
12292	Appendix F. Chesapeake Bay
12293	
12294	Author: James G. Titus, U.S. Environmental Protection Agency
12295	
12296	Contributing Authors: A. Shellenbarger Jones, Industrial Economics Inc.; P. Conrad,
	City of Baltimore; E. M. Strange, Stratus Consulting; Z. Johnson,
12298	Maryland Department of Natural Resources; M. Weinstein, New Jersey Sea Grant.
12299	
12300	In 1607, a group of English settlers landed three ships near the mouth of North America's
12301	largest estuary, and established Jamestown, the first permanent town in what eventually
12302	became the United States of America. Jamestown was the capital of Virginia until
12303	1699, when a fire destroyed the statehouse. Rising sea level was probably also a
12304	contributing factor in the decision to move the capital to Williamsburg ¹¹⁰ , because it was
12305	making the Jamestown peninsula less habitable than it had been during the previous
12306	century (Blanton, 2000). Because the James River was brackish, groundwater was the
12307	only reliable source of freshwater. But the low elevations on Jamestown limited the
12308	thickness of the freshwater table — especially during droughts. As Figure F.1 shows, a
12309	10 cm rise in sea level can reduce the thickness of the freshwater table by 4 meters on a
12310	low-lying island where the freshwater lens floats atop the salt water.
12311	
12312	Rising sea level has continued to alter Jamestown. Two hundred years ago, the isthmus

12313 that connected the peninsula to the mainland eroded, creating Jamestown Island (Johnson

¹¹⁰ Geologist Carl Hobbs contributed this idea as part of the stakeholder review process for the report. Carl Hobbs. (2007). Stakeholder Review Process. Stakeholder Comments.

12314	and Hobbs, 1994 p. 11). Shore erosion also threatened the location of the historic town
12315	itself, until a stone revetment was constructed (Johnson and Hobbs, 1994, p. 11). As the
12316	sea rose, the shallow valleys between the ridges on the island became freshwater marsh,
12317	and then tidal marsh (Johnson and Hobbs, 1994, p. 9). Maps from the 17th century show
12318	agriculture on lands that today are salt marsh. Having converted mainland to island, the
12319	rising sea will eventually convert the island to open water, unless the National Park
12320	Service continues to protect it from the rising water.
12321	
12322	Other shorelines along Chesapeake Bay have also been retreating over the last four
12323	centuries. Several bay island fishing villages have had to relocate to the mainland as the
12324	islands on which they were located eroded away (Leatherman, 1992). Low-lying farms
12325	on the eastern shores are converting to marsh, while the marshes in wildlife refuges
12326	convert to open water. As sea level rises, the risk of flooding is increasing from
12327	

12330Figure F.1 Impact of sea-level rise on an island freshwater table. (A) The freshwater table extends below12331sea level 40 cm for every 1 cm by which it extends above sea level. (B) For islands with substantial12332elevation, a 1 meter rise in sea level simply shifts the entire water table up 1 meter, and the only problem is12333that a few wells will have to be replaced with shallower wells. (C) However, for very low islands the water12334table cannot rise because of runoff, evaporation, and transpiration. A rise in sea level would thus narrow the12335water table by 40 cm for every 1 cm that the sea level rises, effectively eliminating groundwater supplies12336for the lowest islands.

12338	This appendix e	examines the s	ensitivity of Ches	apeake Bay a	and some of its	tributaries to

```
rising sea level. We first examine coastal elevations and vulnerable habitat (Section F.1)
```

- 12341 briefly discuss new estimates of the population that resides in the areas most vulnerable
- 12342 to sea-level rise (F.3). Sections F.2 and F.3 start with Hampton Roads and then proceed
- 12343 clockwise around the Bay to Virginia's Middle Peninsula and Northern Neck, then up the

