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Abstract

Production cost, generation expansion, and reliability models are used extensively by utilities in the planning
process.  However, many of these models do not provide adequate means for representing the full range of
potential variation in wind power plants.  In order to properly account for expected variation in wind-
generated electricity in these models, we describe an enumerated probabilistic approach that can be
performed outside the production cost model, compare it with a reduced enumerated approach, and present
some selected utility results.  Our technique can be applied to any model, and can result in a considerable
reduction in model runs.  We use both a load duration curve model and a chronological model to measure
wind plant capacity credit, and also present some other selected results.

Introduction

Representing wind power plants in utility production cost and reliability models poses a challenge to modelers
because of the wide range of potential variability of the resource.  As utilities evaluate wind power plants for
possible future resource additions, it is important to accurately quantify both the capacity value and energy
value of the wind plant.  Renewable power plants, such as wind, may also contribute other benefits.  Among
these are fuel diversity and lack of emissions.  In this paper we illustrate two related techniques that can be used
to help capture some of this variability, and apply the technique to measuring capacity credit.  The first method
was introduced by Milligan (1996a), and is an enumerated probabilistic approach (EPA).  The second method
is based on a selective reduction in the multiple models runs, and is called the reduced enumerated probabilistic
approach (REPA).  

Capacity credit measures of wind power plants help utility planners and decision-makers evaluate this
intermittent resource in the context of other types of power plants.  The term "capacity credit" refers to that



level of  conventional generation that can be replaced with wind generation.  To avoid complications of how
to compare the many types of conventional generation, analysts will either compare wind to an ideal generation
source or to a specific type of generator.

There are many possible techniques that can be used to calculate wind plant capacity credit.  The choice of
method is influenced by several factors, such as data availability and scope of the study.  When capacity credit
calculations are performed using a production-cost or reliability model, it becomes possible to do more precise
calculations so that the wind power plant capacity credit is measured by a reliability index.  The most common
approach calculates the effective load carrying capability (ELCC) that is described by Billinton and Allan
(1984), Garver (1966), and others.

Two of the most critical shortcomings of the standard techniques used to evaluate wind plant capacity value
are 1) variability of the resource and 2) the lack of adequate wind data.  Intermittency and the high variability
of wind makes it difficult for models to adequately measure capacity credit, so capacity credit results may have
little meaning.  Because of the temporal interactions between load, wind power, and conventional generating
capacity, wind plant capacity credit measures are often little more than random draws from a probability
distribution whose characteristics are largely unknown.  To properly account for the large number of potential
interactions, some form of Monte Carlo simulation is necessary.  An excellent discussion of this technique in
the context of chronological production cost models can be found in Marnay and Strauss (1990).  Milligan
(1996a) illustrates a Monte Carlo method that is external to the load-duration curve production cost model.
This approach allows for the creation of an enumerated set of wind power series, each of which can be run in
the production cost or reliability model.   This process is called the enumerated probabilistic approach (EPA)
to differentiate it from the intrinsic Monte Carlo approaches that can sometimes be found in production cost
and reliability models.   However, in spite of the falling cost of computing resources, many production cost
models have limited, if any, Monte Carlo capability.  Other models may possess a modest Monte Carlo
capability, but one that is not capable of providing reasonable sampling of wind-power output.  This paper uses
the EPA  that is implemented outside the production cost/reliability  model, which can then be executed for any
number of scenarios.  We then illustrate a variation of the EPA method that uses a reduced number of
enumerated cases.  This is called the Reduced EPA, or REPA, and is carried out in weighted and unweighted
variations.  The advantage of the REPA methods is that they are not as computationally demanding, although
they will result in a modest loss of accuracy.

It is also possible, if not likely, that long-term measures of capacity credit will differ from short-term measures.
The focus of this paper is on long-term measures that would be appropriate for utility planners or investors who
are evaluating a potential future wind plant.  Short-term capacity credit, although outside the scope of this
paper, will be mentioned again briefly below.

The usefulness of the concept of "wind plant capacity credit" has recently been questioned (Utility Wind-
Modeling Planning Meeting, 1996).  Citing the evolving deregulation of the utility industry, critics have argued
that utility planning and capacity expansion will be influenced only by the market, reducing or eliminating the
need for traditional capacity analysis.  Under this scenario, capacity credit is determined by the pool or
independent system operator (ISO) and not by traditional utility analysis.  However, the final outcome of the
deregulation process is not clear.  Although a number of states have begun moving toward a competitive market
for electric utilities, the incentive to deregulate appears to be somewhat dependent on the price of electricity.
States in the Northeast and California generally pay the most for electricity, and that is where much of the
deregulation effort has progressed significantly.  The extent of federal regulatory involvement is also unclear.
This could result in a patchwork of competitive and quasi-competitive markets for electricity.  

