14776	Appendix H. Basic Approaches for Shoreline Change
14777	and Land Loss Projections: Application to Fire Island,
14778	New York
14779	
14780	Authors: Benjamin T. Gutierrez, S. Jeffress Williams, and E. Robert Thieler
14781	
14782	While the factors that influence coastal change in response to sea-level rise are well
14783	known, our ability to incorporate this understanding into quantitative approaches that can
14784	be used to assess land loss over long time periods, such as 50-100 years, is limited. Part
14785	of the reason for this is the complexity of quantifying the influence of a range factors on
14786	shoreline change (e.g., geologic framework, sediment supply, and hydrodynamic
14787	climate). In many settings, the human action to control the coast also adds to the
14788	complexity. This appendix reviews some of the basic approaches that have been applied
14789	to predict shoreline changes over 50-100 year time scales. One method which examines
14790	the vulnerability of a region to inundation (EPA, 1989; Titus and Richman, 2001; Rowley
14791	et al., 2007) is used described previously in this report (See Chapter 1). This appendix is
14792	divided into two parts. First, three approaches that are used to predict shoreline change
14793	and land loss are reviewed. Next, three of the methods are applied to the shores of Fire
14794	Island, New York to provide examples of how these techniques are used and their
14795	limitations.
14796	

14798	H.1 REVIEW OF SHORELINE CHANGE/SEA-LEVEL RISE IMPACT MODELS
14799	The Bruun Model. One of the most widely known models developed for predicting
14800	shoreline change driven by sea-level rise on sandy coasts was formulated by Bruun
14801	(1962; 1988). This model is often referred to as the 'Bruun rule' and considers the two
14802	dimensional shoreline response (vertical and horizontal) to a rise in sea level (Schwartz,
14803	1967). A fundamental assumption of this model is that the cross-shore shape of the beach,
14804	or beach profile, assumes an equilibrium shape that translates upward and landward as
14805	sea level rises. Four additional assumptions of this model are that:
14806	• The upper beach is eroded due to landward translation of the profile
14807	• The material eroded from the upper beach is transported offshore and deposited so
14808	that the volume eroded from the upper beach equals the volume deposited seaward of
14809	the shoreline
14810	• The rise in the nearshore seabed as a result of deposition is equal to the rise in sea
14811	level, maintaining a constant water depth
14812	• Gradients in longshore transport are negligible.
14813	
14814	Mathematically, the model is depicted as:
14815	$R = \frac{L_*}{B + h_*} \cdot S \tag{Eqn H.1}$
14816	
14817	where R is the horizontal retreat of the shore, h is the depth of closure or depth where
14818	sediment exchange between the shore face and inner shelf is assumed to be minimal, B is
14819	the height of the berm, and S is the vertical rise in sea level. This relationship can also be

14820 evaluated based on the slope of the shore face, Θ , as:

Do Not Cite or Quote

14	821	
14	822	$R = \frac{1}{\tan \Theta} \cdot S \tag{Eqn H.2}$
14	823	
14	824	For most sites, it has been found that general values of Θ and R are approximately 0.01-
14	825	0.02 and 50S-100S respectively (Wright, 1995; Komar, 1998; Zhang, 1998).
14	826	
14	827	A few studies have been conducted to verify the Bruun Model to actual beach settings
14	828	(Schwartz, 1967; Hands, 1980; also see SCOR, 1991; Komar, 1998; and Dean and
14	829	Dalrymple, 2002 for a review). In other cases, some have advocated that there are several
14	830	uncertainties with this approach which limit its use in practical application (Thieler et al.,
14	831	2000; Cooper and Pilkey, 2004). Field evaluations have also shown that the assumption
14	832	of profile equilibrium can be difficult to meet (Riggs et al., 1995, List et al., 1997).
14	833	Moreover, the Bruun relationship neglects the contribution of longshore transport which
14	834	is a primary mechanism of sediment transport in the beach environment (Thieler et al.,
14	835	2000) and there have been relatively few attempts to incorporate longshore transport rates
14	836	into this approach (Everts, 1985).
14	837	
14	838	Even though the Bruun model has been in use for the last four decades no clear consensus
14	839	exists regarding its validity as a quantitative predictive tool. Some studies have validated
14	840	the approach (Bruun, 1962; Dubois, 1976; Hands, 1983; See review in SCOR, 1991; and
14	841	Komar, 1998) while others have questioned several aspects of this method (Thieler et al.,
14	842	2000; Cooper and Pilkey, 2004).
14	843	

14844	A number of investigators have expanded upon the Bruun rule or developed other models
14845	that simulate sea-level rise driven shoreline changes. Dean and Maurmeyer (1983)
14846	adapted and modified the Bruun rule to apply to barrier islands (e.g., the Generalized
14847	Bruun Rule). Cowell et al. (1992) developed the Shoreline Translation Model (STM)
14848	which incorporated several parameters that characterize the influence of geological
14849	framework to sea-level rise driven shoreline change. Stolper et al. (2005) developed a
14850	rules-based geomorphic shoreline change model (GEOMBEST) that simulates barrier
14851	island evolution in response to sea-level rise. While these models can achieve results
14852	consistent with our general understanding of sea-level rise driven changes to barrier
14853	island systems there is still the need for more research and testing against both the
14854	geologic record and present-day processes are needed to advance scientific understanding

14855 and inform management.

14856
14857
14858
14858
14859
14859

14860 Historical Trend Extrapolation. Another commonly used approach to evaluate potential 14861 shoreline change in the future relies on the calculation shoreline change rates based on 14862 changes in shoreline position over time. The shoreline change rates can then be used to 14863 extrapolate future shoreline positions at a specific location. In this approach a series of 14864 shorelines is assembled from maps for a particular area. In most cases these maps are 14865 either National Ocean Service T-sheets, aerial photographs, or derived from GPS surveys 14866 (Shalowitz, 1964; Leatherman, 1983; Dolan et al., 1991; Anders and Byrnes, 1991). The 14867 historical shorelines are then used to estimate rates of change over the time period 14868 covered by the different shorelines. Several statistical methods are used to calculate the