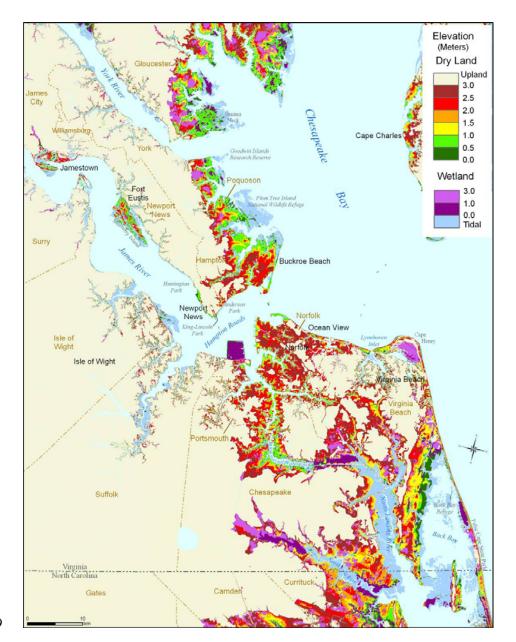
¹²³²⁹

¹²³⁴⁰ and then summarize policies related to the impacts of sea-level rise (F.2). Finally, we

- 12344 Potomac River to Washington DC, then up Maryland's Western Shore, around to the
- 12345 Upper Eastern Shore, and finally down to the Lower Eastern Shore. The discussions for
- 12346 Virginia are largely organized by planning district; the Maryland discussions are
- 12347 organized by major section of shore.
- 12348

12349 F.1 IMPACTS ON THE PHYSICAL ENVIRONMENT

- 12350 **F.1.1 Hampton Roads**
- 12351 Hampton Roads is the southernmost coastal planning district in Virginia. Extending from
- 12352 the North Carolina border to the York River, the region has 16 localities whose combined
- 12353 population is more than 1.5 million. Lands vulnerable to sea-level rise include beaches
- 12354 along the Atlantic Ocean and Chesapeake Bay, both sides of the lower James River, a
- 12355 barrier spit and back barrier bays near North Carolina's Outer Banks, and parts of the
- 12356 York River.
- 12357


12358 Elevations

- 12359 Figure F.2 shows the elevations of lands close to sea level in the Hampton Roads area
- 12360 (see also Table F.1). As shown, most of the vulnerable dry land is located within Virginia
- 12361 Beach and Chesapeake. These low areas are not, however, in the urban portions of those
- 12362 jurisdictions. Most of Virginia Beach's very low land is either along the back-barrier bays
- 12363 near the North Carolina border, or along the North Landing River. The lightly developed
- 12364 southern half of this city is mostly within 3 meters above mean spring high water. Most
- 12365 of Chesapeake's low land is around the Northwest River near the North Carolina border,

12366	or the along the Intracoastal Waterway ¹¹¹ . Hampton and Newport News have substantial
12367	areas between the 1.5- and 3-meter contours, with a few areas within 1 meter above the
12368	tides.
12369	
12370	The town of Poquoson is extensively developed and probably the community that is most
12371	vulnerable to rising water levels (see Figures F.3 and F.4). Although the city's corporate
12372	limits include some high ground, the town is approximately 50% wetland and almost all
12373	residential lands are less than 3 meters above the tides; several neighborhoods are
12374	vulnerable to even minor surges in Chesapeake Bay. The localities located farther up the
12375	James and York rivers have less low land. An important exception is historic Jamestown
12376	Island, which has been gradually submerged by the rising tides since the colony was
12377	established 400 years ago.

Do Not Cite or Quote

¹¹¹ The intracoastal waterway includes the North Landing River which flows into Currituck Sound (NC), the southern branch of the Elizabeth River, which flows into Chesapeake Bay, and an East-West canal that connects these two rivers.

