met Tower Location: Wind Direction Sensor Make / model:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143				
Met Tower Location:Wind Direction SensorMake / model:Serial Number:Calibration Due Date:	2/9/016.7 meters upwindMet One, 020C with Aluminum VaneP31432/9/01				
Met Tower Location:Wind Direction SensorMake / model:Serial Number:Calibration Due Date:Met Tower Location:	2/9/016.7 meters upwindMet One, 020C with Aluminum VaneP31432/9/016.7 meters upwind				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/5)	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/5) Make / model:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/50 Make / model: Serial Number:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/50 Make / model: Serial Number: Calibration Due Date:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007 6/2/2000				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/50 Make / model: Serial Number:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/50 Make / model: Serial Number: Calibration Due Date: Instrument Location: Pressure Sensor (from Bergey XL	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007 6/2/2000 Site 1.1 meteorological tower at 22 meters height 10) 10/20/99 to 8/24/00				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/50 Make / model: Serial Number: Calibration Due Date: Instrument Location: Pressure Sensor (from Bergey XL Make / model:	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007 6/2/2000 Site 1.1 meteorological tower at 22 meters height				
Met Tower Location: Wind Direction Sensor Make / model: Serial Number: Calibration Due Date: Met Tower Location: Pressure Sensor (from AOC 15/5) Make / model: Serial Number: Calibration Due Date: Instrument Location: Pressure Sensor (from Bergey XL	2/9/01 6.7 meters upwind Met One, 020C with Aluminum Vane P3143 2/9/01 6.7 meters upwind 0) 10/14/99 to 11/21/2000 Vaisala, PTB101B T4730007 6/2/2000 Site 1.1 meteorological tower at 22 meters height 10) 10/20/99 to 8/24/00				

Instrument Location:	Site 1.4 meteorological tower at 33.5 meters height			
Pressure Sensor (from Bergey XL10) 2/20/01 to current				
Make / model:	Vaisala, PTB101B			
Serial Number:	T3330002			
Calibration Due Date:	12/19/2001			
Instrument Location:	Site 1.4 meteorological tower at 33.5 meters height			
Temperature Sensor (from AOC 15/50) 10/14/99 to 11/21/2000				
Make / model:	Met One, T-200			
Serial Number:	0653394			
Calibration Due Date:	10/20/2000			
Instrument Location:	Site 1.1 meteorological tower at 22 meters height			
Temperature Sensor (from Bergey XL10) 10/20/99 – 8/24/00				
Make / model:	Met One, T-200			
Serial Number:	0602931			
Calibration Due Date:	10/20/2000			
Instrument Location:	Site 1.4 meteorological tower at 33.5 meters height			
Temperature Sensor (from Berge	y XL10) 2/20/01 – current			
Make / model:	Met One, T-200			
Serial Number:	0653393			
Calibration Due Date:	12/12/01			
Instrument Location:	Site 1.4 meteorological tower at 33.5 meters height			
Datalogger 2/15/2000 to 10/4/2000				
Make / model:	Campbell Scientific CR21X			
Serial number:	13185			
Calibration Due Date:	Post-calibration on 2/8/2001			
Datalogger 10/4/2000 to current				
Make / model:	Campbell Scientific CR23X			
Serial number:	3099			
Calibration Due Date:	8/30/2001			

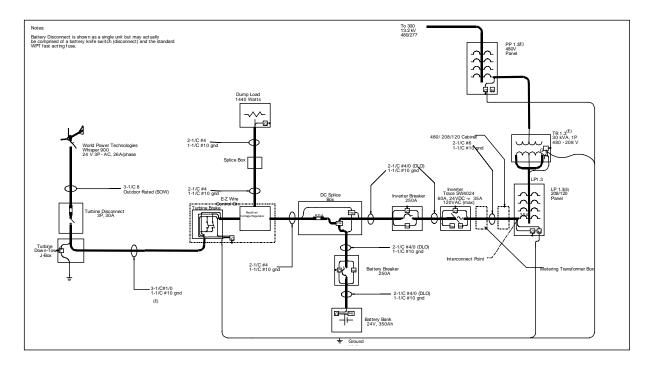


Figure 4. Locations of power, voltage and current sensors

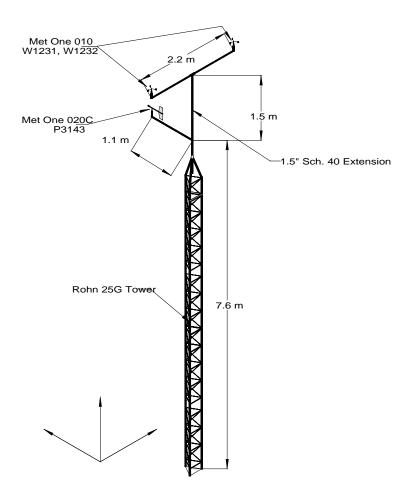


Figure 5. Locations of meteorological instruments

9.0 Measurement Procedures

Measurements during the power performance test will be obtained automatically by the Campbell datalogger at a sample rate of one Hz. At the end of each 10-minutes as indicated on the datalogger's clock, it records the averages of these data with their standard deviations, minimum and maximum values for the ten minutes. It also records the percentage of time that the turbine or system is not available or when the wetness sensor, if used, is wet (as an indication of rain). Finally, the logger records the number of samples in each record. If the datalogger is interrupted by a program change, its first or last record will contain less than 10 minutes. The IEC standard does not allow use of such records.

On a weekly basis, NREL will transfer data from the data logger to computers at NREL offices. Also on a weekly basis NREL personnel will, check instruments located on the meteorological tower from ground level. They will note if there are any obvious failures such as broken or missing cups from the anemometers, bent, broken or missing wind vane, misalignment of any sensors and whether 120 VAC power is being provided to the data logger. NREL personnel will also record any unusual occurrences with the turbine or instrumentation in the appropriate logbook inside the turbine control shed.

NREL will analyze the data sets once per week. Using the procedures described in the next section, the Test Analyst will note if any problems have arisen. If so, he/she will notify the Test Engineer. The test will be considered as suspended pending resolution of the problem. The Test Engineer will determine whether

data obtained during the period when the problem was active can be used for in the determination of power performance and note whether data are used or not in the test report.

If the test site or turbine changes during the test, the Test Engineer will determine if it is appropriate to continue the test, restart the test, or cancel the test. All such actions will be documented in the test report. NREL will monitor the quantity of data obtained during testing and will report on test progress NREL management on a weekly basis.

The power curve must be well defined over a range of wind speeds specified by the IEC standard. In this test the low end of the range is 2.8 m/s, which is 1 m/s below the Whisper H40's cut-in wind speed. The high end of the range is 24 m/s, which is 1.5 times the wind speed at which the turbine produces 85% of its rated power. The test will continue until 180 hours of usable data have been obtained in the specified wind speed range and when each 0.5 m/s wind bin in this range contains at least 30 minutes of data. Once sufficient data are obtained to fulfill these requirements, the NREL test engineer will inform NREL management that the test is complete.