14869	shoreline change rates with the most commonly used being end-point rate calculations or
14870	linear regression (Dolan et al., 1991; Crowell et al., 1997). End-point rate calculations are
14871	simply the rates determined based on the change in position between the oldest and most
14872	recent shorelines in a given dataset. Linear-regression rates are the result of estimating
14873	the average rate of change using a number of shoreline positions over time. The shoreline
14874	change rates can then be used to extrapolate future changes in the shoreline (Crowell et
14875	al., 1997).
14876	
14877	Because past shorelines positions are readily available from maps that have been
14878	produced through time and the relatively straightforward approach, the extrapolation of
14879	historical trends to predict future shoreline position has been applied widely for coastal
14880	management and planning (Crowell and Leatherman, 1999). In particular, this method is
14881	used to estimate building set-backs (Fenster, 2005). Estimation of future shoreline
14882	positions is often the result of multiplying the observed rate of change by the number of
14883	years to of the projection. More specific assumptions can be incorporated that address the
14884	rate of sea-level rise or geological characteristics of an area (Leatherman, 1990; Komar et
14885	al., 1999).
14886	
14887	Historical trend analysis has evolved over the last few decades based on earlier efforts to
14888	investigate shoreline change (described in Crowell et al., 2005). Since the early 1980s
14889	computer based GIS software has been developed to digitally catalogue shoreline data
14890	and facilitate the quantification of shoreline change rates (May et al., 1982, Leatherman,
14891	1983, Thieler et al., 2005). At the same time, thorough review and critique of the
14892	procedures that are employed to make these estimates have been conducted (Dolan et al.,

- 14893 1991; Crowell et al., 1991; 1993; 1997; Douglas et al., 1998, Douglas and Crowell, 2000;
- 14894 Honeycutt et al, 2001; Fenster et al., 2001; Ruggiero et al., 2003; Moore et al., 2006;

14895 Genz et al., 2007).

14896

- 14897 Recently, national scale assessment of shoreline change has been carried out by the U.S.
- 14898 Geological Survey (Gulf Coast: Morton et al., 2004; southeastern U.S. coast: Morton and
- 14899 Miller, 2005; the California coast: Hapke et al., 2006). In addition, efforts are ongoing to
- 14900 complete similar analyses for the Northeastern, mid-Atlantic, Pacific Northwest, and
- 14901 Alaskan coasts.
- 14902

Figure H.2 Aerial photograph of Fire Island, New York showing former shoreline positions and how they 14905 are used to calculate long-term shoreline change rates using linear regression. The inset box shows the 14906 shoreline positions at several points in time over the last 170 years. From the change in position with time, 14907 an average rate of retreat can be calculated. This is noted by the slope of the line, m. The red line in the 14908 inset box indicates the best fit line while the dashed lines specify the 95% confidence interval for this fit. 14909 Photo source: State of New York GIS.

14910	The Sediment Budget. Another approach to shoreline change assessment involves
14911	evaluating the sediment mass balance, or sediment budget, for a given portion of the
14912	coast (Bowen and Inman, 1966; Komar, 1996; List, 2005). In this method, the gains and
14913	losses of sediment to a portion of the shore, often referred to as a control volume, are
14914	quantified and evaluated in based on estimates of beach volume change. Changes in the
14915	volume of sand for a particular setting can be identified and evaluated with respect to
14916	adjacent portions of the shore and to changes in shoreline position over time.
14917	
14918	One challenge related to this method is obtaining precise measurements that minimize
14919	error since small vertical changes over these relatively low gradient shoreline areas can
14920	result in large volumes of material (NRC, 1987). To apply this approach, accurate
14921	measurements of coastal landforms such as beach profiles, dunes, or cliff positions, are
14922	needed. Collection of such data, especially those on the under-water portions of the beach
14923	profile are difficult. In addition, high-density measurements are needed to evaluate
14924	changes from one section of the beach to the next. While the results can be useful to
14925	understand where sediment volume changes occur, the paucity of quality data and the
14926	expense of collecting it limit the application of this method in many areas.
14927	

Figure H.3 A schematic of the coastal sediment budget (modified from Komar, 1996). In this approach the gains and losses of sediment from the beach and nearshore regions are evaluated to identify possible underlying causes for shoreline changes. In this schematic the main sediment sources are: 1) cliff erosion, 2) coastal rivers, 3) alongshore transport, and 4) cross-shore sediment transport from the continental shelf. The main sediment sinks are: 1) offshore transport from the beach to the shelf and 2) wind transport from the beach to coastal dunes.

Monte Carlo Simulation. One approach that has been applied to simple shoreline change models is the use of Monte Carlo simulations (Vrijling and Meijer, 1992, Reeve and Fleming, 1997). In this approach, a probability density function of some measure of shoreline change or position can be generated from a simple shoreline change model. A random number generator is used to generate a wide range of values for the respective input variables that are used to calculate the results. This approach is commonly applied using straightforward one-line models that relate shoreline change to wave height and

sediment characteristics such as Pelnard-Considere's (1956) shoreline evolution equation

14945 or the U.S. Army Corps of Engineers CERC equation (CERC, 1984). This approach has

14946 been applied to address shoreline changes over time spans of 5 years (Dong and Chen,

14947	1999), 12 years (Reeve and Fleming, 1997) and 25 years (Ruggiero et al., 2006) but has
14948	not been attempted over longer scales approaching centuries and incorporated changes in
14949	sea level.