12380 Figure F.2 Hampton Roads: Elevations relative to spring high water.

	Tidal	50	cm	1 n	neter	2 me	eters	3 me	3 meters		eters
		Low	ow High I		High	Low	High	Low	High	Low	High
Locality		Cu	mulati	ve (tota	ıl) amou	nt of Dr	y Land l	below a	given ele	evation	
Virginia Beach		9.3	33.0	30.3	68.7	93.6	163.2	184.7	272.9	378.1	418.2
Chesapeake		3.5	11.9	10.8	30.6	44.6	86.6	100.4	204.5	353.0	429.7
Norfolk		1.9	5.8	5.2	17.1	24.0	42.4	52.4	91.2	121.7	128.2
Portsmouth		1.2	3.9	3.5	9.6	12.8	22.0	26.7	45.0	62.6	69.9
Suffolk		0.7	4.3	3.1	7.1	7.5	15.2	13.0	31.0	47.3	73.3
Isle of Wight		0.2	3.4	2.1	6.2	6.0	12.8	10.1	21.6	26.8	42.0
Surry		0.0	1.4	0.7	2.7	2.7	5.3	4.6	7.1	8.1	11.2
James City		0.1	3.8	2.2	7.2	7.0	14.2	11.8	22.1	26.7	38.7
York		1.4	6.0	4.8	13.1	16.3	27.7	28.3	37.3	44.3	51.3
Newport News		2.2	6.9	6.1	11.0	12.9	17.9	19.3	24.8	34.9	42.3
Poquoson		1.4	4.5	4.1	8.8	10.9	16.3	16.4	16.6	16.7	16.7
Hampton		1.9	5.9	5.3	18.1	25.4	45.3	51.2	73.8	94.7	102.4
Total		23.8	90.8	78.2	200.2	263.6	468.9	519.0	847.9	1214.9	1423.8
		Cu	mulati	ve (tot	al) amou	int of we	etlands b	elow a g	given ele	evation	
Virginia Beach	111.9	4.2	14.5	13.3	24.9	29.1	40.9	43.5	49.6	56.5	59.3
Chesapeake	39.7	4.5	16.6	15.4	32.1	36.4	58.3	55.7	120.2	180.3	250.8
Norfolk	4.7	0.1	0.3	0.2	0.5	0.7	1.1	1.1	1.5	1.7	1.7
Portsmouth	3.7	2.4	7.7	6.8	8.9	9.1	9.5	9.6	10.3	10.9	11.2
Suffolk	26.4	0.0	0.2	0.1	0.3	0.3	0.8	0.5	1.8	2.9	33.1
Isle of Wight	28.6	0.0	0.3	0.2	0.6	0.6	1.4	1.0	3.1	4.0	7.3
Surry	11.5	0.0	0.6	0.3	1.3	1.2	2.4	2.1	2.7	2.9	3.4
James City	32.8	0.0	0.8	0.4	1.5	1.4	2.8	2.5	3.7	4.2	5.6
York	17.0	0.2	0.9	0.7	2.7	3.7	6.7	6.9	8.0	9.2	9.9
Newport News	15.1	0.1	0.3	0.3	0.7	0.9	1.3	1.4	1.4	1.6	1.7
Poquoson	23.7	0.0	0.1	0.1	0.4	0.6	1.1	1.1	1.1	1.1	1.1
Hampton	14.3	0.1	0.2	0.2	0.4	0.5	0.9	1.1	2.2	4.4	6.2
Total	329.4	11.7	42.4	38.0	74.2	84.5	127.1	126.5	205.4	279.5	391.1
Dry and Nontidal											
wetland		35	133	116	274	348	596	645	1053	1494	1815
All Land	329	365	463	446	604	677	925	975	1383	1824	2144
Source: Titus and Cacela											
Close to Sea Level. Section											
Synthesis and Assessmen											

Table F.1 Low and high estimates for the area of dry and wet land close to sea level, Hampton Roads, Virginia (square kilometers).

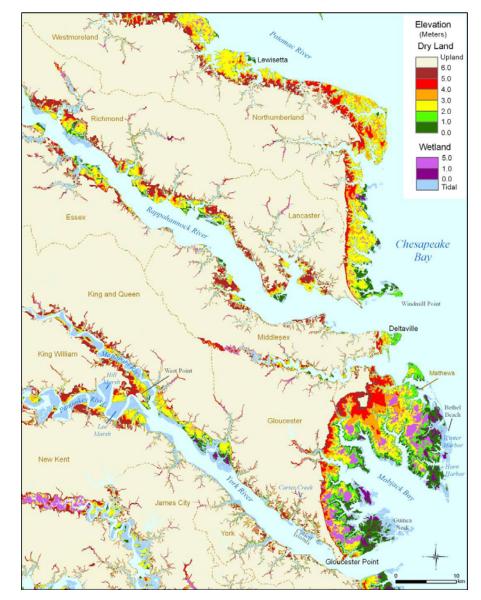
Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC.The low and high estimates are based on the on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations.

12382

Figures F.3 and F.4 Poquoson, Virginia. Homes Close to Sea Level. (a) The water levels in the roadside ditches rise and fall with the tides. A bulkhead is on one side of the ditch, while marsh grasses have colonized the other side (October 2002). (b) A home being elevated after Hurricane Isabel (October 2004).