10.0 Analysis Methods

NREL analyzes power performance data in two steps. First we determine which of the data are usable. Then we process the usable data to obtain power curves and to estimate annual energy production and uncertainty.

In the first step, the analyst enters the data into a spreadsheet where time series plots are used to review the various instrument readings. The data acquisition system has failed if:

- 1) voltage of the datalogger's power supply is below 11 volts DC
- 2) temperature at the datalogger is less than -40° C or greater than 80° C
- 3) the record contains less than 600 samples
- 4) any channel is over range as indicated by a record of –99999.

Other checks are made to ensure to the greatest extent practical that all signals are valid. Also the analyst tags as unusable any data obtained when the logbook indicates that the turbine or external conditions prevented normal operation. Occasionally such periods are noted in the logbook but not recorded by the datalogger. Any data that are found to be unusable are filtered from the data set.

The useable data are then entered into a second spreadsheet with custom macros for processing. These macros apply additional filters in accordance with the IEC standard. The IEC standard requires that all data be used unless the following conditions are present:

- Wind turbine is unavailable
- Failure of test equipment
- Wind direction is outside of the valid measurement sector

NREL defines unavailable as:

- Turbine is faulted (the controller does not sense any problem with the turbine nor is the emergency stop button pushed)
- Turbine is not in automatic run mode (i.e. manual mode)
- The utility grid is not available (utility power is not within specifications)

Once the above criteria have been applied, the remaining.g data form the primary test data set, and the resulting power performance from this set are analyzed and reported. The macros perform the following calculations on that data set:

1. When site calibration data are available, Equation 1 is used to adjust the average wind speeds measured on the meteorological tower (MET) to calculate turbine wind speeds according to the site calibration results. If no site calibration test was performed, then the $\Gamma_{\text{Site}} = 1.0$.

$$V_{Turb} = \Gamma_{Site} \cdot V_{MET}$$
 Equation 1

where:
$$V_{Turb}$$
 = wind speed at turbine (m/s)

 Γ_{Site} = site calibration factor

 V_{MET} = wind speed at MET (m/s)

2. If the pressure sensor is more then 10 meters below hub height, then for each data point the measured pressure is corrected to hub height by Equation 2 (from ISO 2533).

$$p = p_b \cdot \left[1 + \frac{\beta}{T_b} \cdot \left(H - H_b \right) \right]^{-\frac{S_n}{\beta \cdot R}}$$
 Equation 2

where: p

β

= pressure at hub height (Pa)

- p_b = measured pressure (Pa)
 - = temperature gradient (-6.5 K/m)
- T_b = measured temperature (K)
- H = hub height above ground (m)
- H_b = pressure transducer height above ground (m)
- g_n = acceleration of gravity (9.807 m/s²)
- R = specific gas constant (287.053 m/Ks²)
- 3. For each data point, the average air density is calculated by the Ideal Gas Law (Equation 3):

$$\rho_{10\min} = \frac{B_{10\min}}{R^* T_{10\min}}$$
 Equation 3

where: $\rho_{10\text{min}}$ = derived air density averaged over 10 minutes (kg/m³) T₁₀ = measured absolute air temperature averaged over 10 minutes

 T_{10min} = measured absolute air temperature averaged over 10 minutes (K) B_{10min} = measured air pressure averaged over 10 minutes (Pa) R = gas constant for air (287.05 J/kgK)

- 4. For each data point, the derived site air density is used to calculate the average site air density for the test period, rounded to the nearest 0.05 kg/m³.
- 5. For small turbines that use furling, NREL has determined that the most appropriate method to use for normalize the power curve is to adjust wind speed in accordance with Equation 4. In this test normalization will be performed using monthly averages instead of 10-minute averages of air density:

$$V_n = V_{10\min} \cdot \left(\frac{\rho_{10\min}}{\rho_0}\right)^{1/3}$$
 Equation 4

where: V_n

 $\begin{array}{ll} V_n & = normalized \mbox{ wind speed (m/s)} \\ V_{10min} & = measured \mbox{ wind speed averaged over 10 minutes (m/s)} \\ \rho_0 & = site \mbox{ average air density (kg/m³)} \end{array}$

 $\rho_{10\text{min}}$ = measured air density averaged over 10 minutes (kg/m³)

- 6. Equation 6 is applied a second time with ρ_o replaced with the standard sea-level air density (1.225 kg/m³), creating a standard normalized wind speed (V_{ns})
- 7. All data are sorted, according to normalized wind speeds, into bins which are 0.5 m/s wide, with bin centers at integer multiples of 0.5 m/s. Each power, DC and AC, is averaged for each bin. As a result, two power curves and AEPs are calculated.
- 8. For each data bin, the following parameters are calculated:
 - bin average air temperature (K)

- bin average corrected air pressure (Pa) •
- bin average measured wind speed (m/s) •
- bin average standard deviation of wind speed (m/s)
- bin average measured power (W) •
- bin average standard deviation of measured power (W) •
- bin average site average density normalized power (W) •
- bin average site average density standard deviation normalized power (W) •
- bin average sea-level density normalized power (W) •
- bin average sea-level density standard deviation normalized power (W) •
- site average density (kg/m^3) •
- amount of 10 minute data points in bin
- bin average uncorrected air pressure (Pa)
- bin power coefficient
- 9. The test power curve is then formed by the resulting average normalized wind speed and average power (average for site average density, standard for sea-level density) at each bin. For each bin the generator power coefficient is calculated by Equation 5:

$$C_{P,i} = \frac{P_i}{0.5*\rho_0 A V_i^3}$$
 Equation 5

where: C_{P_i}

- \mathbf{V}_{i} = normalized wind speed in bin i (m/s)
- P_i A = average power in bin i (W)
 - = swept area of the turbine rotor

= reference air density (same as used to normalize V_i) ρ_0

= generator power coefficient in bin i (non-dimensional)

10. The measured power curve is then used to estimate annual energy production (AEP) for a variety of Rayleigh wind speed distributions, where for each case the distributions are specified at turbine hub height and assumed to be constant over the swept area of the rotor. The AEP estimations are made according to Equations 6 and 7:

$$AEP = N_h \sum_{i=1}^{N} \left[F(V_i) - F(V_{i-1}) \right] \left(\frac{P_{i-1} + P_i}{2} \right)$$
 Equation 6

where: AEP

- = annual energy production (kWh)
- N_h = number of hours in one year ≈ 8760 hr
- Ν = number of bins
- Vi = normalized and averaged wind speed in bin i
- V_{i-1} = normalized and averaged wind speed in bin i-1
- = averaged measured power in bin i Pi
- = averaged measured power in bin i-1 P_{i-1}
- F(V)= the accumulated Rayleigh distribution, given by:

$$F(V) = 1 - \exp\left(-\frac{\pi}{4}\left(\frac{V}{V_{ave}}\right)^2\right)$$
 Equation 7

where: V_{ave} V

= annual average wind speed at hub height = wind speed

- 11. The summation of Equation 6 is initiated by setting V_{i-1} equal to V_i -0.5 m/s, and P_{i-1} equal to 0 kW. The AEP calculations are made for integer values of annual average wind speeds ranging between 4 and 11 m/s.
- 12. An uncertainty analysis is performed per Annex C of the IEC standard for both the measured power curve and estimated AEP.