14951	The Coastal Vulnerability Index. One approach to parameterize the potential for coastal
14952	changes is through the development of a Coastal Vulnerability Index (CVI). This
14953	technique was first applied by Gornitz et al. (1989; 1990; 1994) to evaluate coastal
14954	hazards along portions of the United States coast. In this approach, 13 variables that
14955	influence coastline change and morphology were identified. Each risk factor is ranked
14956	according to a numerical scheme. The magnitude of the combined factors is then
14957	computed to determine the CVI for a given section of coast. The resulting index provides
14958	a qualitative measure of potential vulnerability at a particular location.
14959	
1/1060	Pacently, the U.S. Geological Survey (USCS) used this approach to evaluate the
14900	Recently, the 0.5. Geological Survey (0505) used this approach to evaluate the
14961	potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar-
14960 14961 14962	potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar- Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et</i>
14960 14961 14962 14963	kecentry, the U.S. Geological Sulvey (USUS) used this approach to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar-Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et al.</i> , 2002). The USGS approach reduced the index to include six variables
14960 14961 14962 14963 14964	 Recently, the U.S. Geological Sulvey (USUS) used this approach to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar-Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et al.</i>, 2002). The USGS approach reduced the index to include six variables (geomorphology, shoreline change, coastal slope, relative sea-level change, significant
14960 14961 14962 14963 14964 14965	 Recently, the U.S. Geological Sulvey (USUS) used this approach to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar-Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et al.</i>, 2002). The USGS approach reduced the index to include six variables (geomorphology, shoreline change, coastal slope, relative sea-level change, significant wave height, and tidal range) which were considered to be the most important in
14960 14961 14962 14963 14964 14965 14966	Recently, the U.S. Geological Sulvey (USUS) used this approach to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar- Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et</i> <i>al.</i> , 2002). The USGS approach reduced the index to include six variables (geomorphology, shoreline change, coastal slope, relative sea-level change, significant wave height, and tidal range) which were considered to be the most important in determining a shoreline's susceptibility to sea-level rise (Thieler and Hammar-Klose,
14960 14961 14962 14963 14964 14965 14966 14967	Recently, the U.S. Geological Sulvey (USUS) used this approach to evaluate the potential vulnerability of the U.S. coastline on a national scale (Thieler and Hammar- Klose, 1999) and on a more detailed scale for the U.S. National Park Service (Thieler <i>et</i> <i>al.</i> , 2002). The USGS approach reduced the index to include six variables (geomorphology, shoreline change, coastal slope, relative sea-level change, significant wave height, and tidal range) which were considered to be the most important in determining a shoreline's susceptibility to sea-level rise (Thieler and Hammar-Klose, 1999). The CVI is calculated as:

14969

$$CVI = \sqrt{\frac{a \times b \times c \times d \times e \times f}{6}}$$
 (Eqn H.3)

Do Not Cite or Quote

14970	
14971	where $a = geomorphology$, $b = rate of shoreline change$, $c = coastal slope$, $d = relative$
14972	sea-level change, $e = mean$ significant wave height, and $f = mean$ tidal range.
14973	The CVI provides a relatively simple numerical basis for ranking sections of coastline in
14974	terms of their potential for change that can be used by managers to identify regions where
14975	risks may be relatively high. The CVI results are displayed on maps to highlight regions
14976	where the physical effects of coastal change may be the greatest.
14977	
14978	H.2 CASE STUDY: PROJECTING POTENTIAL FUTURE SHORELINE
14979	CHANGE, FIRE ISLAND, NEW YORK
14980	H.2.1 Introduction
14981	The southern coast of Long Island, including the offshore continental shelf, exhibits
14982	complex geomorphology and geology due to several factors including: the underlying
14983	glacial geology, mobile sandy deposits comprising Long Island, characteristics of waves
14984	and tides in the region, and frequent impacts by major storms. The result is that Long
14985	Island beaches and dunes are dynamic landforms constantly changing due to complex
14986	physical forcing agents. Fire Island, which forms the central portion of the southern Long
14987	Island coast (Figure H.4), is a barrier island system where shoreline changes and the
14988	processes driving, including the vulnerability to sea-level rise, them have been studied for
14989	the last several decades (See reviews in Leatherman and Allen, 1985; Pendleton et al.,
14990	2004; Psuty, 2005). Shoreline retreat due to the long-term effects of diminished sand
14991	supply and storm erosion has threatened residential development and coastal habitat. In
14992	addition, rising relative sea level is also influencing shoreline and dune changes on Fire

14993 Island (McCormick et al., 1984; Leatherman and Allen, 1985; Zhang, 1998; Psuty, 2005). 14994 At the same time, these processes are natural phenomena inherent to barrier islands such 14995 as Fire Island. Even with the scientific knowledge gained from the research that has been 14996 conducted, it remains difficult to predict quantitatively with high confidence how the Fire 14997 Island system is likely to change in response to future sea-level rise over the next century 14998 and beyond. In addition, human action to control shoreline changes, tidal inlets, and rare 14999 storm related breaches of the barrier island system have had an impact on the barrier 15000 island's behavior. The following discussion reviews briefly the three basic methods that 15001 are currently used to assess potential shoreline changes driven by sea-level rise. The goal 15002 of this discussion is to illustrate the limitations of these shoreline change approaches that 15003 arise due to their simplicity and inability to capture the dynamic nature of the system. 15004

15005 15006

15009

15010

15011	11.2.2 I otential Future Sca-level Rise impacts. Established Concepts
15012	Current scientific understanding suggests that Fire Island should migrate landward and
15013	upward over the long term through the process of 'barrier island roll-over' in response to
15014	rising sea level, the effects of storms, and sand feeding the barriers from a combination of
15015	erosion of the adjacent coast and the inner shelf (Hoyt and Henry, 1967; McCormick and
15016	Toscano, 1981; Leatherman and Allen, 1985; Williams and Meisburger, 1987; Schwab et
15017	al., 2000). For this process to continue in the future, the evolution of the Fire Island
15018	system will depend on the continuing availability of sand to the barrier system from
15019	erosion of the adjacent coast as well as offshore areas. In addition, future storms will alter
15020	the Fire Island barrier. Some of these events could be large resulting in overwash and
15021	shoreline erosion whose effects may persist for a number of years. The formation of
15022	breaches and inlets during the most severe events is also possible, but it is difficult to
15023	predict when and where storm breaches might occur and how they might evolve
15024	(Williams and Foley, 2007). Historical records indicate that inlet formation and overwash
15025	have had large influences on these portions of the barrier and such risks are likely to
15026	remain in the future (Allen et al., 2002 and Psuty, 2005). While there are some numerical
15027	models have been developed to predict barrier island migration and evolution in response
15028	to sea-level rise (Dean and Maurmeyer, 1983; Cowell et al., 1992, 1995; Stolper et al.,
15029	2005; Moore et al., 2007), modeling approaches are still being developed and generally
15030	not yet suitable to inform management and policy decisions. Instead, the simpler
15031	approaches discussed in this case study are often used.
15032	