12387 Vulnerable Habitat

- 12388 Sandy beaches with dune systems comprise the Chesapeake Bay shoreline of the City of
- 12389 Virginia Beach and Norfolk, from Cape Henry to the mouth of the James River
- 12390 (Hardaway, et al., 2005). Overall trends in the last century show the dunes east of the
- 12391 Lynnhaven inlet advancing into the Bay. West from the inlet, erosion, beach
- 12392 nourishment, and fill operations as well as condominium development and shoreline
- 12393 armoring have affected the accretion and erosion patterns (Hardaway, et al., 2005). Along
- 12394 the shores of Norfolk, the rate of erosion is generally low, and beach accretion occurs
- 12395 along much of the shore (Berman et al., 2002). Most of the shore along Chesapeake Bay
- 12396 is protected by groins and breakwaters, and hence relatively stable (Hardaway et al.,
- 12397 2005, p.9). On the other side of the James River, the Bay shoreline is dominated by
- 12398 marshes, many of which are eroding.
- 12399
- 12400 Along the bay shores of the Hampton Roads planning district, current sea-level trends or
- 12401 a modest acceleration (e.g. current rate plus 2mm/yr) are unlikely to substantially


12402	diminish beach habitat, compared to the existing impact from human activities.
12403	Urbanization and foot traffic impair beach habitat compared with a pristine
12404	environment ¹¹² . Nevertheless, the commitment to maintain the existing beaches make
12405	further habitat degradation unlikely because the beaches will continue to exist, unless
12406	sea-level rise accelerates enough to cause officials to rethink that commitment.
12407	
12408	Other tidal habitat is more vulnerable. Approximately one quarter of the tidal wetlands in
12409	the area is within Poquoson's Plum Tree Island National Wildlife Refuge (see Table
12410	F.1) ¹¹³ . Unlike most mid-Atlantic wetlands, these wetlands appear to be unable to keep
12411	pace with the current rate of sea-level rise (Reed et al., 2008). This refuge has very
12412	limited human access because unexploded ordnance remains on the island from its prior
12413	use as a bombing range. The relative isolation of the area has made it a haven for over
12414	100 different species of birds, including northern harrier (Circus cyaneus), black duck
12415	(Anas rubripes), sedge wren (Cistothorus platensis), sharp-tailed sparrow (Ammodramus
12416	caudacutus), bald eagle, peregrine falcon (Falco peregrinus), black-necked stilts
12417	(Himantopus mexicanus), and little blue heron (Egretta caerulea). In addition to the salt
12418	marsh, the refuge has substantial forested dune hummocks (CPCP, 1999). A variety of
12419	mammals (muskrats, red fox, and white-tailed deer) use the higher ground of the refuge.
12420	Endangered sea turtles, primarily the loggerhead, use the nearshore waters. Oyster, clams,

¹¹² A possible exception is Grandview Beach Nature Preserve in Hampton. The preserve has over two miles of beach shoreline on Chesapeake Bay and is home to a population of northeastern beach tiger beetles (Cicindela dorsalis dorsalis), federally listed as threatened (USFWS, 1994). U.S. Fish and Wildlife Service. 1994. Northeastern Beach Tiger Beetle (Cicindela dorsalis dorsalis) Recovery Plan. Hadley Massachusetts. 60 pp. page 6.

¹¹³ The refuge has the vast majority of Poquoson's tidal wetlands.

12421	and blue crabs inhabit the shallow waters and mudflats, and striped bass, mullet, spot, and
12422	white perch have been found in the nearshore waters and marsh (USFWS, date unkown).
12423	
12424	The wetlands in York County appear able to keep pace with the current rate of sea-level
12425	rise; but assuming that they are typical of most wetlands on the western side of
12426	Chesapeake Bay, they would become marginal with a modest acceleration and be lost if
12427	sea-level rise accelerates to 1 cm/yr (Reed et al., 2008). Bald eagles currently nest in the
12428	Goodwin Islands National Estuarine Research Reserve (Watts and Markham, 2003). This
12429	reserve includes intertidal flats, 300 acres of eelgrass and widgeon grass (VIMS, date
12430	unknown), and salt marshes dominated by salt marsh cordgrass (Spartina alterniflora)
12431	and salt meadow hay (Spartina patens). Even if the wetlands keep pace with rising sea
12432	level, the habitat just above the wetlands could be lost as it converts to marsh. This
12433	habitat includes forested wetland ridges, dominated by estuarine scrub/shrub vegetation,
12434	and ridges with oak and pine black gum (Nyssa sylvatica), and cottonwood (Populus
12435	deltoides) (VIMS, date unknown).
12436	
12437	F.1.2 York River to Potomac River
12438	Elevations
12439	Two planning districts lie between the York and Potomac rivers. The Middle Peninsula
12440	Planning District includes the land between the York and Rappahannock rivers. The
12441	Northern Neck is between the Rappahannock and Potomac rivers.
12442	