If we assert that competition will indeed be pervasive and consistent, who plans for additional generating



capability?  It is the investors who are driven by the market.  Investment in new generation would be driven
by the expected rate of return that can be earned by the productive resource.  To evaluate alternative
investments, the potential investor must carry out calculations that allow the comparison of returns on these
possible investments.  This would most certainly include an estimate of the wind plant's contribution to system
reliability and the capacity payments that could be earned by the plant.  If the investor is a generating company,
the calculations that are carried out could conceivably be the same as those outlined in this paper.

This paper illustrates a  technique that can be applied to any production-cost/reliability model that is capable
of handling multiple wind power series, and extends earlier work by Milligan (1996a).  We use two production-
cost models:  Elfin, a load-duration curve model, and P+, a chronological model.  These models are described
below.  Using the Elfin model to establish a base case of 100 EPA simulations, we then use both Elfin and P+
to perform a set of REPA simulations that is less computationally intensive.  The paper concludes with some
selected results and comparison of the EPA and REPA results.

Methods Used to Measure Capacity Credit

One focus of this paper is to examine capacity credit in the contexts of generation planning or investment, and
plausible variations of the wind resource.  However, it is important to link the concepts of planning capacity
credit and operational capacity credit.  Planning capacity credit is the value given to a generating plant over
a long time horizon, and is typically used in the context of utility generation planning.  Operational capacity
credit is the capacity value that could be specified in a transaction between utilities.  Utility A might agree to
provide Utility B with 50 MW according to a pre-arranged schedule during a particular day or week.  If this
capacity can be provided by a wind plant, then the wind plant is said to have an operational capacity credit of
50 MW during the appropriate period. This section provides a short discussion of both types of capacity credit.

The standard techniques that are used to evaluate the reliability of power systems and the way these techniques
are used to measure planning capacity credit are based on Billinton and Allan (1984).  Most methods of
assessing the capacity credit of a wind plant are based on a reliability measure called loss of load expectation
(LOLE).  Most production cost and generation expansion models calculate the LOLE or a related measure,
such as loss of load hours or expected unserved energy.  Although these measures are not equivalent, they are
measures that capture the possibility that the generating system is not adequate to meet the system load.  Of
course the goal of the utility is to keep this probability as small as possible, given the trade-off between cost-
minimization and reliability.  A common practice is to maintain an expected loss-of-load expectation of 1 day
in 10 years.  Other reliability indices can be used in place of LOLE.  One such measure is expected unserved
energy (EUE).  The advantage of this measure for our work is that both of our models produce a measure of
EUE, allowing us to legitimately compare the outputs of both models.  See Billinton and Allan (1984) for a
discussion of reliability indices.

There are other ways in which a utility can gauge its reliability.  Another approach is to maintain a reserve
capacity margin that exceeds peak load by a given percentage.  Although there is no direct formula for
converting between reserve margin and LOLE or EUE, higher reserve margins correspond to a lower LOLE
and hence a more reliable system.

Using the concepts and techniques from reliability theory (Billinton and Allan, 1984), we want to provide a
measure of generating plant capacity credit that can be applied to a wide variety of generators.  Although no
generator has a perfect reliability index, we can use such a concept as a benchmark to measure real generators.
For example, a 500-MW generator that is perfectly reliable has an effective load carrying capability (ELCC)



of 500 MW.  If we introduce a 500-MW generator with a reliability factor of .85, or equivalently, a forced
outage rate of .15, the ELCC of this generator might be 390 MW.  In general, the ELCC value cannot be
calculated by multiplying the reliability factor by the rated plant output — the ELCC must be calculated by
considering hourly loads and hourly generating capabilities.  This procedure can be carried out with an
appropriate production-cost or reliability model.  To find the ELCC of a new generator, one must evaluate the
reliability curve at various load levels prior to adding the new generator to the system.  This can be done by
running the reliability model with various load levels and plotting the resulting points in a graph.