15011 H.2.2 Potential Future Sea-level Rise Impacts: Established Concepts

15033	H.2.3 Projection of Future Shoreline Change Due to Sea-Level Rise Using Simple
15034	Quantitative Approaches
15035	Three simple, commonly-used approaches are considered to predict future shoreline
15036	change and land loss due to sea-level rise along Fire Island. The three methods are: 1) the
15037	Bruun Rule model 2) extrapolation of historical shoreline change rates and 3) assessment
15038	of areas susceptible to inundation based on land elevation. The future shoreline changes
15039	were predicted for four sea-level rise scenarios which assumed that global sea levels
15040	would increase by 0.25 m, 0.5 m, 1 m, and 2 m by 2100. Long-term observations from a
15041	nearby tide gauge at the Battery in southern Manhattan indicated that relative sea level
15042	has risen at a rate of 2.88 mm/yr while the global rate over the last century was 1.7 mm/yr
15043	(Bindoff et al., 2007). Based on this difference it is assumed that the local subsidence will
15044	occur at the same rate over the remainder of this century such that the total rise by 2100 is
15045	expected to be 0.11 m greater than the global rise. As a result, the future relative sea-level
15046	rise targets for this Fire Island assessment are: 0.36 m, 0.61 m, 1.11 m, and 2.11 m. In the
15047	following examples, the 1995 shoreline was used as a starting point for all of the
15048	projections and serves as a reference point from which all projections are discussed.
15049	
15050	It is important to note that these three approaches are typically applied to different
15051	applications. While Bruun model is often applied to academic problems where
15052	researchers are either attempting to prove the validity of the concept (e.g., Schwartz,
15053	1967; Hands, 1983) or attempting to quantify the relationship between sea-level rise and
15054	shoreline change (Zhang et al., 2002), it has also been used in coastal management
15055	applications (Komar, 1998). Historical shoreline change rate extrapolations are used most

15056	often in coastal management to inform coastal managers and as a basis for setback
15057	calculations (Crowell and Leatherman, 1999; Fenster, 2005). Inundation susceptibility
15058	assessments have been used for statewide or national scale assessment of sea-level rise
15059	impacts to provide estimates of land areas at risk from a specific rise in sea level (EPA,
15060	1989; Najjar <i>et al.</i> , 2000).
15061	
15062	<i>The Bruun Model</i> . The input parameters for this model, <i>L</i> , <i>B</i> , and <i>h</i> (See Figure H.1)
15063	were determined from a data base of beach profiles from the U.S. Army Corps of
15064	Engineers and State of New York between 1979 and 2003. The berm height, B, was
15065	determined from average profile estimated for each beach profile location. The depth of
15066	closure, h , was determined as the depth at which the standard deviation of beach profile
15067	change became constant following Morang et al., (1999).
15068	
15069	Historical Trend Extrapolation. In the second approach, shoreline change rates were
15070	used to extrapolate future shoreline positions to the year 2100. For this projection,
15071	shoreline change data were taken from Pendleton et al., 2004. These shoreline change
15072	rates were calculated based on 10 historical shorelines spanning 1830 to 1995. The
15073	shoreline change rates were computed every 200 m along the shoreline and then averaged
15074	alongshore in 1 km bins. To extrapolate a future shoreline positions for the year 2100, the
15075	historical shoreline change rates calculated at the 200 m spacing were multiplied by 105;
15076	the number of years between the most recent shoreline (1995) and 2100. In taking this
15077	approach, it is assumed that all processes that contribute to long-term shoreline changes

15078	are reflected in the historical rate, including the effect of sea-level rise, and will remain
15079	more or less constant over the period of interest.
15080	
15081	It is important to note that while the other two shoreline change methods are used to
15082	depict potential shoreline changes due to sea-level rise, extrapolation of shoreline change
15083	rates may not apply to sea-level rise scenarios that exceed those that occurred in the time
15084	periods corresponding to the historical shorelines that are used. During time span of the
15085	shorelines that were used in these calculations, relative sea level rose between 30-40 cm
15086	in the vicinity of Fire Island. These shoreline change projections, therefore, are best
15087	considered for the 0.36 m sea-level rise scenario. In some instances, a ratio can be
15088	established between sea-level rise and shoreline change such that an increased rise in sea-
15089	level can be considered (See Leatherman, 1990). Yet for these cases, the roll of sediment
15090	losses from the shore should also be considered carefully.
15091	
15092	Inundation Susceptibility. The other approach which is used to evaluate potential land
15093	loss due to sea-level rise involves quantifying or specifying which land areas lie below a
15094	given elevation which corresponds to a particular rise in sea level. This approach is
15095	straight forward and can be determined using a variety of data (e.g., Lidar elevations) to
15096	depict the topography of the landscape, however it does not consider any dynamic
15097	processes (e.g., erosion, accretion, barrier rollover). Here, the elevation contours
15098	corresponding to the four sea-level rise scenarios were determined. The elevation
15099	contours used in this example were based on Lidar elevations acquired in the year 2000.

- 15100 Using these data, elevation contours corresponding to the four sea-level rise scenarios
- 15101 were identified (Figures H.5 and H.6).
- 15102

15103 H.2.4 Comparison of Shoreline Change Results

- 15104 The application of these three methods is discussed below based on the following figures
- 15105 (Figures H.5 and H.6).

15106
15107
Figure H.5 Site 1 comparison of shoreline change projections for a portion of Fire Island, NY (See Figure H.1 for location). Aerial photograph obtained from the state of New York.
15109

- 15110 Inundation. Here, the contours corresponding to the first three sea-level rise cases
- 15111 occupy a narrow portion of the barrier where the slope of the shoreface is relatively steep.
- 15112 Only the elevation corresponding to the 2.11 m rise scenario clearly occurs landward of

Do Not Cite or Quote

15113	the 1995 shoreline. At site 1, the elevation contours corresponding to the first three sea-
15114	level rise scenarios (0.36, 0.61, and 1.11 m) occur seaward of the 1995 shoreline (starting
15115	point for the projections) and the results for the Bruun model and historical
15116	extrapolations. At site 2, elevation contours corresponding to the first three sea-level rise
15117	scenarios (0.36, 0.61, and 1.11 m) occur both landward and seaward of the 1995
15118	shoreline (starting point for the projections).
15119	
15120	These results indicate the difficulty in attempting to apply this approach to a barrier
15121	island setting. First, the elevation data that were used for this example were acquired in
15122	2000-five years after the 1995 shoreline that was used as a baseline and as part of the
15123	historical shoreline data set. Second, the geological understanding of barrier island
15124	systems indicates that barrier islands can be expected to migrate upward and landward in
15125	response to sea-level rise, so it cannot be assumed that the Lidar based topography of the
15126	barrier island will remain static as sea level rises.
15127	
15128	Historical rate extrapolation. At Site 1, the historical extrapolation, depicted by the
15129	orange line, occurs farther inland than most of the scenarios displayed here even though
15130	this applies only to the smallest sea-level rise scenario (0.36 m). Here, the shoreline
15131	extrapolated based on shoreline change rates is 100-150 m landward of the position
15132	estimated using the Bruun Rule for the 0.36 m scenario (Figure H.5). At Site 2, the
15133	historical extrapolation occurs either even with or slightly offshore of the 1995 shoreline
15134	indicating that the shoreline position would remain static or migrate offshore by the end
15135	of this century (Figure H.6).