- 12443 As Figure F.5 shows, the Middle Peninsula includes Mathews and Middlesex counties,
- 12444 which are along Chesapeake Bay. Gloucester County is between the York River and
- 12445 Mobjack Bay, with very little of the county actually on Chesapeake Bay. Gloucester is
- 12446 the most developed county, while the remainder of the Middle Peninsula consists of a
- 12447 mix of rural areas and seasonally occupied coastal homes.
- 12448
- 12449 The Northern Neck planning district is primarily rural, with approximately one-third of
- 12450 the land area currently farm land. Major developed areas lie along the shores of
- 12451 Chesapeake Bay and the Potomac River, while the Rappahannock River banks remain
- 12452 largely undeveloped, especially upstream from Lancaster County.

- 12457
- 12458 Figure F.5 and Table F.2 report elevations relative to spring high water for the two
- 12459 planning districts. Gloucester County has between 13 and 33 square kilometers of dry

¹²⁴⁵⁴ 12455 12456

Figure F.5 Middle Peninsula and Northern Neck: Elevations relative to spring high water. Contour interval is 1 meter because data quality is insufficient to display 50 cm at this scale.

- 12460 land within 1 meter above the coastal wetlands. Most of that land is on the Guinea Neck.
- 12461 The long-established communities on this neck may be the most vulnerable to rising sea
- 12462 level along the Western Shore of Chesapeake Bay.
- 12463
- 12464 The vast majority of Mathews County is less than 6 meters above spring high water, as
- 12465 Figure F.5 shows. For the most part, the very low dry land in this county tends to be
- 12466 undeveloped forests lying just inland of the tidal wetlands. Its most vulnerable
- 12467 development is in the southernmost neck, between Horn Harbor and Mobjack Bay,
- 12468 approximately 1–1.5 meters above spring high water. The other counties have relatively
- 12469 little low land. In spite of its name, for example, Deltaville (Middlesex) is generally 4
- 12470 meters above sea level and not vulnerable to inundation.
- 12471
- 12472 For the most part, the Northern Neck has rolling hills with relatively few low spots. Many
- 12473 coastal homes are along bluffs, some of which are eroding. The available topographic
- 12474 data suggest that within the Northern Neck planning district, Lancaster County has the
- 12475 most dry land located below 2 meters (between 14 and 28 square kilometers)¹¹⁴.

¹¹⁴ The available topographic data does not allow a meaningful estimate of the land within one meter above the tides. See Map 1.1 in Chapter 1.