AEP is calculated in two ways, one designated AEP-measured and the other AEP-extrapolated. AEPmeasured is calculated assuming that power in winds above the highest bin in the power curve is zero. AEP-calculated is calculated assuming that power in winds above the highest bin in the power curve is equal to the power in the highest wind bin. If AEP-measured is less than 95% of AEP-calculated, then the table reporting AEP-measured values must indicate "Incomplete."

11.0 Reporting

When the data collection and analysis are completed, NREL will generate a test report. This report will include the power curves and AEP for the Whisper H40, as well as detailed explanations of any deviations from this test plan. The report will also examine the uncertainty of the measurements, and whether the test passes the minimum requirements of the Standard.

12.0 Uncertainty

This section describes NREL estimates of Type B measurement uncertainties based on the selection and installation of instruments. NREL will determine Type A uncertainties based on the scatter of the power performance data. All uncertainty estimates have and will be made accordance with Annex C of the IEC standard for both the measured power curve and estimated AEP.

Table 5 and Table 6 summarize the Category B uncertainty parameters for the power performance measurements. Total Type B uncertainty is obtained by combining each component's uncertainty using the root-sum-squared method. Combined uncertainty is the root-sum-squared combination of Category A and Category B uncertainties of power measurements. At the conclusion of the test, NREL will calculate and report Category A and combined uncertainties for each wind bin for both average site air density and standard conditions.

Component	Uncertainty		Source
Power			
voltage transducer	0.05%		specifications
current sensor/signal conditioner	0.50%		specifications
power transducer (>=500 W)*	0.20%		specifications
data acquisition	0.14	W	manual
resistor	0.10%		specifications
Wind Speed			
anemometer	0.11	m/s	calibration
operational characteristics	3.00%		assumption
mounting effects	2.00%		assumption
terrain effects	1.00%		assumption
data acquisition	0.04	m/s	estimate
Temperature			
temperature sensor	0.26	K	specifications
radiation shielding	2.00	K	assumption
mounting effects	1.16	Κ	assumption
linearization	1.00	Κ	DAS manual
data acquisition	0.13	Κ	manual
Air Pressure			
pressure sensor	0.14	hPa	calibration
mounting effects	0.02	hPa	10% of correction
data acquisition	0.09	hPa	manual
* Power transducer uncertainty in transformer.	cludes uncert	ainty	in current

Table 5. Category B uncertainties for DC Power

Table 6. Category B uncertainties for AC Power

Component	Uncertainty		Source
Power			
power transducer (>500 W)*	1.00	W	specifications
power transducer (>=500 W)*	0.20%		specifications
data acquisition	0.14	W	manual
resistor	0.01%		specifications
Wind Speed			
anemometer	0.11	m/s	calibration
operational characteristics	3.00%		assumption
mounting effects	2.00%		assumption
terrain effects	1.00%		assumption

data acquisition	0.04	m/s	estimate			
Temperature (worst case)						
temperature sensor	0.26	K	specifications			
radiation shielding	2.00	K	assumption			
mounting effects	1.16	K	assumption			
linearization	1.00	K	DAS manual			
data acquisition	0.13	K	manual			
Air Pressure (worst case)						
pressure sensor	0.14	hPa	calibration			
mounting effects	0.02	hPa	10% of correction			
data acquisition	0.09	hPa	manual			
	* Power transducer uncertainty includes uncertainty in current					
transformer.						

13.0 Exceptions to Standard Practice

Power performance instrumentation deviates from the IEC standard as follows:

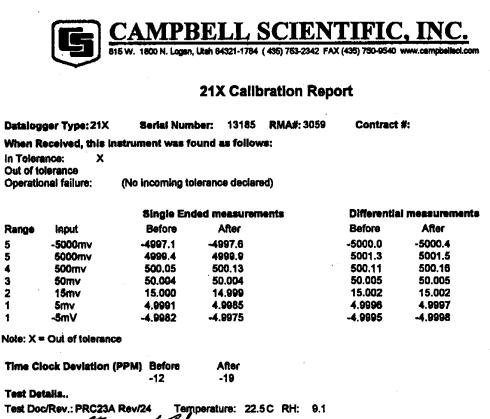
- 1. The power transducer was not tested for compliance with IEC 60688.
- 2. The current transformers were not tested for compliance with IEC 60044.
- 3. The voltage transformer was not tested for compliance with IEC 60186.
- 4. The terrain does not meet the requirements of the IEC standard for variations within a distance of 2L from the test turbine.
- 5. The temperature and pressure instruments are located at an adjacent test site.
- 6. Normalization for air density will be based on monthly averages of temperature and pressure rather than 10-minute averages.

B20

14.0 Roles and Responsibilities

Table lists the planned test team, and identifies roles and responsibilities for each team member.

Test Team Title	Name	Employer	Role(s)
NWTC-CT	Hal Link	NREL	NREL approval of test plan.
Manager			
Test Engineer	Trudy Forsyth	NREL	Overall test management and
			responsibility.
			Customer contact person.
			Authorization for any deviations from
			planned test procedures.
			Supervision of performance test set-up,
			checkout, and conduct.
			Periodic review of test data.
			Review and report test results.
			Primary point of contact between CTG and
			the test site manager.
Test Technician	Gerry Bianchi	NREL	Selection of instruments
			Installation and checkout of test equipment
			Implementation of corrective actions for
			problems
Test Analyst	Tony Jimenez	NREL	Download and store test data
			Analyze test data
			Identify problems based on data analysis
			results
			Provide test engineer with updates on test
			progress
			Provide tables and graphs of results test
			reports
			Assist in writing test report
Site Manager	Trudy Forsyth	NREL	Supervise operation and maintenance of
			test turbine. Responsible for ensuring
			safety of personnel and equipment at test
			site.
			Reports any change in turbine
			configuration


Table 8. Roles of Test Participants

Appendix A: Instrument Calibration Sheets

Campbell 23X datalogger serial number 3099 will be post-calibrated.