The determination of short-term operational capacity credit is a different process.  If a wind-plant operator
contracts with a utility to provide capacity on a given schedule for a given day, it is in the best interest of the
wind-plant operator to possess a consistently accurate forecast of the wind, and hence wind power availability,
during the day in question.  It would be optimal  but unlikely that the wind speed is known with absolute
certainty.  The capacity value of the wind plant is the capacity level that can be sold on a firm basis for the day
(or any appropriate time interval) in question.  During windy periods of the year, this capacity level is likely
to be relatively high, whereas in the calm seasons this capacity level will be lower.  The operational capacity
credit can therefore vary throughout the year, and can be summarized by a suitable annual average, along with
a variance measure.  Of course, the forecast will contain an error component.  The contract negotiators must
quantify the relative risks of aiming too high or too low.  A more detailed discussion can be found in Milligan,
Miller, and Chapman (1995).  In the "long run" we would expect that the average of the operational capacity
credits would approach the long-term capacity credit, as measured later in this paper.  

Wind Plants, Reliability, and Capacity Credit

Adequately representing wind power systems in hourly reliability and production cost modeling can present
a challenge, particularly if the model uses the load duration curve (LDC) approach.  As computing platforms
have become more powerful over the past few years, there has been additional interest in chronological models.
However, much of the early work of calculating wind plant capacity credit was done with LDC models.  In the
LDC framework, loads are grouped into subperiods that consist of some reasonable partitioning of the hours
in a week or month.  The loads are sorted, and used to calculate a probability density function that is used to
find the economic dispatch or reliability values of interest.  This process eliminates a significant computational
burden, but does so by sacrificing the chronological nature of the load data.  Because the correlation between
wind power and customer load is important to capture in the modeling, analysts have typically subtracted the
hourly available wind power from the load.  The result of this set of calculations is the remaining load, which
is then met with the usual rules of unit commitment and economic dispatch (although the latter is not typically
found in reliability models).

A similar technique for calculating net equivalent load can be used with chronological models.  The justification
for this technique is that a least-cost dispatch strategy will always take an inexpensive variable-cost resource,
such as wind, before more expensive options.  After wind power is accounted for, the conventional generating
resources can be called upon to meet the remaining load.  The chronological model overcomes the time-scale
limitation of the LDC model. However, treating wind power as a singular deterministic reduction in load poses
the same problem for chronological models as with LDC models:  system reliability measures with respect to
the wind resource are not accurate.

Capacity credit results depend heavily on what happens during the utility's peak hour or several peak hours.
Wind speed can vary significantly from year to year and from hour to hour.  Capacity credit estimates that are
based on a single year of data and modeled without taking this variation into account should be suspect.  Some
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Figure 1.  Annual simulated energy production, RAMP data

analysts have corrected for this problem (Percival and Harper, 1981), whereas others did not (Bernow,
Biewald, Hall, and Singh, 1994).  A recent paper by Billinton, Chen, and Ghajar  (1996) takes an approach
that is similar to Milligan (1996a), which we extend here.  Ignoring this problem can be perilous, and can result
in significantly over- or under-estimating capacity credit.

As an example of the wide potential variation in year-to-year wind energy capture, we have done a brief
analysis of a 13-year data set from a regional air quality monitoring program (RAMP) site in North Dakota.
It is important to note that this site would not be judged as suitable for a wind power plant, because of its low
average wind speed and other factors.  However, the data series is composed of many years, and until more
multi-year data sets are publicly available from potential or actual wind plant sites, it is useful to look at this
series.

To illustrate the possible variation in annual energy capture, this 13-year data set was used to calculate annual
energy for a fictitious wind plant.  The results are presented in Figure 1.

As the figure indicates, there is wide variation in annual energy capture.  In 1983, for example, annual energy
produced from this site would be less than 60% of that produced in 1988.  This clearly points out the fallacy
of using a single year of wind data for meaningful analysis.  When several years of data is not available, what
then?  That question is addressed in Milligan (1996a), and we expand on that here.

Modeling Approach

The utility data we used is from Tri-State Generation and Transmission Association, Inc.  Tri-State is a non-
profit generation and transmission cooperative, supplying wholesale electric power to 34 distribution
cooperatives in Colorado, Wyoming, and western Nebraska.  Resources include both Tri-State-owned and
jointly-owned coal and oil-fired generation.  Tri-State also purchases power from the Western Area Power
Administration (Western) and Basin Electric Power Cooperative (Basin).
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Figure 2.  Wind speed state transition matrix for Imperial, Neb raska, October 1995