	Tidal	50	cm	1 m	neter	2 me	eters	3 me	eters	5 meters			
		Low	High	Low	High	Low	High	Low	High	Low	High		
Locality		Cur	nulativ	e (total	(total) amount of Dry Land below a given						elevation		
Gloucester		4.1	16.0	13.2	32.9	40.5	66.9	66.9	84.2	96.4	110.8		
Mathews		4.7	14.8	13.4	33.1	43.9	73.1	78.6	96.8	114.7	120.7		
Middlesex		0.2	3.4	2.0	6.8	7.3	14.4	13.1	22.8	28.1	38.9		
King William		0.0	1.6	0.9	3.2	3.1	8.4	5.4	17.7	22.7	36.1		
King and Queen		0.0	2.9	1.7	5.7	5.5	11.9	9.6	19.0	22.7	32.9		
Essex		0.0	3.8	2.0	7.3	7.1	15.5	12.3	27.9	34.2	52.8		
Lancaster		0.1	7.0	3.6	13.8	13.8	28.0	24.0	41.5	48.4	67.9		
Northumberland		0.0	5.9	2.8	11.5	11.0	24.1	19.2	63.8	84.5	140.9		
Richmond		0.0	4.6	2.4	8.9	8.7	18.5	15.0	31.6	38.2	56.5		
Caroline		0.0	0.4	0.3	0.9	0.9	1.8	1.5	2.8	3.4	5.2		
Spotsylvania		0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.5	0.5	0.8		
Fredericksburg		0.0	0.1	0.0	0.1	0.1	0.2	0.2	0.3	0.4	0.5		
Total		9.2	60.5	42.4	124.2	142.1	263.2	246.0	409.0	494.2	664.0		
		Cu	nulativ	e (tota	l) amoui	nt of we	tlands be	elow a g	iven elev	vation			
Gloucester	43.5	1.4	5.5	4.5	11.9	14.7	24.8	24.6	30.8	34.4	38.5		
Mathews	27.0	1.2	3.8	3.5	8.6	11.4	19.0	21.6	33.6	48.1	55.1		
Middlesex	9.7	0.0	0.7	0.4	1.4	1.4	2.8	2.4	3.5	3.8	4.8		
King William	35.6	0.0	0.4	0.2	0.7	0.7	1.4	1.2	2.0	2.3	3.3		
King and Queen	21.6	0.0	0.9	0.5	1.7	1.6	3.1	2.8	4.0	4.4	5.8		
Essex	27.5	0.0	0.8	0.4	1.5	1.5	2.9	2.5	3.9	4.4	5.9		
Lancaster	9.8	0.0	0.5	0.3	1.1	1.1	2.1	1.8	2.8	3.2	4.2		
Northumberland	11.4	0.0	0.5	0.3	1.1	1.0	2.2	1.8	5.1	6.6	10.8		
Richmond	21.7	0.0	0.9	0.4	1.7	1.6	3.3	2.8	4.5	5.1	6.9		
Caroline	6.3	0.0	0.1	0.0	0.1	0.1	0.3	0.2	0.7	0.9	1.5		
Spotsylvania	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1		
Fredericksburg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Total	214.3	2.6	14.1	10.5	29.7	35.1	62.0	61.7	90.9	113.5	136.9		
Dry and Nontidal wetland		12	75	53	154	177	325	308	500	608	801		
All Land	214	226	289	267	368	392	539	522	714	822	1015		
Source: Titus and Cacela, 20	008. Unc	ertain	ty Rang	ges Ass	sociated	with EF	A's Esti	mates o	f the Are	ea of Lai	nd		

 Table F.2 Low and high estimates for the area of dry and wet land close to sea level Chesapeake Bay,

 Middle Peninsula and Northern Neck Areas, Virginia (square kilometers).

Source: Titus and Cacela, 2008. Uncertainty Ranges Associated with EPA's Estimates of the Area of Land Close to Sea Level. Section 1.3 in: Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea-Level Rise, J.G. Titus and E. Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations. For additional details, see Chapter 1.

12476

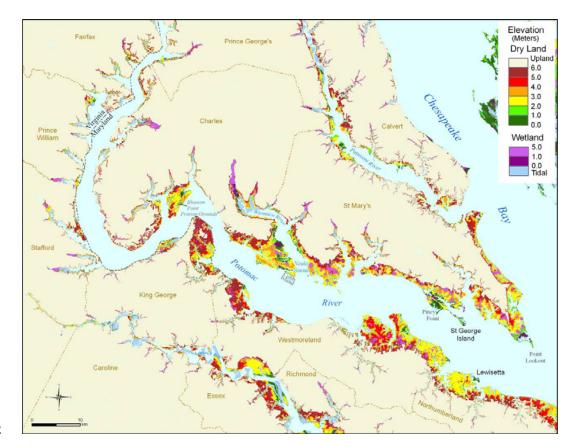
12477 Vulnerable Habitat

- 12478 Like the marshes of Poquoson to the south, the marshes of the Guinea Neck and adjacent
- 12479 islands are not keeping pace with the current rates of sea-level rise (Reed *et al.*, 2008).
- 12480 For more than three decades, scientists have documented their migration onto farms and