15136	The differences in the projected shoreline changes rates between the two locations may
15137	be related to differences in the sediment budget between locations. At site 1, analyses of
15138	the sediment budget and shoreline change trends suggest that there has been a net loss of
15139	material from the beach leading to net erosion of the shoreline (Allen et al., 2002; Psuty,
15140	2005). On the other hand, site 2 occurs in a region where it has been suggested that the
15141	sediment budget is balanced or even augmented by accumulation of material transported
15142	onshore from the continental shelf (Williams and Meisburger, 1987; Kana, 1995; Rosati
15143	et al., 1999; Schwab et al., 2000).
15144	
15145	Bruun Model. Results based on the Bruun model project a landward migration of the
15146	shoreline for each respective sea-level rise scenario. Given that sediment budget analyses
15147	indicate a long-term loss of material from the shore at site 1 and a possible abundance of
15148	sediment at site 2, it is likely that the sediment budget at each site is not balanced.
15149	Because of this, a simple application of the Bruun model neglects the sediment budget
15150	contribution to long-term shoreline change and may underestimate the magnitude and
15151	direction of future shoreline changes.
15152	
15153	Storm Overwash. Lastly, at site 1 historical evidence has shown that storm surges from
15154	severe storms can penetrate up to 300 m inland. In Figure H.5, based on overwash maps
15155	complied by Johnson (1982) it can be seen that overwash from the Ash Wednesday 1962
15156	Nor'easter penetrated nearly 250 m inland. It is difficult to predict when or in some cases
15157	where these incursions may occur in the future, but it is clear that the penetration distance
15158	of these events, which occurred over 40 years ago, exceeded the shoreline changes

- 15159 projected in this case study (e.g. Douglas et al., 1998). Historically, storm overwash has
- 15160 been most prevalent along the eastern and western portions of Fire Island where dune
- 15161 heights are lower than those of the central portion of the island.
- 15162

- 15164 Figure H.6 Site 2. Comparison of shoreline change projections for a portion of Fire Island, NY (see Figure 15165 H.1 for location). Aerial photos from the state of New York.
 15166
- 15167

- 15168
- 15169

15170	APPENDIX H REFERENCES
15171	Allen, J.R., C. LaBash, P. August, and N.P. Psuty, 2002: Historical and recent shoreline
15172	changes, impacts of Moriches inlet, and relevance to Long Island breaching at
15173	Fire Island National Seashore, New York. Technical Report NPS/BSO
15174	RNR/NRTR/2002-7. Department of the Interior, National Park Service.
15175	Anders, F.J. and M.R. Byrnes, 1991: Accuracy of shoreline change rates as determined
15176	from maps and aerial photographs: Shore and Beach, 59(1), 17-26.
15177	Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa,
15178	Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D.Talley and A. Unnikrishnan,
15179	2007, Observations: Oceanic Climate Change and Sea Level, In: Solomon, S., D.
15180	Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor and H.L. Miller
15181	(Editors), Climate Change 2007: The Physical Science Basis. Contribution of
15182	Working Group I to the Fourth Assessment Report of the Intergovernmental Panel
15183	on Climate, Cambridge University Press, Cambridge, United Kingdom and New
15184	York, NY, USA.
15185	Bowen, A.J. and D.L. Inman, 1966: Budget of littoral sands in the vicinity of Point
15186	Arguello, California. U.S. Army Coastal Engineering Research Center Technical
15187	Memo. No. 19, 56 pp.
15188	Bruun, P., 1962: Sea-level rise as a cause of shore erosion. In: Proceedings of the
15189	American Society of Civil Engineers, Journal of Waterways Harbors Division, 88,
15190	117-130.
15191	Bruun, P. 1988: The Bruun rule of erosion by sea-level rise: a discussion on large scale
15192	two- and three-dimensional usages. Journal of Coastal Research, 4(4), 627-648.
15193	CERC, 1984: Shore Protection Manual, Coastal Engineering Research Center, U.S.
15194	Army Corps of Engineers, Washingtion, D.C.: U.S. Government Printing Office.
15195	Cooper, J.A.G. and O.H. Pilkey, 2004: Sea-level rise and shoreline retreat: time to
15196	abandon the Bruun Rule. Global and Planetary Change, 43, 157–171.

CCSP	4.	1

15197 15198 15199	Cowell , P.J., P.S. Roy, and R.A. Jones, 1992: Shoreface translation model: computer simulation of coastal-sand-body response to sea level rise. <i>Mathematics and Computers in Simulation</i> , 33 , 603-608.
15200 15201	Cowell , P.J., P.S. Roy, and R.A. Jones, 1995: Simulation of large-scale coastal change using a morphological behaviour mdoel, <i>Marine Geology</i> , v. 126, 45-61.
15202	Crowell , M., S.P. Leatherman, and M.K. Buckley, 1991: Historical shoreline change;
15203	error analysis and mapping accuracy. <i>Journal of Coastal Research</i> , 7 , 839-852.
15204 15205	Crowell , M., S.P. Leatherman, and M.K. Buckley, 1993: Shoreline change rate analysis: long-term versus short-term. <i>Shore and Beach</i> , 61 (2), 13-20.
15206 15207 15208	Crowell , M., B.C. Douglas, and S.P. Leatherman, 1997: On forecasting future U.S. shoreline positions: a test of algorithms. <i>Journal of Coastal Research</i> , 13 , 1245-1255.
15209	Crowell, M. and S.P. Leatherman, 1999: Coastal erosion mapping and management.
15210	Journal of Coastal Research, Special Issue 28, 196 pp.
15211	Crowell, M., S.P. Leatherman, and B. Douglas, 2005: Erosion: historical analysis a
15212	forecasting. In: <i>Encyclopedia of Coastal Science</i> [Schwartz, M.L. (ed.).]
15213	Springer, The Netherlands, pp. 846-850.
15214	Dean, R.G. and E.M. Maurmeyer, 1983: Models of beach profile response. In: CRC
15215	Handbook of Coastal Processes [Komar, P.D. (ed.).]. CRC Press, Boca Raton,
15216	FL, pp. 151-165.
15217	Dean, R.G. and R.A. Dalrymple, 2002: <i>Coastal Processes with Engineering</i>
15218	<i>Applications</i> . Cambridge University Press, New York, 475 pp.
15219 15220	Dolan , R., M.S. Fenster, and S.J. Holme, 1991: Temporal analysis of shoreline recession and accretion. <i>Journal of Coastal Research</i> , 7 (3), 723-744