To provide a plausible analysis of wind plant reliability and ELCC, we apply a Markov (Hillier and Lieberman,
1974) wind-speed simulation tool to a single year of wind data.  Other similar Markov applications can be
found in Manwell, Deng, and McGowan (1994) and Deshmukh and Ramakumar (1982).  The wind data is
from the Nebraska Energy Office.  We chose the Imperial, Nebraska site because of its proximity to Tri-State's
service territory.  For each month, a state transition matrix is calculated.   Then multiple realizations of the data
are calculated by repeatedly sampling from the state transition matrix.  This technique preserves some of the
time-scale properties of the wind speed data and also provides an estimate of the variation that could reasonably
be expected from a wind site.  This method suffers from an obvious limitation—only a single year of wind data
is used to calculate the state transition matrices.  Including additional wind data, if available, would increase
the ability to represent long-term data, or, in the limit, negate the need for a wind-speed simulation tool
altogether.

This analysis focuses on October, 1995, a month in which there appears to be significant variability in the wind
resource.   To satisfy the requirement that partial weeks are not allowed, we ran each model for 6 weeks and
obtained calendar summaries for October.  Some weekly results are reported below.  For this month Tri-State's
peak load was 1,440 MW.  To minimize differences between production models we reduced this load by 90
MW to account for a time-varying purchase from Basin.  Net peak load was 1,350 MW.  The maximum hydro
purchase from Western was 400 MW, with 1,152 MW of base and intermediate generation and 120 MW of
peaking capacity.  We modeled a hypothetical 100 MW wind plant.

The wind-speed state transition matrix for October appears in Figure 2. This graph shows the probability of
occurance of each wind-speed at time t as a function of velocity at time t-1.  Our method could be used on any
appropriate time frame.  Some utility control areas, pools, or reliability regions estimate generating plant
capability on a monthly basis, so the choice of time frame is consistent with those approaches.  Once the
multiple wind speed series have been simulated, we can calculate the hourly wind power output for the month
from a hypothetical wind plant from each realization.  We can then perform the analysis of either the full Monte
Carlo or the weighted Monte Carlo, both of which we describe below.  
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For the EPA runs, each hypothetical wind power series is input to the production-cost/reliability model, which
is executed for each one.  From this process we obtain the ELCC of each wind plant realization, which can then
be summarized for further analysis.  The Elfin model, described below, is used for this method.  Figure 3 below
provides a graphical depiction of the EPA process.

The REPA method is an attempt to reduce the number of reliability model executions with a minimal reduction
of accuracy.  Our approach is to analyze the 100 wind-power series based on energy output during the utility
system peak.  The data  are then grouped and weighted.  Representative wind-power series are then selected
from each of the groups.  The reliability model is then run once for each group.  For the weighted REPA the
weights are applied to the output of interest.  We performed this analysis with both the Elfin and P+ models.
 Figure 4 shows the weighted REPA approach.

Modeling Tools

The tools used in this study include Wind Power Simulator, described in an earlier work (Milligan and Miller,
1993), the Elfin production cost model (Elfin is a product of the Environmental Defense Fund), and the P+
model (P+ is a product of the P-Plus Corporation), both briefly described here.  Additional software tools were
used to simulate the multiple wind speed realizations and summarize the various model outputs.

The Elfin model uses the load-duration curve method for calculating production cost and reliability.  Weeks
can be divided into 14 subperiods that correspond to the utility's peak and off-peak periods.  Elfin uses
piecewise, linear LDC for each weekly subperiod.  Elfin has several options for modeling thermal and hydro
generation.  Resources with critical time-profiles, such as hydro and wind, can be modeled as time-varying
load-modifiers.  For these resources Elfin applies the resource to the chronological load prior to constructing
the LDC.  Elfin performs unit commitment on a weekly basis, and provides the user with various options for
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modifying unit commitment for particular machine configurations.

The P+ model is a derivative of the PowerSym model, originally developed at the Tennessee Valley Authority.
The model has been further developed and enhanced by the P-Plus Corporation.  The P+ model  can produce
output for hours, days, months, and years.  The model allows for several thermal and hydro generator types,
and commitment and dispatch occur in sequence by type.  Wind can be modeled as an hourly transaction or
as an equivalent generator with a specified hourly must-run schedule.  The model is chronological, and allows
the user to specify unit ramp rates and minimum up- and down-times.  See Milligan (1996b) for additional
details.