12481	forests (Moore, 1976). Thus, the continued survival of these marshes depends on land use
12482	and shore protection decisions. As a general rule, loss of marsh can eliminate nesting and
12483	forage habitat for birds and fish, and reduce the food supply of invertebrates such as crabs
12484	and shrimp, as well as the birds that feed on these species ¹¹⁵ .
12485	
12486	Upstream from the Guinea Neck, sea-level rise is evident in the York River's tributaries,
12487	not because wetlands are converting to open water but because the composition of
12488	wetlands is changing. Along the Pamunkey and Mattaponi rivers, dead trees reveal that
12489	tidal hardwood marshes are converting to brackish or freshwater marsh ¹¹⁶ . Tidal
12490	hardwood marshes provide nesting sites for piscivorous species such as ospreys, bald
12491	eagles, and double-crested cormorants (Robbins and Blom, 1996). The freshwater
12492	marshes also host a variety of migratory and breeding birds.
12493	
12494	Some scientists are concerned about the implications of a shift from high marsh to low
12495	marsh. In a study of the Lee and Hill marshes in the lower Pamunkey River, the authors
12496	posit that brackish marshes, due to their locations at transitions between tidal freshwater
12497	and oligohaline marshes, may face greater risk than marshes with more extreme,
12498	nontransitional salinities. If sea-level rise were to convert 100 hectares of high marsh big
12499	cordgrass (Spartina cynasuroides) to low marsh arrow arum (Peltandra virginica), the
12500	authors estimate a reduction in the number of breeding red-winged blackbirds that
12501	currently depend on the big cordgrass portions of the marshes (Paxton and Watts, 2002).
12502	However, the change to an arrow arum-dominated marsh may increase bird density and

¹¹⁵ See Chapter 4.116 Written communication from Gary Fleming, Vegetation ecologist for the Virginia Natural Heritage Program, cited in Shellenbarger Jones and Bosch, 2007a.

12503	diversity during winter, particularly for waterfowl and shorebirds. Arrow arum dies back
12504	in winter, creating an open mud flat that provides birds with improved access to
12505	invertebrate prey (Paxton and Watts, 2002, pp 25-26).
12506	
12507	In Mathews County, Bethel Beach (a natural area preserve separating Winter Harbor
12508	from Chesapeake Bay) is currently migrating inland over an extensive salt marsh area
12509	(Shellenbarger Jones and Bosch, 2008a). The beach is currently undergoing high erosion
12510	(Berman et al., 2000), and is home to a population of the Northeastern beach tiger beetle
12511	(federally listed as threatened) and a nesting site for least terns, which scour shallow nests
12512	in the sand. In the overwash zone extending toward the marsh, a rare plant is present, the
12513	sea-beach knotweed (Polygonum glaucum). The marsh is also one of few Chesapeake
12514	Bay nesting sites for northern harriers (Circus cyaneus), hawks that commonly nest in
12515	more northern areas (VA DCR, 1999). As long as the shore is able to migrate, these
12516	habitats will remain intact; but eventually, overwash and inundation of the marsh could
12517	reduce the sea-beach knotweed and the northeastern beach tiger beetle population, as well
12518	as the nesting area for least terns and northern harriers (Shellenbarger Jones and Bosch,
12519	2008a).
12520	
12521	F.1.3 The Potomac River
12522	Elevations
12523	Virginia Side. The available topographic data do not allow a meaningful estimate of the


- 12524 land within 1 meter above the tides; but it does suggest that the counties along the
- 12525 Potomac River have between 24 and 53 square kilometers of dry land (and between 4 and

12526	8 square kilometers of nontidal wetlands) below 2 meters (Table F.3). Although
12527	Westmoreland and King George County have the greatest amount of low land (a
12528	combined area of between 14 and 33 square kilometers below 2 meters), the low areas are
12529	well distributed, as shown in Figure F.6. Many coastal homes are along bluffs, some of
12530	which are eroding.
12531	
12532	The most low-lying community on the Virginia side of the Potomac River is Lewisetta in
12533	Northumberland County. Lewisetta appears to be the only community along the Potomac
12534	River vulnerable to tidal inundation with a 50–100 cm rise in sea level. Water in some
12535	ditches rises and falls with the tides, and some areas drain through tide gates. With a
12536	fairly modest rise in sea level, wetlands may begin to take over portions of people's
12537	yards, the tide gates will close more often, and flooding will be more frequent. Somewhat
12538	higher, Old Town Alexandria and Belle Haven (Fairfax County) both flood occasionally
12539	from high levels in the Potomac River. But outside a small number of communities, shore
12540	erosion-not inundation-will almost certainly be the primary factor forcing people to
12541	choose between shore protection and land loss.