Campbell Datalogger Serial Number: 13185

3033847097 NREL NWTC VILLAGE PT

5

5

4

3

2

1

1

Ł Calibrated By:_____

Name: S. Palmer Title: Customer Service Technician

Calibration equipment used: (NIST traceable through certified documents on fil

	Make/ Model#	S/N	NIST#
Voltage Source:	DATA PRECISION 8200	A014824	10598
Frequency source	OSCILATEK TXCO/112	196319	01411WWVB
RTD Ref.:	ROSEMONT-ADSR544	150171	1285

CSI certifies the above instrument meets or exceeds published specifications and has been calibrate using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology, an accepted value of a natural physical constant or a ratio calibration technique. The measurement uncertainty of the calibration process exceeds a 4:1 accuracy ratio. The policies and procedures at this calibration facility comply with ISO-9001.

Celibration date: Thursday, February 08, 2001 Calibration due: Friday, February 08, 2002

Met One Anemometer

Serial number: W1240

Anemometer Calibration Report

Calibration Laboratory: Customer: National Wind Technology Center - Cert. Team National Wind Technology Center - Certification Team National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard 1617 Cole Boulevard Golden, Colorado 80401 Golden, Colorado 80401 Calibration Location: Dates of Calibration: National Wind Technology Center Test Start: 23-Dec-99 Side-by-Side Anemometer Calibration Facility . Test End: 10-Jan-00 Report: 10-Jan-00 Report Number: CR-anno-99-5-T4 Procedure: Page: 1 of 1 NWTC-CT: GI21-98237, Field Calibrate Anemometers Item Calibrated: Deviations from procedure; Manufacturer Met One Instruments, Inc Limited wind speeds to under 16 m/s Model 010C Allowed ref annos to agree within 2% (vs 0.2%) Cup Serial Number W1240 Results: Cup Material Aluminum Slope: 0.04002 m/s/hertz Condition Refurbished: 5 May 99 Offset: 0.3288 Estimated Uncertainty: Traceability: Vwind Cres Uncer Total Uncert: Reference Cup: Met One, 010C, s/n: T2351 4 - 5 m/s 0.080 0.090 Calibrated by: CRES, Pikermi, Greece 5 - 10 m/s 0.080 0.090 Calibration date: 2-Mar-99 10 - 15 m/s 0.100 0.109 <u>10 Jan 00</u> Date n Approved: Hal Link 20 0.8 18 0.6 16 (ສ)¹⁶ (ສ) 14 0.4 (s/u) **peed** 0 10 0.2 Residuals 0.0 Ref. Wind 8 -0.2 6 -0.4 4 -0.6 2

Met One Anemometer

0

0

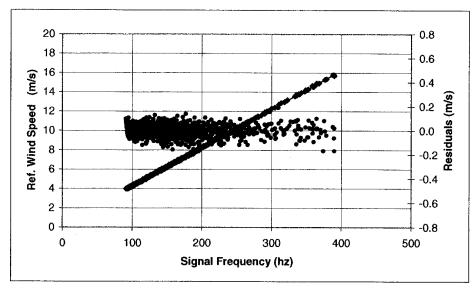
100

-0.8

500

Signal Frequency (hz)

200


300

400

Serial number: W1231

Anemometer Calibration Report

Calibration Laboratory: Customer: National Wind Technology Center - Cert. Team National Wind Technology Center - Certification Team National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard 1617 Cole Boulevard Golden, Colorado 80401 Golden, Colorado 80401 Calibration Location: Dates of Calibration: National Wind Technology Center Test Start: 24-Aug-99 Side-by-Side Anemometer Calibration Facility Test End: 29-Nov-99 Report: 29-Nov-99 Report Number: CR-anno-99-4-T1 Procedure: Page: 1 of 1 NWTC-CT: GI21-98237, Field Calibrate Anemometers Item Calibrated: Deviations from procedure; Manufacturer Met One Instruments, Inc Limited wind speeds to under 16 m/s Model 010C Allowed ref annos to agree within 2% (vs 0.2%) Cup Serial Number W1231 Results: Cup Material Aluminum Slope: 0.03982 m/s/hertz Condition Refurbished: 2 June 99 Offset: 0.3100 m/s Estimated Uncertainty: Traceability: Cres Uncer Total Uncert: Vwind Reference Cup: Met One, 010C, s/n: U1195 CRES, Pikermi, Greece 4 - 5 m/s 0.080 0.092 Calibrated by: 5 - 10 m/s 0.080 0.092 Calibration date: 2-Mar-99 10 - 15 m/s 0.100 0.110 29/0199 Date Approved: Hal Link

Power Transducer Serial number: 0010301

4242 REYNOLDS DRIVE • HILLIARD, OHIO 43026 Telephone (614) 777-1005 FAX (614) 777-4511

CERTIFICATE OF COMPLIANCE

MODEL GWV5-001EY37	COMPANY NREL	n	
SERIAL NO.	PO# J BIANCHI	OSI PO#	RMA# NA
	DATE <u>1-5-00</u>		

It is hereby certified, that all articles in the quantities as called for on the above order are in conformance with all applicable requirements and specifications as outlined in that order and any negotiated changes related thereto.

Accuracy has been established by comparison with standards traceable to the National Institute of Standards and Technology.

EQUIPMENT USED:

MFG	MODEL	S/N	CAL. DATE	DUE DATE	
ROTEK KEITHLEY	800A 177	<u>432</u> 229477	10-5-99 7-15-99	8-5-00 1-5-00	-
					-
ABOVE EQUIPMENT IS T					-
MFG	MODEL	S/N	CAL. DATE	DUE DATE	REPORT NO.
ROTEK	800A 710	432 115	10-5-99 12-20-99	8-5-00	20981 21054
TEMP. 72°F HUM. 55%		OHIO SEMITRO Company			
Dwg. #A-7003-02		Quality Assurance	<i>[]</i>	<u>K.</u>	\angle
	THE LEADER IN	POWER MEASUR	EMENT		

Wind Vane

B26

Refurbishment

MET ONE INSTRUMENTS INC. NIST Test Certification

Model Model 020 B/C W/D	Serial No. <u>13/43</u> DATE0/14/6_5
Job Number <u>984226</u>	Customer_NAFL
PO Number	Tested by
A	Room Relative Humidity 51%
<u>NIST Test Standards:</u> DMM Keithley 197A Ser 490833	Calibrated2-11-99
FREQUENCY HP 5316B Ser 3005A0704	1 Calibrated 9-17-99
TEMPERATURE M.O.I. Model 062 Ser K8	749 Calibrated <u>4-9-99</u>
BAROMETRIC PRESSURE M.O.I. 090D-STD	Ser P6676 Calibrated 4-7-99

TEST	EXPECTED AS REC'D	ERROR AS CALIB	ERROR	SPEC	NOTES
Torque	<0.09in oz < . 0 9 Pa	57Fail 1.09 C	Pase7Fail	<0,09in oz	
Gap Noise	<1.0V Pa	ss/Fail	Pass/Fail		

CALIBRATION

TEST	EXPECTER	AS REC'D	ERROR	AS CALIB	ERROR	SPEC	NOTES
10°	0.070V	.077	4.007	. 057	020	±0.021V	
90°	0.625V	.641	+.016	.608	017	±0.021V	
180°	1.250V	1.289	1.039	1.244	006	±0.021V	
270°	1 .875V	1.869	-,006	1.841	+.006	±0.021V	-
<u>350°</u>	2.431V	2,521	1.090	2.448	+.017	±0.021V	• • • • • • • • • •
2.5 V Ref	2.500V	2556	+.056	2500	- 0-	±0.003V	-

Document 020-96 (service) 4/95

Voltage Transducer Serial number: 9111995 OHIO SEMITRONICS, INC.