15221 15222	Dong , P. and H. Chen, 1999: A probability method for predicting time-dependent long-term shoreline erosion. <i>Coastal Engineering</i> , 36, 243-261.
15223 15224	Douglas , B.C. and M. Crowell, 2000: Long-term shoreline position prediction and error propagation. <i>Journal of Coastal Research</i> , 16, 145-152 .
15225	Douglas, B.C., M. Crowell, and S.P. Leatherman, 1998: Consideration for shoreline
15226	position prediction. <i>Journal of Coastal Research</i> , 14(3) , 1025-1033.
15227	Dubois, R.N., 1976, Nearshore evidence in support of the Bruun Rule on shore erosion,
15228	Journal of Geology, v. 84, 485-491.
15229	Environmental Protection Agency. 1989: The Potential Effects of Global Climate
15230	Change on the United States: Report to Congress. Appendix B: Sea Level Rise.
15231	EPA 230-05-89-052, EPA Office of Policy, Planning, and Evaluation,
15232	Washington, DC.
15233	Everts, C.H., 1985: Sea level rise effects. Journal of Waterway, Port, and Coastal
15234	Engineering, 111 , 985-999.
15235	Fenster, M.S., R. Dolan, and R.A. Morton, 2001: Coastal storms and shoreline change:
15236	signal or noise?, Journal of Coastal Research, v. 17, no. 3, pp. 714-720.
15237	Fenster, M.S., 2005: Setbacks, In: Encyclopedia of Coastal Science [Schwartz, M.L.
15238	(ed.).] Springer, The Netherlands, pp. 863-866.
15239	Genz, A.S., C.H. Fletcher, R.A. Dunn, L.N. Frazer, J.J. Rooney, 2007: The predictive
15240	accuracy of shoreline change rate methods and alongshore beach variation on
15241	Maui, Hawaii, Journal of Coastal Research, v. 23, no. 1, pp. 87-105.
15242	Gornitz, V.M. and P. Kanciruk, 1989: Assessment of global coastal hazards from sea
15243	level rise. Coastal Zone '89: Proceedings of the Sixth Symposium on Coastal and
15244	Ocean Management, July 11-14, 1989, Charleston, SC. American Society of Civil
15245	Engineers, New York, 1345-1359.

CCSP	4.	1

15246	Gornitz, V.M., 1990: Vulnerability of the east coast, USA to future sea-level rise.
15247	Journal of Coastal Research, Special Issue 9, 201-237.
15248	Gornitz, V.M., R.C. Daniels, T.W. White, and K.R. Birdwell, 1994: The development of
15249	a coastal risk assessment database: vulnerability to sea-level rise in the U.S.
15250	southeast. Journal of Coastal Research, Special Issue 12, 327-338.
15251	Hands, E.B., 1980: Prediction of Shore Retreat and Nearshore Profile Adjustments to
15252	Rising Water Levels on the Great Lakes. U.S. Army Coastal Engineering
15253	Research Center Technical Paper, TP 80-7, 199p.
15254	Hands, E.B., 1983: The Great Lakes as a test model for profile responses to sea level
15255	changes. In: Handbook of Coastal Processes and Erosion, [Komar, P.D. (ed.)].
15256	CRC Press, Boca Raton, Fla., pp. 167-189.
15257	Hapke, C., D. Reid, B. Richmond, P. Ruggiero, and J. List, 2006: National Assessment of
15258	Shoreline Change Part 3: Historical Shoreline Change and Associated Land Loss
15259	Along Sandy Shorelines of the California Coast. U.S. Geological Survey Open-
15260	file Report 2006-1219, U.S. Geological Survey, Reston VA. Available at
15261	http://purl.access.gpo.gov/GPO/LPS86269
15262	Honeycutt, M.G., M. Crowell, and B.C. Douglas, 2001: Shoreline position forecasting:
15263	impacts of storms, rate-calculation methodologies, and temporal scales. Journal of
15264	<i>Coastal Research</i> , 17(3) , 721-730.
15265	Hoyt, J.H. and V.J. Henry, 1967: Influence of island migration on barrier island
15266	sedimentation. Geological Society of America Bulletin, 78, 77-78.
15267	Johnson, C.E., 1982: Historic and geomorphic evidence of barrier dynamics and the
15268	origin of the Sunken Forest, south shore of Long Island, New York, M.S. Thesis,
15269	University of Massachusetts, Amherst, Massachusetts, 190pp.
15270	Kana, T.W., 1995: A meso-scale sediment budget for Long Island, New York. Marine
15271	<i>Geology</i> , 126 , 87-110.