 

Representation of Wind Power Plants in Elfin and P+

Modeling wind power plants in production cost or reliability models requires the modeler to make many
decisions about how the plant should be characterized for the model itself.  One of the most important decisions
is whether the wind plant capacity should be counted as "firm" or "non-firm."  A generating unit that is modeled
as a non-firm unit can't contribute to the utility's commitment target.  By definition, non-firm resources do
nothing to improve the reliability calculation, even though they may marginally improve actual reliability.  If
a unit  is treated as non-firm its output is likely to be curtailed on very short notice.  Although this situation
does not arise often in practice, it implies that another unit must carry spinning reserve to cover the potential
outage.  Assuming a partially accurate wind forecast, wind plants should not be modeled as non-firm.  The
purpose of this study is to determine the capacity value and its variation.  The designation of a firm versus a
non-firm resource tells the model how a particular resource should be treated for the reliability calculation.
For this study, the wind plant was modeled as a firm resource, indicating that its full hourly capacity should
be counted in the reliability calculation.  Because we calculate a full range of possible outcomes with multiple
wind data sets, this procedure allows us to capture such measurements as average capacity on peak or variation
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of capacity on peak.  It also allows us to perform the capacity credit calculation based on the many cases that
have been run.  For a more detailed discussion of firm and non-firm treatments of wind plants and the
relationship to operational capacity credit and wind forecasting, see Milligan, Miller, and Chapman (1995).

We modeled wind power as a load modifier in Elfin and as a fixed hourly transaction in P+.  This approach
causes each model to treat the wind power plant in the same way.  The hourly load is reduced by the level of
wind generation in that hour, and conventional resources are committed and dispatched accordingly.

Weight Selection for the Weighted REPA

The process of grouping the various wind scenarios involves some judgement.  Our intent is to select the data
bins in such a way that the variation of the binned data closely represents the variation in the ungrouped data.
In our judgement, grouping the data with bin sizes corresponding to the mean and standard deviation resulted
in poor representation of the variation we found in the ungrouped cases.  Faced with the inevitable tradeoff
between execution time and accuracy, we did not want to use a large number of bins, since the saving in model
runtime compared to the EPA method would not be significant.  Figure 5 illustrates the distribution of the wind
energy during the utility's peak period in October.  To properly interpret each bin, note that the x-axis labels
designate values up to and including each respective bin label.

Figure 6 shows the bins and resulting weights that we selected.  This grouping retains the bimodal nature of
the original distribution, while adequately representing the variation in the data.
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Capacity Credit Results

After making the adjustments to the load data as described above, both Elfin and P+ were executed to obtain
base-case results with no wind generation.  Table 1 shows the reliability outputs from each model.  It is clear
from the table that the EUE reliability measures are in closer agreement than the LOLH measures.  On a
percentage basis, the difference between EUE is about 7%, whereas the LOLH difference is about 12% (see
Kahn, 1991).  In our judgement, the area under the tail of the outage distribution is likely to be more accurate
than its height, as measured by the two models, and this is what we use as the basis for our ELCC calculations.

Table 1.  Initial Reliability Indi ces for Elfin and P+

Model Expected Unserved Energy
(GWh)

Loss-of-load Hours

Elfin 7.4 49.2

P+ 6.9 43.9

We chose to maintain as realistic a depiction of the utility as possible, and therefore decided not to adjust loads
to an artificial reliability level such as 1 day in 10 years loss-of-load expectation, or equivalent.  The ELCC
values we calculate are based on those calculated in the base cases illustrated in the table.

For the 100 simulations of the EPA, Figure 7 illustrates the range of ELCC values as a percentage of installed
wind capacity.  Although these results appear to be consistent with those reported in Milligan (1996a), here
we have a larger variance of capacity credit which is because of the larger variation in wind plant output over
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the month.  The bins for the figure were chosen to be the same size as the sample standard deviation.  The
graph indicates that all but 2 values are within two standard deviations of the mean.

From the various cases run for the EPA method, we identified those that most closely matched the mean ELCC,
and the mean plus or minus the standard deviation of ELCC.  The reliability curves for these 3 cases are
graphed in Figure 8.  The difference between the curves, measured at the 7.4 level of EUE, represents the
difference in ELCC between these cases.  Figure 9 similarly shows the mean case with the maximum and
minimum reliability curves.