×.

4242 REYNOLDS DRIVE • HILLIARD, OHIO 43026 Telephone (614) 777-1005 FAX (614) 777-4511

CERTIFICATE OF COMPLIANCE

MODEL VT7-003E	COMPANY NREL	_		
SERIAL NO. 39441995	PO# J BIANCHI	OSI PO#	48881	RMA# NA
	DATE <u>1-3-00</u>			

It is hereby certified, that all articles in the quantities as called for on the above order are in conformance with all applicable requirements and specifications as outlined in that order and any negotiated changes related thereto.

Accuracy has been established by comparison with standards traceable to the National Institute of Standards and Technology.

EQUIPMENT USED:					
MFG	MODEL	S/N	CAL. DATE	DUE DATE	
	710 177	115 229477	<u>12-20-99</u> 7-15-99	5-20-00 1-15-00	-
ABOVE EQUIPMENT IS T	RACEABLE TO:				
MFG	MODEL	S/N	CAL. DATE	DUE DATE	REPORT NO.
ROTEK	710	115	12-20-99	5-20-00	21054
TEMP. 72°F			NICS, INC.	<u> </u>	
HUM. <u>63%</u>		Company	Mietur J.	[Weluu	u
Dwg. #A-7003-02		Quality Assurance	/ /		
	INE LEADER	IN POWER MEASUR	EIVIÉN I		

Current Signal Conditioner Serial number: 0010124/0010126 OHIO SEMITRONICS, INC.

4242 REYNOLDS DRIVE • HILLIARD, OHIO 43026 Telephone (614) 777-1005 FAX (614) 777-4511

CERTIFICATE OF COMPLIANCE

MODEL CTL-51/50-CTA212		COMPANY	NREL	-	
SERIAL NO. 0010124-0010126	PO#	J BIANCHI	OSI PO#	48881	RMA# NA
	DA	TE 1-3-00			

It is hereby certified, that all articles in the quantities as called for on the above order are in conformance with all applicable requirements and specifications as outlined in that order and any negotiated changes related thereto.

Accuracy has been established by comparison with standards traceable to the National Institute of Standards and Technology.

EQUIPMENT USED:

MFG	MODEL	S/N	CAL. DATE	DUE DATE	
EMPRO	100Amps/100mV	107	5-28-99	5-28-00	
KEITHLEY	179A	253342	6-22-99	12-22-99	
KEITHLEY	179	23461	7-28-99	1-28-00	
KEITHLEY	179	20585	7-21-99	1-21-00	
ABOVE EQUIPM	ENT IS TRACEABLE TO:				
MFG	MODEL	S/N	CAL. DATE	DUE DATE	REPORT NO.
ROTEK	710	115	12-20-99	5-20-00	21054
EMPRO	200 Amps/50 mV	99	11-8-99	11-8-00	62209
TEMP. <u>72°</u> HUM. 639		OHIO SEMITRO Company			/
		Quality Assurance	Mulu .	f fletu	yu
Dwg. #A-7003-02	Z				

THE LEADER IN POWER MEASUREMENT

Pressure Sensor Serial number: T4730007

		INSTRU REPAIR		•	
	Gertij	ficate of	INC	bration	
	C	Ompany name: Ertification #: Ion location:	Nationa 9905051 IRL Dep		rgy Lab
	MANUFACTURER Vaisala	MODEL N PTB	UMBER LO1B	P.O. NUMBER	
	SERIAL NUMBER T4730007	CALIBRATIO 400	DN ID # D50	CUSTOMER ID #	
		Within Tolerance Out Of Tolerance		rational Failure ical Damage	
	RETURNED	Within Tolerance	🗌 Limi	ted	
	CALIBRATION	Due	06/02/2	000	1
	STANDARD(S)	Used	ME3 DR1	FL8	1
	CALIBRATION PRO	CEDURE USED	MFGR Ca	l Procedure	
	meets or exceeds all instrument has been of N.I.S.T. within the life from accepted value Requirements" satisfy and ISO Guide 25. T unless otherwise not	manufacturer's or calibrated using stand nitation of their cali s of natural physica ANSI/NCSL Z540, he calibration envir- ted. This report is to	agreed upon dards whose a bration service al constants. MIL-STD-456 onment was 7 not to be rep	e above listed instrument local specifications. The ccuracies are traceable to es, or have been derived Our "Calibration System 62A, FDA GMP 820.61 0°F ½ 5°F and <70% RH roduced, except in full, Quality Manager.	
		CERTIFIED	BY:	onald Horton	
)	DATE CALIBRAT	ED:	06/02/99	
	$\langle \rangle$ c	QUALITY MANAC	GER:	BILL HEDRICK	
ISO 9002 INSTRUMENT REPAIR LABS CERT NO. 12	·/	0 W. 6th Ave. • Br 5375 or (800) 345			
CERT NO.	(303) 469.	·33/5 or (800) 345·	-0140 FAX (3		2 Form 07, R

B30

Page 1 of 3

HART SCIENTIFIC, INC.

METROLOGY LABORATORY 799 East Utah Valley Drive American Fork, Utah 84003-9775

REPORT OF CALIBRATION

INTERNATIONAL TEMPERATURE SCALE OF 1990

Platinum Resistance Thermometer Model No: T200 Serial No: 0653394

Submitted By: Instrument Repair Labs Broomfield, CO 80020

This Platinum Resistance Thermometer (PRT) was calibrated by comparison to a laboratory standard SPRT via a Precision DC Thermometer at a constant current of 1.0 mA. The procedure followed is based on the technical information contained in NIST Technical Note 1265, "Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90)" pertaining to secondary PRT's. The following comparison points and their uncertainties (k=2) were used to calibrate the thermometer. This calibration is traceable to NIST or natural physical constants and is in compliance with ANSI/NCSL Z540 - 1 and MIL-STD 45662A.

