A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Innovation for Our Energy Future

New Approaches to Deliver Wind Energy

Debbie Lew Michael Milligan

National Renewable Energy Laboratory

Conference on Transmission Expansion in the Western U.S., May 21, 2007

Transmission and Wind

• Wind is geographically dependent (location constrained) - good wind not necessarily close to existing transmission

Transmission and Wind

- Wind is geographically dependent (location constrained) – good wind not necessarily close to existing transmission
- Issues:
 - Build transmission if generator requests, but wind can't get financing unless transmission exists
 - Wind build times shorter than transmission
 - Wind projects smaller than transmission
- Long-term wind buildout: single larger line more costeffective than several smaller lines
- Transmission is a public good

Use More Grid

REL National Renewable Energy Laboratory

Production tax credit not included; costs do not reflect recent increases in turbine prices.

Use More Grid

- Firm transmission in the west is scarce—need a way to provide access to transmission "most" of the time wind needs it
- Need long-term contract to finance wind project
- Difficult to justify transmission expansion if there is unused capability
- ATC (Available Transfer Capability) is not generally available on key paths in the West
- ATC defined as available 8,760 hours
- Wind does not need all of this → may be room for wind without ATC

Path Loading - % of Time > 75% of Path OTC during a Seasonal Period Maximum Seasonal Loadings for each Path Winter 98-99 thru Spring 2002

Analysis of Potential Impact of Conditional Firm: Rocky Mountain Area Transmission Study (RMATS)

- Analyze representative paths to
 - Quantify hourly profile of unused transmission capacity
 - determine feasibility to utilize this capacity thru flex-firm tariffs
- Paths chosen:
 - MT to Northwest
 - W of Naughton
 - **– TOT**3

Approach

- Collect hourly path data for 3 years
 - Actual power flow
 - Schedule
 - Operating Transfer Capability (OTC)
 - Available Transfer Capability (ATC)
 - Estimate Unutilized Transfer Capability (UTC) that would potentially be available via a flex-firm tariff
- Hourly wind data for same period
- Compare chronological EHV data with wind production estimates
- Our analysis → potential for utilizing transmission capacity under new tariffs
- Unfortunately data shortcomings for MT/NW
 and Naughton

TOT3 Daily Profiles Summer 2002

Results from RMATS TOT3 Study

Average curtailment based on hourly ATC, in percentage of 100 MW wind plant total output

		100 MW V	Vind Farm		100 MW Constant Output			
	UTC	UTC Non-	hATC	hATC Non-	UTC	UTC Non-	hATC	hATC Non-
	Curtailed	curtailed	Curtailed	curtailed	Curtailed	curtailed	Curtailed	curtailed
	Wind	Vind Wind		Wind	Constant	Constant	Constant	Constant
					Output	Output	Output	Output
Winter	0.02%	99.98%	0.07%	99.93%	0.02%	99.98%	0.04%	99.96%
Spring	0.14%	99.86%	0.56%	99.44%	0.11%	99.89%	0.38%	99.62%
Summer	2.42%	97.58%	2.87%	97.13%	2.76%	97.24%	3.63%	96.37%
Year	0.76%	99.24%	0.99%	99.01%	1.18%	98.82%	1.60%	98.40%

Note: 100% of wind output is 372,593 MWh/year

Results from RMATS TOT3 Study

Average curtailment based on hourly ATC, in percentage of 500 MW wind plant total output

		500 MW V	Vind Farm		500 MW Constant Output			
	UTC	UTC Non-	hATC	hATC Non-	UTC	UTC Non-	hATC	hATC Non-
	Curtailed	curtailed	Curtailed	curtailed	Curtailed	curtailed	Curtailed	curtailed
	Wind	Wind	Wind	Wind	Constant	Constant	Constant	Constant
					Output	Output	Output	Output
Winter	3.05%	96.95%	22.23%	77.77%	3.99%	96.01%	30.03%	69.97%
Spring	4.42%	95.58%	16.04%	83.96%	5.89%	94.11%	25.26%	74.74%
Summer	11.83%	88.17%	31.95%	68.05%	15.75%	84.25%	43.59%	56.41%
Year	6.25%	93.75%	24.89%	75.11%	9.24%	90.76%	34.92%	65.08%

Note: 100% of wind output is 1,862,967 MWh/year

WEST-OF-McNARY CUTPLANE LOADINGS Cumulative Frequency Distributions, By Season (JUL01 - FEB03)

Source: Hourly SCADA data via: IPS WEST OF MCNARY CALC 59503 MW

Conclusions

- Additional transmission capability could be utilized with conditional firm tariff
- Benefits
 - for wind
 - for other resources that may not be able to obtain firm transmission
 - Increase efficiency of transmission system

Current Status

- FERC Ruling 890 establishes conditional firm as part of the OATT and calls for consistency of ATC calculations
- Conditional Firm tariff Transmission provider must define and quantify periods of potential curtailment
 - System conditions
 - Hours of month
- Requires consistency, standards, and transparency of ATC calculations
- BPA conditional firm product underway

Build more grid

REL National Renewable Energy Laboratory

2030 - New Transmission Lines - WinDS Region Level - Simplified Corridors

Total Between Region Transfer >= 100 MW (all power classes, onshore and offshore), visually simplified to minimal paths Arrows originate and terminate at the centroid of the region for visualization purposes; they do not represent physical locations of transmission lines.