CCSP 4.1	
----------	--

 Komar, P.D., 1996: The budget of littoral sediments concepts and applications, <i>Shore</i> <i>and Beach</i>, 64, 18-26. Komar, P.D., 1998: <i>Beach Processes and Sedimentation</i>. Prentice Hall, New Jersey, 544pp. Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beacl v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to</i> <i>Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	ι,
 and Beach, 64, 18-26. Komar, P.D., 1998: Beach Processes and Sedimentation. Prentice Hall, New Jersey, 544pp. Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beach v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. Marine Geology, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	۱,
 Komar, P.D., 1998: <i>Beach Processes and Sedimentation</i>. Prentice Hall, New Jersey, 544pp. Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beacl v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	۱,
 Komar, P.D., 1998: <i>Beach Processes and Sedimentation</i>. Prentice Hall, New Jersey, 544pp. Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beach v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	ι,
 15275 544pp. 15276 Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beach v. 67, no. 1, 41-49. 15279 Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. 15281 Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. 15283 Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	ι,
 Komar, P.D., McDougal, W.G., Marra, J.J., and Ruggiero, P., 1999, The rational analysis of setback distances: applications to the Oregon coast, Shore and Beacl v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	۱,
 analysis of setback distances: applications to the Oregon coast, Shore and Beach v. 67, no. 1, 41-49. Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	۱,
 11 11 11 11 11 11 11 11 11 11 11 11 11	
 Leatherman, S.P., 1983: Shoreline mapping: a comparison of techniques, Shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
 Leatherman, S.P., 1985. Shoremic mapping. a comparison of techniques, shore and Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
 Beach, 51, 28-33. Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to</i> <i>Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
 Leatherman, S.P., 1985: Geomorphic and sedimentary analysis of Fire Island, New York. <i>Marine Geology</i>, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to</i> <i>Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
 York. Marine Geology, 63, 173-195. Leatherman, S.P. and J.R. Allen, 1985: Geomorphic analysis: Fire Island inlet to Montauk Point Long Island, New York, Reformulation Study. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
 Leatherman, S.P. and J.R. Allen, 1985: <i>Geomorphic analysis: Fire Island inlet to</i> <i>Montauk Point Long Island, New York, Reformulation Study</i>. Final report from the National Park Service to the U.S. Army Corps of Engineers. 	
15284Montauk Point Long Island, New York, Reformulation Study. Final report from15285the National Park Service to the U.S. Army Corps of Engineers.	
15285Information Official Park Service to the U.S. Army Corps of Engineers.	
15265 the National Fark Service to the 0.5. Army Corps of Engineers.	
15286 Leatherman, S.P., 1990, Modeling shore response to sea-level rise on sedimentary	
15287 coasts. Progress in Physical Geography, 14(4) , 447-464.	
15288 List, J.H., A.H. Sallenger, M.E. Hansen, and B.E. Jaffe, 1997: Accelerated relative sea	
15289 level rise and rapid coastal erosion: testing a causal relationship for the Louisian	ia
15290 barrier islands. <i>Marine Geology</i> , 140, 347-365.	
15201 List I.H. 2005: The sediment hudget In: Encyclonadia of Coastal Science [Schwartz	
15291 List, J.H., 2005. The sediment budget. In: <i>Encyclopeana of Coastal Science</i> [Sciwartz,	
15292 M.L. (ed.)]. p. 846-850.	
15293 May, S., Kimball, W., Grandy, N., and Dolan, R., 1982, The coastal erosion information	n
15294 system (CEIS), Shore and Beach, v. 50, no. 1, 19-25.	
15295 McCormick, C.L. and M.A. Toscano, 1981: Origin of the barrier system of Long Islan	d,
15296 New York. Northeastern Geology, 3 , 230-234.	

C	CSP	4.1	

15297	McCormick, L.R., O.H. Pilkey, Jr., W.J. Neal, and O.H. Pilkey, Sr., 1984: Living with
15298	Long Island's South Shore. Duke University Press, Durham NC, 157 pp.
15299	Moore, L., P. Ruggiero, and J. List. 2006: Comparing mean high water and high water
15300	line shorelines: Should proxy-datum offsets be incorporated in shoreline change
15301	analysis? Journal of Coastal Research, 22(4), 894-905.
15302	Moore, L.J., J.H. List, S.J. Williams, and D. Stolper, 2007: Modeling barrier island
15303	response to sea-level rise. In: Coastal Sediments '07, [Kraus, N. and J. Rosati,
15304	(eds.)]. American Society of Civil Engineers.
15305	Morang, A., D.S. Rahoy, and W.G. Grosskopf, 1999: Regional geological characteristics
15306	along the south shore of Long Island, New York. In: Coastal Sediments '99.
15307	American Society of Coastal Engineers, pp. 1568-1583.
15308	Morton, R.A., T.L. Miller, and L.J. Moore, 2004: National Assessment of Shoreline
15309	Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss
15310	along the U.S. Gulf of Mexico. U.S. Geological Survey Open File Report 2004-
15311	1043, 44 pp.
15312	Morton, R.A. and T.L. Miller, 2005: National Assessment of Shoreline Change: Part 2:
15313	Historical Shoreline Change and Associated Land Loss along the U.S. South East
15314	Atlantic Coast. U.S. Geological Survey Open-file Report 2005-1401, U.S.
15315	Geological Survey, Reston VA. Available at
15316	http://purl.access.gpo.gov/GPO/LPS87862
15317	Najjar, R.G., H.A. Walker, P.J. Anderson, E.J. Barron, R.J. Brod, J.R. Gibson, V.S.
15318	Kennedy, C.G. Knight, J.P. Megonigal, R.E. O'Connor, C.D. Polsky, N.P. Psuty,
15319	B.A. Richards, L.G. Sorenson, E.M. Steele, and R.S. Swanson, 2000: The
15320	potential impacts of climate change on the mid-Atlantic coastal region. Climate
15321	Research, 14, 219-233.
15322	National Research Council, 1987: Responding to Changes in Sea Level: Engineering
15323	Implications. National Academy Press, Washington DC, 148 pp.