COMPARIS	SON POINT	MEASURED	MEASUREMENT
NOMINAL	ACTUAL	RESISTANCE	UNCERTAINTY
-38.834 °C	-38.83724°C	84.67680	0.008°C
0.010 °C	0.01294°C	99.96670	0.005°C
156.599 °C	156.6047°C	159.76850	0.008°C
231.928 °C	231.9799°C	187.53810	0.009°C

The calibration data were fitted by the method of least squares to obtain the following values for the resistance at the triple point of water (RTPW) and the coefficients of the pertinent deviation functions of the ITS-90. The attached interpolation tables were generated using these values.

ITS=90 Coefficients: R	tpw = 99.9655282 ohms		95598 E-02 93385 E-02	b5 = -8.553259 b9 = 3.4495763	
	STAN	DARDS USI	ED		
Description	Manufa	cturer	Model No.	Serial No.	Due Date
Thermometer, 1ppm S	Super Hart Sc	entific	1590	8C030	07/03/1999
Standard Platinum Resistance	Thermometer Hart Sc	ientific	5680	5-1001	10/06/1999
Laboratory Environment: Temperature: 23°C				'	1
Humidity: 34%	Calibration I	Performed by	:	Approved by:	
Procedure: HSC106					
Calibration Date: 04/09/1999	1201	0.6		n1 n	. I
Calibration Due: 04/08/2000	_/vu	alma	m	_ (hmo f	Wind
PO Number: 015878	Michael Col	eman		Thomas J. Wiandt	

Thomas J. Wiandt (801) 763-1600

This report shall not be reproduced except in full without written approval of Hart Scientific, Inc.

(801) 763-1600

Pressure Sensor

Report Number: 932248

Serial number: T4830002

		INS <u>TRU</u>	<u> </u>	-	
		REPAIR			
	Gerti	Ficate of		- bration	
	(Company name: Certification #: Tion location:	Nationa 990505: IRL Dep		nergy Lab
	MANUFACTURER Vaisala	MODEL N PTB1	JMBER 01B	P.O. NUMBE	R
	SERIAL NUMBER T4830002	CALIBRATIC 400		CUSTOMER IE) #
	RECEIVED	Within Tolerance Out Of Tolerance		erational Failure /sical Damage	
	RETURNED	Within Tolerance	🗌 Lin	nited	
	CALIBRATION	Due	06/02/2	2000	
	STANDARD(S)	Used	DR1 ME	3 FL8	
	CALIBRATION PRO	DCEDURE USED	MFGR Ca	al Procedure	_
	meets or exceeds a instrument has been N.I.S.T. within the I from accepted valu Requirements" satis and ISO Guide 25. unless otherwise no	II manufacturer's or calibrated using stanc mitation of their calil es of natural physica fy ANSI/NCSL Z540, The calibration envire	agreed upon lards whose a oration servic I constants. MIL-STD-45 onment was not to be re	ne above listed instrum local specifications. T accuracies are traceable ces, or have been deriv Our "Calibration Syst 662A, FDA GMP 820. 70°F ½ 5°F and <70% produced, except in f 2 Quality Manager.	Fhe e to ved em .61 RH
		CERTIFIED	BY:	Ronald Horton	
GERI	>	DATE CALIBRAT		06/02/99	
		QUALITY MANAG	ER:	BILL HEDRICK	
ISO 9002 INSTRUMENT REPAIR LABS CERT NO. 12		00 W. 6th Ave. • Bro -5375 or (800) 345-			
2.033.232.23				page 1 oPZ	Form 07, Re

B32

Page 1 of 3

HART SCIENTIFIC, INC.

METROLOGY LABORATORY 799 East Utah Valley Drive American Fork, Utah 84003-9775

REPORT OF CALIBRATION

INTERNATIONAL TEMPERATURE SCALE OF 1990

Platinum Resistance Thermometer Model No: T200 Serial No: 0602931

> Submitted By: **Instrument Repair Labs** Broomfield, CO 80020

This Platinum Resistance Thermometer (PRT) was calibrated by comparison to a laboratory standard SPRT via a Precision DC Thermometer at a constant current of 1.0 mA. The procedure followed is based on the technical information contained in NIST Technical Note 1265, "Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90)" pertaining to secondary PRT's. The following comparison points and their uncertainties (k=2) were used to calibrate the thermometer. This calibration is traceable to NIST or natural physical constants and is in compliance with ANSI/NCSL Z540 - 1 and MIL-STD 45662A.

COMPAR	ISON POINT	MEASURED	MEASUREMENT
NOMINAL	ACTUAL	RESISTANCE	UNCERTAINTY
-38.834 °C	-38.83724°C	84.68600	0.008°C
0.010 °C	0.01294°C	100.01520	0.005°C
156.599 °C	156.6047°C	159.81340	0.008°C
231.928 °C	231.9799°C	187.55370	0.009°C

The calibration data were fitted by the method of least squares to obtain the following values for the resistance at the triple point of water (RTPW) and the coefficients of the pertinent deviation functions of the ITS-90. The attached interpolation tables were generated using these values.

ITS=90 Coefficients: Rtpw = 100.01	$a_{a5} = -1.84$	51497 E-02	b5 = -8.521778	6 E-03
	a9 = -1.92	255452 E-02	b9 = -1.125997	1 E-03
r				
	STANDARDS USI			
Description	Manufacturer	Model No.	Serial No.	Due Date
Thermometer, 1ppm Super	Hart Scientific	1590	8C030	07/03/1999
Standard Platinum Resistance Thermometer	Hart Scientific	5680	5-1001	10/06/1999
	:			
Laboratory Environment:	'			· · · · · · · · · · · · · · · · · · ·
Temperature: 23°C				
Humidity: 34%	Calibration Performed by	<i>'</i> :	Approved by:	
Procedure: HSC106				
Calibration Date: 04/09/1999	Not OR		al a	, /
Calibration Due: 04/08/2000	Min Calina	~	Them Je	mot
PO Number: 015878	Michael Coleman		Thomas J. Wiandt	
Report Number: 932245	(801) 763-1600		(801) 763-1600	

(801) 763-1600

This report shall not be reproduced except in full without written approval of Hart Scientific, Inc.

Pressure Sensor

Report Number: 932245

Serial number: T3330002

LABORATORY/OFFICE: 54043 County Rd. 37 Nunn, Colo. 80648 Phone: 970-897-2711 FAX: 970-897-2710

COLORADO ENGINEERING EXPERIMENT STATION, INC.

CALIBRATION OF A VAISALA ABSOLUTE PRESSURE TRANSMITTERMODEL NO.: PTB101BSERIAL NO.: T3330002FOR: INSTRUMENT REPAIR LABSPURCHASE ORDER NO.: 017853

CERTIFICATE OF CALIBRATION

The calibrations identified by CEESI files:

00CG-030

were performed using standards that are traceable to the National Institute of Standards and Technology

These calibrations were performed in accordance with the current revision of PROC-010 and MIL-STD-45662A.

The pressure measurement uncertainty is estimated to be: ± 0.14 hPa of reading, to 95% confidence.