Modified from original of Western Interstate Energy Board/Western Governor's Association

Clean and Diverse Energy Advisory Committee

- Western Governors Association's Clean and Diverse Energy Advisory Committee (CDEAC)
- Goal: evaluate potential for 30 GW clean/diverse energy in the West by 2015

Source: Western Governor's Association CDEI Transmission Task Force Report

Policies Should Link Renewables Development with Transmission Development

- Approximately half the states have renewables portfolio standards (RPS) or obligations
- Suggest states w/RPS put together a package that includes:
 - Resource area/zone transmission
 - Resource monitoring program to identify zones
 - Provide for confidential disclosure of wind developer data to inform locations
 - State authorities that facilitate transmission for renewables

The Resource Area/Zone Approach Build Transmission First

- Texas Competitive Renewable Energy Zone
- Colorado Transmission to resource zones
- California CAISO/FERC ruling on 3rd category of financing for Tehachapi Transmission Project
- New Mexico Renewable Energy Transmission Authority
- Minnesota CapX 2020

Texas - Competitive Renewable Energy Zones

- 2005 Senate Bill 20 increased Texas RPS to 5880 MW by 2015 and required creation of Competitive Renewable Energy Zones (CREZ)
- Build transmission from CREZs to loads
- CREZ based on wind resource and transmission availability
 - Coastal
 - McCamey
 - Central Western Texas
 - Panhandle
- PUCT estimates transmission by 2010-2011

Source: ERCOT 12/06

Colorado Energy Resource Zones

- Senate Bill 100 requires utilities to designate energy resource zones and authorizes expedited cost recovery for transmission
- Not renewables-specific
- Starting 10/31/07, biennial plans:
 - Designate energy resource zones
 - Develop plan for transmission to zones
 - PUC decision within 180 days
 - Costs passed onto ratepayers

Source, Xcel, 4/24/07

California - 3rd category of transmission financing

- CAISO proposed mechanism for Tehchapi Transmission Project to FERC
- Remove barriers to location-constrained resources
- Utilities pay for transmission to renewable resource zones, with costs recovered in transmission tariff, and generators (incl nonrenewables) pay going-forward costs when they connect
- Protect ratepayers
 - Rate impact cap 5% for single project; total 15%
 - Requires minimum subscription (~25-30%) and further sufficient commercial interest (~25-35%)

NREL National Renewable Energy Laboratory

Minnesota - CapX2020

- 2005 legislation encourages transmission and allows automatic rate adjustments for cost recovery of construction and investment in transmission
- CapX2020 Joint initiative of transmission utilities for transmission expansion collaborative planning by IOUs, coops, munis
- Project Group I
 - 600 miles of 345kV connecting MN, ND, SD, WI and 230 kV in Bemidji
 - \$1.3B
 - Complete 2013-2014
- Developing applications to PUC
- Public process on corridors

Source: CAPX2020

State Authorities

- Wyoming Infrastructure Authority
- New Mexico Renewable Energy Transmission Authority
- Idaho Energy Resources Authority
- Kansas Electric Transmission Authority
- North Dakota
- South Dakota Energy Infrastructure Authority
- Colorado Clean Energy Development Authority proposed
- Utah proposed
- Montana proposed

Wyoming Infrastructure Authority

- Created June 2004
- Develop transmission infrastructure
 - Plan, finance, build, maintain, operate interstate transmission
- Finance and promote advanced coal power
- Issue bonds to finance transmission and coal
- Partner with public/private sector
- Own and operate transmission
- Investigate, plan, prioritize, establish transmission corridors
- \$10M in loans for transmission studies and permitting
- TOT3, Wyoming-West, TransWest Express, Frontier

New Mexico Renewable Energy Transmission Authority

- First authority specifically for renewable energy transmission At least 30% of energy in transmission project must be from renewables
- Finance, plan, acquire, maintain, and operate transmission
- Revenue bonding authority to finance projects, could include owning or leasing facilities
- Charge participating entities to recover debt and administrative costs
- Partner with public/private sector
- Identify and prioritize transmission corridors

National Interest Electric Transmission Corridors

- Congestion Study last August
- 2 Draft National Corridors
 - Southwest Area Parts of CA, AZ, NV
 - Mid-Atlantic Area Parts of OH, WV, PA, NY, MD, VA and all of NJ, DE, DC
- Transmission reviewed by FERC which would have backstop siting authority supplementing state authority