|--|

15324	Pelnard-Considere, R., 1956: Essai de theorie de l'evolution des formes de ravage en
15325	plages de sables et de galets. Societe Hydrotechnique de France, IV'eme Journees
15326	de L'Hydraulique Question III, rapport 1, 74-1-10.
15327	Pendleton, E.A., S.J. Williams, and E.R. Thieler, 2004: Coastal Vulnerability
15328	Assessment of Fire Island National Seashore (FIIS) to Sea-level Rise. U.S.
15329	Geological Survey Open-File Report 03-439, U.S. Geological Survey, Reston,
15330	VA. Available at http://pubs.usgs.gov/of/2003/of03-439/.
15331	Pilkey, O.H. and T.W. Davis, 1987: An analysis of coastal recession models: North
15332	Carolina coast. In: Sea-Level Fluctuation and Coastal Evolution. [Nummedal, D.,
15333	O.H. Pilkey, and J.D. Howard, (eds.)]. Society of Economic Paleontologists and
15334	Mineralogists, pp. 59-68.
15335	Psuty, N. P., 2005: The Coastal Geomorphology of Fire Island: a Portrait of Continuity
15336	and Change. Fire Island National Seashore Science Synthesis Paper. Technical
15337	Report NPS/NER/NRTR. 56 pp.
15338	Reeve, D.E. and C.A. Fleming, 1997: A statistical-dynamical method for predicting long
15339	term shoreline evolution. Coastal Engineering 30(3-4), 259-280.
15340	Riggs, S.R., W.J. Cleary, and S.W. Snyder, 1995: Influence of inherited geologic
15341	framework upon barrier beach morphology and shoreface dynamics. Marine
15342	<i>Geology</i> , 126 , 213-234.
15343	Rosati, J.D., M.B. Gravens, and W.G. Smith, 1999: Regional sediment budget for Fire
15344	Island to Montauk Point New York, USA. In: Coastal Sediments '99. American
15345	Society of Civil Engineers, New York, pp. 802 817.
15346	Rowley, R.J., J.C. Kostelnick, D. Braaten, X. Li, and J. Meisel, 2007: Risk of rising sea
15347	level to population and land area. EOS Transactions of the American Geophysical
15348	Union, 88(9), 105,107.

|--|

15349	Ruggiero, P., G.M. Kaminsky, and G. Gelfenbaum. 2003: Linking proxy-based and
15350	datum-based shorelines on a high-energy coastline. Implications for shoreline
15251	change enclosed Lowmal of Coastal Personal Special Issue 28, 57, 82
15551	change analyses. <i>Journal of Coastal Research</i> , Special Issue 38 , 57-82.
15352	Ruggiero, P., J. List, D. Hanes, J. Eshleman, 2007: Probabilistic shoreline change
15353	modeling, Proceedings of the 30 th International Conference on Coastal
15354	Engineering, San Diego, CA.
15355	Schwab, W.C., E.R. Thieler, J.R. Allen, D.S Foster, B.A. Swift, and J.F. Denny, 2000:
15356	Influence of inner-continental shelf geologic framework on the evolution and
15357	behavior of the barrier-island system between Fire Island Inlet and Shinnecock
15358	Inlet, Long Island, New York. Journal of Coastal Research, 16(2), 408-422.
15359	SCOR, 1991: The response of beaches to sea level changes: a review of predictive
15360	models. Journal of Coastal Research, 7, 895-921.
15361	Schwartz, M.L., 1967: The Bruun theory of sea-level rise as a cause of shore erosion.
15362	<i>Journal of Geology</i> , 73 , 528-534.
15363	Shalowitz, A.L., 1964: Shore and Sea Boundaries. Publication 10-1, U.S. Department of
15364	Commerce, Washington, DC, 749 pp.
15365	Stolper, D., J.H. List, and E.R. Thieler, 2005: Simulating the evolution of coastal
15366	morphology and stratigraphy with a new morphological-behavior model
15367	(GEOMBEST). <i>Marine Geology</i> , 218 , 17-36.
15368	Thieler, E.R., S.J. Williams, and R. Beavers, 2002: Vulnerability of U.S. National Parks
15369	to Sea-Level Rise and Coastal Change. U.S. Geological Survey Fact Sheet FS
15370	095-02.
15371	Thieler, E. R. and E. Hammar-Klose, 1999: National Assessment of Coastal
15372	Vulnerability to Future Sea-level RisePreliminary Results for U.S. Atlantic
15373	Coast. U.S. Geological Survey Open-File Report 99-593 U.S. Geological Survey
15374	Reston VA Available at http://purl.usgs.gov/of/1999/of99-593/
	Koston, 11. 11 analoso at http://puil.asgs.gov/01/1777/0177-373/

<u>CC51 7.1</u>

15375	Thieler, E.R., E.A. Himmelstoss, J.L. Zichichi, and T.L. Miller, 2005: Digital Shoreline
15376	Analysis System (DSAS) Version 3.0; An ArcGIS© Extension for Calculating
15377	Shoreline Change. U.S. Geological Survey Open-File Report 2005-1304, U.S.
15378	Geological Survey, Reston, VA. Available at http://pubs.usgs.gov/of/2005/1304/.
15379	Thieler, E.R., O.H. Pilkey, R.S. Young, D.M. Bush, and F. Chai, 2000: The use of the
15380	mathematical models to predict beach behavior for U.S. coastal engineering: a
15381	critical review. Journal of Coastal Research, 16(1), 48-70.
15382	Titus, J.G. and C. Richman, 2001: Maps of lands vulnerable to sea level rise: modeled
15383	elevations along the US Atlantic and Gulf coasts. Climate Research, 18, 205-228.
15384	Vrijling, J.K. and G.J. Meijer, 1992: Probabalistic coastline position computations.
15385	Coastal Engineering, 17, 1-23.
15386	Williams, S.J. and E.P. Meisburger, 1987: Sand sources for the transgressive barrier
15387	coast of Long Island, N.Y., Evidence for landward transport of shelf sediments.
15388	In: Proceedings of Coastal Sediments '87 [Kraus, N.C., (ed.)]. American Society
15389	of Civil Engineers, New York, pp. 1517-1532.
15390	Williams, S.J. and M.K. Foley, 2007: Recommendations for a Barrier Island Breach
15391	Management Plan for Fire Island National Seashore, Including the Otis Pike
15392	High Dune Wilderness Area, Long Island, New York. Technical Report
15393	NPS/NER/NRTR-2007/075, National Park Service, Boston, MA.
15394	Wright, L.D., 1995: Morphodynamics of Inner Continental Shelves. CRC Press, Boca
15395	Raton, FL, 241 pp.
15396	Zervas, C., 2001: Sea Level Variations of the United States 1854-1999. NOAA Technical
15397	Report NOS CO-OPS 36, NOAA National Ocean Service, Silver Spring, MD, 66
15398	pp. Available at http://tidesandcurrents.noaa.gov/publications-/techrpt36doc.pdf
15399	Zhang, K., 1998: Twentieth Century Storm Activity and Sea Level Rise Along the U.S.
15400	East Coast and Their Impact on Shoreline Position. Ph.D. dissertation, University
15401	of Maryland.

- 15402 Zhang, K., B.C. Douglas, and S.P. Leatherman, 2002: Do storms cause long-term beach
- 15403 erosion along the U.S. east barrier coast? *Journal of Geology*, **110**, 493-502.