These calibrations were:

☑ as found ☑ as left

Calibrated by:

John Reiner

iality Assurance

On behalf of Colorado Engineering Experiment Station Inc.

Temperature Sensor Serial number: 0653393

sheet: 1 of: 1

NREL METROLOGY LABORATORY

Test Report

Test Instrument: RTD Probe

Model # : N/A

S/N : 0653393

Due Date: 12/12/2001

DOE #: 02683C

Calibration Date: 12/12/2000

	Nominal	Values		Measured Values	
Nu	Nominal Resistance	Equivalent Temperature	Measured Resistance	Equivalent Temperature	Temperature Error(M-N)
1	94.12 Ω	-15 °C	94.131 Ω	-14.97 °C	0.03 °C
2	100.00 Q	0.0 °C	100.017 Ω	0.04 °C	0.04 °C
3	105.85 Q	15.0 °C	105.872 Q	15.06 °C	0.06 °C
4	111.67 Q	30.0 ℃	111.704 Ω	30.09 °C	0.09 °C
5	117.47 Ω	45.0 ℃	117.506 Q	45.09 ℃	0.09 °C

B35

Notes:

1. Total Uncertainty of Nominal Values = $\pm 0.03 \,^{\circ}{\rm C}$

2. Calibration was performed at 23 °C and 30% RH

3. Resistance is measured using 3-wire technique

Checked By: Reda

Date : 12/12/2000

Appendix C Post-Test Calibration Sheets

- Page C2: AC Real and Reactive Power, Ohio Semitronics, GWV5, s/n 0010301
- Page C3: Turbine Speed, Ultra Slim Pack, s/n B7YSV
- Page C4: DC Bus Volts, Ohio Semitronics, VT7, s/n 9111995
- Page C5: DC Bus Amps, CTA/CTL, s/n 0010125
- Page C6: Battery Amps, CTA/CTL, s/n 0010126
- Page C7 & C8: Datalogger, Campbell Scientific, CR23X, s/n 3099

C1

Wind Turbine Generator System Power Performance Test Report for the Whisper H40

Branch #: 5000

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Transducer

Model # : GWV5-001EY37

Calibration Date: 08/09/2001

Input Power	Output Nominal	Measured	Orthough Tralt	
	1		DC)	(X)Mfr. Specs OR
(Watt) 060 Hz	Voltage (VDC)	λs Found	AS Left	()Data only (VDC)
TEST				
Watt				
-1000	0.8	0.7935	0.7982	± 0.0036
-500	1.6	1.5912	1.5990	± 0.0052
0	2.4	2.3937	2.4008	± 0.0068
500	3.2	3.1956	3.2008	± 0.0084
1000	4.0	3.9968	4.0006	± 0.0100
TEST				
VAR				
-1000	1	0.9929	1.0008	± 0.0045
0	3	2.9909	2.9983	± 0.0085
1000	5	4.9878	4.9993	± 0.0125
tracel	Dility to N	ist	-	
	Watt -1000 -500 0 500 1000 TEST VAR -1000 0 1000 Notes: 1. Uncert traces	Watt -1000 0.8 -500 1.6 0 2.4 500 3.2 1000 4.0 TEST	TEST Natt -1000 0.8 0.7935 -500 1.6 1.5912 0 2.4 2.3937 500 3.2 3.1956 1000 4.0 3.9968 TEST VAR 0 -1000 1 0.9929 0 3 2.9909 1000 5 4.9878 Notes: 1. Uncertainty of nominal values traceability to NIST	TEST

Tested By: Reda Date : 08/09/2001

Due Date: 08/09/2003

DOE #: 02747C

S/N : 0010301

sheet: 1 of: 1

Frequency Converter Calibration

National Renewable Energy Laboratory

National Wind Technology Center

Date Calibrated:

2/18/2000

1617 Cole Blvd Golden, CO 80401

Mark Meadors

6965608

10/12/1999

10/12/2000

1214

Good

2/7/2001

2/7/2002

F-to-V B2MCD 000218

18200 State Hwy 128 Boulder, CO 80303

Instrument Repair Labs

Campbell Scientific

Report No:

Calibration Laboratory:

Cal Location:

Technician:

Frequency Source: S/N: Calibrated by: Date: Cal Due:

Voltage Measurement: S/N: Calibrated by: Date: Cal Due:

Device(s) calibrated: Model: S/N: Calibration Method: Ultra Slim Pack Frequency Input, Field Configurable Isolator G478-0001 B7YSV

"Mark Meadors

GI27 010227, Calibrate frequency to voltage devices

Fluke Documenting Process Calibrator, Model 743B

Campbell Scientific Model 23X Datalogger

Device Condition:

Calibration Uncertainty:

0.1hertzFluke Calibrator for freq: 11<hz<110</th>0.5hertzFluke Calibrator for freq: 110<hz<1100</td>5.0mvCampbell Datalogger for volt: 0<v<5</td>48.1rpm/mvSensitivity Factor for Campbell240.5rpmCampbell Uncertainty in rpm

C3

Special Limitations: 0-150 Vac input, 4-20 mA output with 250 ohm, .01%, 0.6 ppm/deg C IR

			RPM - to - Voltage Conversion 10-pole alternator
Calibration Factors:			12 rpm/hz
Stope:	0.0208	mV/hz	0.24952 mV/rpm
Offset:	-20.700	hz	-248.39 rpm

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Transducer

τ.

Model # : VT7-003E

No	Function Tested	Nominal Output Voltage	Measured (VI	f Output DC)	(X)Mfr. Specs OR
		(VDC)	As Found	As Lef t	()Data only (VDC)
*	DC Voltage (VDC)				
	0	1	0.9970	Same	± 0.0125
	25	3	2.9990	•	
	50	5	5.0000	•	
	· · · · · · · · · · · · · · · · · · ·				
			1 i		
_	Notes: 1. Uncertainty	of nominal v	alues is ± 20) ppm with t	Faceability to
	1. Uncertainty (NIST	of nominal v	alues is ± 20 d at 23°C and		raceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			Faceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			raceability to
	1. Uncertainty (NIST	of nominal v			Faceability to

Tested By: Reda-

Date : 08/09/2001

sheet: 1 of: 1

S/N : 9111995

DOB #: 02748C

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Signal Conditioner

Model # : CTA212Y42

Calibration Date: 08/09/2001

No	Function Tested	Nominal Output Voltage (VDC)	Measured Output (VDC)		(X)Mfr. Specs. OR
			As Found	As Left	()Data only (VDC)
. 🔹	DC Current (ADC)				
	-50	1	1.034	1.001	± 0.025
	- 25	2	2.021	1.995	•
	0	3	3.030	2.998	•
	25	4	4.029	3.998	
	50	5	5.040	5.005	
	-				
		· · ·			•
			Ì		
	Notes: 1. Uncertainty	of nominal -	values is ± 0		· · · · · · · · · · · · · · · · · · ·
	traceability	to NIST			.ng with
	2. Calibration	Nas pariorme	nd at 23°C an	d 40% RH	
		· · · ·			
					······································