Western Wind Integration Study

- Determine cost of operating impacts of wind due to variability and uncertainty
- Examine
 - Long distance transmission of wind
 - Compare local to out-of-state wind resources
 - Geographical diversity of wind
 - Wind/load correlation
 - Wind forecasting role and value
 - Solar, especially concentrating solar power
 - Control area cooperation/consolidation
 - Hydro/wind interaction Hoover
- Kick-off stakeholder meeting 5/23 at NREL in Boulder, CO
- To participate Debbie at <u>debra lew@nrel.gov</u> or (303) 384-7037

 ⁽³⁰³⁾ 384-7037

Conclusions

- Transmission access is vital for wind power development
- More efficient use of the existing grid, especially long-term contracts for conditional firm is needed
- States that want to promote renewables should link renewables policies to transmission policies that include zone transmission, cost recovery, resource monitoring, and facilitation of transmission

For more information

- Western Governor's Association CDEAC study
 - <u>http://www.westgov.org/wga/initiatives/cdeac/cdeac-reports.htm</u>
- RMATS Conditional Firm study
 - <u>http://www.nrel.gov/docs/fy05osti/38152.pdf</u>
 - <u>http://www.nrel.gov/docs/fy04osti/35969.pdf</u>
- FERC Order 890
 - <u>http://www.ferc.gov/industries/electric/indus-act/oatt-reform.asp</u>
- Texas CREZ
 - http://www.puc.state.tx.us/rules/rulemake/31852/31852adt.pdf
- CO energy zones
 - http://www.interwest.org/documents/documents/2007 co sb100.pdf
 - <u>http://www.rmao.com/wtpp/SB100.html</u>
- CAISO/Tehachapi FERC ruling
 - http://www.ferc.gov/press-room/statements-speeches/kelliher/2007/04-19-07-kelliher-E-5.asp
- Minnesota CapX2020
 - http://www.capx2020.com/
- Wyoming Infrastructure Authority
 - http://www.wyia.org/
- New Mexico RETA
 - http://www.emnrd.state.nm.us/ecmd/factsheets.htm
- DOE National Interest Electric Transmission Corridors
 - <u>http://nietc.anl.gov/</u>
- Debbie Lew <u>debra_lew@nrel.gov</u>
- Michael Milligan michael milligan@nrel.gov

Extra slides

REL National Renewable Energy Laboratory

Available transmission increases the supply of wind: some high-wind states

Assuming 20% of existing transmission is available for wind

Assuming no existing transmission is available for wind, all new transmission is built by wind

Available transmission increases the supply of wind: some high-wind states

At \$70/MWh: 132 GW from 3 key states at 20% transmission availability

Assuming 20% of existing transmission is available for wind

Assuming no existing transmission is available for wind, all new transmission is built by wind

Some SW States (plus ND)

Assuming 20% of existing transmission

is available for wind

Note different scales

0

ΑZ

Assuming no existing transmission is available for wind, all new transmission is built by wind

ND

NM

NV

No Transmission Case

\$60/MWh

■ \$70/MWh

S80/MWh

Western Governors' Association Wind Additions: Scenario 1

No new transmission, limited flex-firm, low-range of build out

Total: 9,175 MW

Western Governors' Association Wind Additions: Scenario 2

New flex-firm transmission, mid-range of build out

Total: 25,266 MW

Western Governors' Association Wind Additions: Scenario 3

Maximum buildout. NM and CA cases may not be consistent

Total: 54,724 MW

Idaho Energy Resources Authority

- Created in 2005
- Improve generation and transmission infrastructure to allow additional generation or imports
- Bonding authority
- Debt finance renewable energy projects
- Plan, finance, construct, develop and acquire generation and transmission
- Can own transmission
- Partner with public/private sector

Comparison of Cost-Based U.S. Operational Impact Studies

Date	Study	Wind Capacity Penetra- tion (%)	Regula- tion Cost (\$/MWh)	Load Following Cost (\$/MWh)	Unit Commit- ment Cost (\$/MWh)	Gas Supply Cost (\$/MWh)	Total Operating Cost Impact (\$/MWh)
May '03	Xcel-UWIG	3.5	0	0.41	1.44	na	1.85
Sep '04	Xcel-MNDOC	15	0.23	na	4.37	na	4.60
June '06	CA RPS Multi- year	4	0.45*	trace	na	na	0.45
Feb '07	GE/Pier/CAIAP	20	0-0.69	trace	na***	na	0-0.69***
June '03	We Energies	4	1.12	0.09	0.69	na	1.90
June '03	We Energies	29	1.02	0.15	1.75	na	2.92
2005	PacifiCorp	20	0	1.6	3.0	na	4.60
April '06	Xcel-PSCo	10	0.20	na	2.26	1.26	3.72
April '06	Xcel-PSCo	15	0.20	na	3.32	1.45	4.97
Dec '06	MN 20%	31**					4.41**

* 3-year average; total is non-market cost

** highest integration cost of 3 years; 30.7% capacity penetration corresponding to 25% energy penetration;
 24.7% capacity penetration at 20% energy penetration

*** found \$4.37/MWh reduction in UC cost when wind forecasting is used in UC decision National Renewable Energy Laboratory

TOT3 - Average Cumulative Distribution of ATC