Figures 10 and 11 show the convergence of the simulations.  For each of these graphs, a convergence factor
was calculated, which is the ratio of the cumulative mean and standard deviation of ELCC for each iteration.
Figure 10 shows the convergence factor, while Figure 11 shows its percentage change.  To take full advantage
of Monte Carlo simulations such as our EPA, one should be able to specify convergence criteria and run the
model until the specified target is reached.  Because Elfin is a scenario based model with no intrinsic Monte
Carlo capability, we were unable to specify convergence criteria; only the number of runs to perform.  See
Marnay and Strauss (1990) for further discussion.
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The results of the various ELCC calculations are presented in Figure 12.  As the figure indicates, there appears
to be a closer correlation between the unweighted ELCC from the REPA and EPA than between the weighted
REPA and EPA.  The chronological model's weighted REPA appears to do a better job than the LDC model's
weighted REPA.  However, the standard deviation of the EPA and REPA are very close, as shown in Table
2.

Table 2.  Comparison of EPA and REPA Means and Standard Deviations

Statistic Reduced Number of  Cases (REPA) All 100 Cases (EPA)

Mean 29.2 28.0

Std. Dev.   6.4   6.5

The table indicates that the representative cases we selected did retain the variation of the larger sample, as
indicated by the standard deviations.  The unweighted mean also appears to do a better job than does the
weighted mean of estimating that of the larger sample.  The algorithm for correctly selecting the representative
cases and their respective weights clearly needs additional attention.  It is also clear that a selection process
applied to a REPA process similar to ours does result in a similar estimate of variation of ELCC as does the
full EPA case.  This implies a considerable savings in both model set-up and execution time, with a small loss
of accuracy when compared to the EPA case.
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Figure 13.  Hourly wind power output, October 14
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Figure 14.  Actual and weighted average of wind
power output, October 14

It is also important not to lose sight of our objective:  we want to develop a computationally efficient way to
provide plausible estimates of wind plant output and variation in output.  To that end, we believe that the
REPA method has accomplished our goal.  Further work should be done to explore the impact of  a standard
method of choosing the data bins so that the subjective element is less of a factor.

Other Selected Results

It is useful to view other results from our model runs.  As a chronological model, P+ can produce hourly results
for each day.  We selected some results of a day in which there was substantial variation to illustrate how our
REPA method can be applied to other model outputs of interest.  October 14 is the day we chose.  The wind
power output of the 5 REPA series is reproduced in Figure 13, and  Figure 14 shows the average values.  It
is apparent that there is a great deal of variation on this day that is masked by the average values.

Figure 15 shows the 5 cases (representing the 5 selected bins) that we used for the REPA runs.  The figure
shows the reduction in base and intermediate generation that is caused by the various wind power series.  As
can be seen in the figure, there is substantial variation in unit loading.  For the case represented by bin 3,
reduction in base and intermediate generation is significant, and corresponds closely to the daily peak period.
However, the case represented by bin 4 shows a minimal impact on base and intermediate generation.  Figure
16 shows the two average cases:  one calculated with the weights and the other using a non-weighted average.

We developed similar graphs for peaking generation.  Figure 17 shows the change in peaking generation for
each of the REPA cases, and Figure 18 shows the average values.  Figure 17 also illustrates a wide range of
potential relative outcomes.  However, the MW level of peaking activity is very small in all cases.
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Figure 17.  Reduction in p eaking gen erat ion,
REPA cases, October 14
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Figure 18.  A verage reduct ion in p eaking
generat ion, REPA and weighted REPA
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Figure 15.  Reduction in b ase and intermediate
generat ion, REPA cases, October 14
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Figure 16.  A verage reduct ion in b ase and
intermediate generat ion, REPA and weighted

REPA cases

We also report some weekly output from the P+ results.  In Figure 19, we see the wind-induced change in base
and intermediate generation for each of the 5 REPA cases, along with a weighted average for each week.  It
is apparent from this graph that the weighted average does indeed cover a great deal of variation.  Figure 20
is a similar graph of the weekly variation in EUE.  
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Figure 19.  W eekly reduct ion in b ase and
intermediate generat ion for 5 REPA cases
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Figure 20.  W eekly reduct ion in EUE for 5 REPA
cases

Conclusions

This paper has outlined a computationally efficient way to examine the impact of possible variations in wind
plant output.  Instead of implementing or modifying a Monte Carlo routine in a production-cost or reliability
model, we illustrate a method that can be performed to provide the model with a small number of wind power
data sets.  The model can then be run for each of the enumerated series, and the results analyzed appropriately
for the study at hand.  Further refinements can be made in a couple of areas.  First, the method of simulating
wind data does not have to be Markov, but can consist of any appropriate method.  Second, additional
experimentation with bin selection could result in a reproducable method that could be converted into a
computer algorithm.  Although the REPA is not as accurate as the EPA, it does capture the variation in the
wind resource.
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