DOR #: 02750C

S/N : 0010125

Due Date: 08/09/2003

Tested By: Reda : 08/09/2001 Date

NREL METROLOGY LABORATORY

Test Report

Test Instrument: Signal Conditioner

Model # : CTA212

Calibration Date: 08/09/2001

) 	Due Date: 06/05/2003					
No	Function Tested	Nominal Output Voltage (VDC)	Measured Output (VDC)		(X)Mfr. Specs. OR	
· ·			As Found	As Left	()Data only (VDC)	
*	DC Current (ADC)	-				
	0	1	0.990	1.001	± 0.025 _01	
	25	3	2.978	2.997	.022	
	50	5	4.971	5.000	• .029	
			· · · · · ·			
					· · · · · · · · · · · · · · · · · · ·	
	Notes:	· · · ·				
•	1. Uncertainty traceability	of nominal v	alues is ± 0	.14 of readi	ng with	
	2. Calibration	was performe	d at 23°C an	d 40% RH		
			· · · · · ·		· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
				-		
		,		Г. V.		
			T	ested By: Re	da	

S/N : 0010126

.

DOE #: 02749C

Due Date: 08/09/2003

C6

Date : 08/09/2001

Customer:

Company Name:	na honal kenevyable energy lab
City/State/Strt:	M8 3911
	1617 COLE BLVD
	GOLDEN CO
Contract/PO #:	
RMA #:	4402
Log Option:	2

Model: CR23X-4M

Serial Number: 3099

Teet Panel Loc. 2	
C8I Calibration Number:	20781

Calibration Procedures: TST10517B R1

PRC32A R8 TST10517C R17

PRC33A R 1

Instrument Calibration Condition

Received Disposition:	In Tolerance	•	Out of Tolerance	Operational Failure
Returned Disposition:	In Tolerance	•		

Recommended Calibration Schedule

Based on past experience and accumed normal usage, it is recommended that this instrument be celibrated by due date stated below to insure sustained accuracy and reliable performance.

Calibration Date: 10/30/01

Manufacturer's suggested recalibration date: 10/30/02

Report of Calibration Standards Used

Make/ Model	SN	Cal Due Date	NIST reference	
DP 8200	A014824	9/8/02	A014824	
CSI Oscillator	196319	5/18/02	196319	

CBI certifies the above instrument meets or exceeds published specifications and has been celibrated using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology, an accepted value of a natural physical constant or a ratio celibration technique. The collective measurement uncertainty of the celibration process exceeds a 4:1 ratio. The policies and procedures at this celibration facility comply with ISO-0001. The celibration of this instrument was performed in accordance with CSFs Quality Assurance program.

Quality Control Manager responsible for content of certificate: Clint Howell

Remarks:

Based on Report option, some fields are intentionally left blank.

This document shall not be reproduced except in full, without the written approval of Campbell Scientific, inc.

Page 1 of 2

Instrument Data Report Analog Inputs

Input	Tolerance	-		Different		
		Before	nded (Full Scale) After	Before	After	Temp
(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	(C)
5000	+-2.5	5000.3	5000.3	4000.7	5000.0	24.1
-5000	+-2.5	-4999.5	-5000.1	-4009.9	-6000.2	24.1
1000	+-0.5			999.96	1000.00	24.1
200	+-0.1			199.99	200.01	24.1
50	+-0.025			49.995	60.000	24.1
10	+-0.005			10.000	10.001	24.1
-10	+-0.005			-10.000	-10.000	24.1
5000	+-5		4998.8		4996.2	-25
5000	÷-6		5001.1		5000.9	50
5000	⊷7.5		4998.5		4007.7	-40
5000	+-7.5		5001.0		5001.1	80
	5000 -5000 1000 200 50 10 -10 5000 5000 5000	5000 +-2.5 -5000 +-2.5 1000 +-0.5 200 +-0.1 50 +-0.025 10 +-0.005 -10 +-0.005 5000 +-5 5000 +-5 5000 +-5 5000 +-7.5	5000 +-2.5 5000.3 -5000 +-2.5 -4669.5 1000 +-0.5 - 200 +-0.1 - 50 +-0.025 - 10 +-0.005 - -10 +-0.005 - 5000 +-5 - 5000 +-5 - 5000 +-7.5 -	5000 +-2.5 5000.3 5000.3 -5000 +-2.5 -4999.5 -5000.1 1000 +-0.5 - - 200 +-0.1 - - 50 +-0.025 - - 10 +-0.005 - - 5000 +-5 4998.8 - 5000 +-5 4998.6 -	5000 +-2.5 5000.3 5000.3 4999.7 -5000 +-2.5 -4999.5 -5000.1 -4999.9 1000 +-0.5 999.96 999.96 200 +-0.1 199.99 199.99 50 +-0.025 49.998 10.000 -10 +-0.005 -10.000 -10.000 5000 +-5 4999.8 5001.1 5000 +-5 4998.8 5001.1	5000 +-2.5 5000.3 5000.3 4999.7 5000.0 -5000 +-2.5 -4999.5 -5000.1 -4999.9 -5000.2 1000 +-0.5 999.98 1000.00 200.01 200 +-0.1 199.99 200.01 50 +-0.025 49.998 60.000 10 +-0.005 10.000 10.001 -10 +-0.005 -10.000 -10.000 5000 +-5 4698.8 4698.2 5000 +-5 5001.1 5000.9 5000 +-5 4698.6 4698.7

Quiescent System Power

Tolerance	As Received	As Returned	Temp	
Max (ma)	(mA)	(mA)	(C)	
2.5	1.29	1.23	24.1	

Real-Time Clock

Tolerance (min/month)	As Received (min/month)	As Returned (min/month)	Temp (C)
+-1.33 min	-0.1	0.0	24.1
⊷1.33 min		-0.2	-25
+~1.33 min		-0.4	50
+-2.66 min		-0.5	-40
+-2.66 min		-0.6	80

Note: an "" with data indicates out of tolerance; an "" without data indicates operational failure.

Laboratory temperature and relative humidity at the time of calibration

Temperature: 24.1 C

Log Option: 2

S/N 3000

Relative Humidity: 19.2 %

Functions tested per test document (see page 1):

Analog:

Excitation Channels CAO Channels Analog Input ranges over temperature Frequency: Pulse Counters Period Averaging

Calibration by: T. Kanlall

Title: Electronic Technician

T. KENDALL

Based on Report option, some fields are intentionally left blank.

This document shall not be reproduced except in full, without the written approval of Campbell Scientific, Inc.

C8

Page 2 of 2