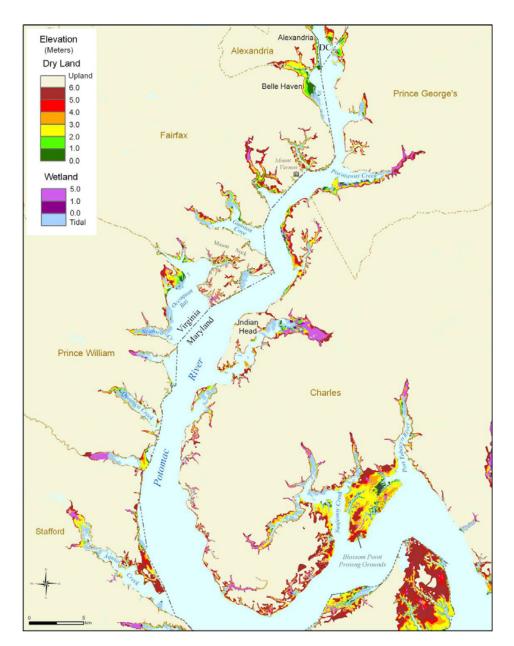

		Tidal	50	cm	1 m	neter	2 m	eters	3 me	eters	5 meters								
			Low	High	Low	High	Low	High	Low	High	Low	High							
Locality	State		Cur	nulativ	e (total) amour	nt of Dry	/ Land b	elow a g	iven ele	vation								
Westmoreland	VA		0.0	4.7	2.4	9.3	9.0	21.2	15.5	53.0	69.2	112.3							
King George	VA		0.0	2.7	1.5	5.4	5.2	11.4	9.0	21.9	27.3	42.8							
Stafford	VA		0.0	1.4	0.8	2.7	2.7	5.4	4.6	8.1	9.5	13.5							
Prince William	VA		0.0	1.0	0.5	2.0	1.9	3.9	3.3	5.5	6.4	8.8							
Fairfax	VA		0.0	2.0	1.1	3.9	3.8	7.6	6.6	10.7	12.4	18.1							
Alexandria	VA		0.0	0.4	0.3	0.9	0.9	1.7	1.5	2.5	2.9	4.0							
Arlington	VA		0.0	0.2	0.1	0.5	0.5	1.3	0.8	2.6	3.4	5.0							
DC			1.6	3.0	2.8	4.4	5.5	7.4	8.9	11.1	15.9	17.7							
Prince George's	MD		0.1	1.1	0.5	2.2	1.6	4.0	3.2	5.4	6.6	9.9							
Charles	MD		0.7	10.9	4.6	19.4	14.1	38.4	28.3	64.0	74.2	96.0							
St. Mary's	MD		1.6	12.0	5.6	19.8	14.9	39.2	27.9	70.1	81.2	99.8							
Total			4.1	39.5	20.1	70.4	60.0	141.5	109.5	255.1	308.9	428.1							
			Cumulative (total) amount of wetlands below a given elevation																
Westmoreland	VA	14.4	0.0	0.5	0.3	1.0	1.0	2.2	1.7	5.6	7.3	12.0							
King George	VA	13.5	0.0	0.5	0.3	1.0	1.0	2.0	1.7	2.8	3.3	4.6							
Stafford	VA	6.8	0.0	0.5	0.3	1.0	1.0	1.9	1.7	2.6	3.0	3.9							
Prince William	VA	5.1	0.0	0.2	0.1	0.3	0.3	0.6	0.5	0.7	0.8	0.9							
Fairfax	VA	4.9	0.0	0.2	0.1	0.4	0.4	0.7	0.6	0.9	1.1	1.4							
Alexandria	VA	0.2	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1							
Arlington	VA	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
DC		0.5	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.3	0.3							
Prince George's	MD	1.6	0.0	0.3	0.1	0.5	0.4	0.8	0.7	0.9	1.2	2.1							
Charles	MD	22.9	0.1	3.6	1.4	6.2	4.6	11.3	9.0	15.9	17.8	22.2							
St. Mary's	MD	11.7	0.3	1.8	0.8	3.3	2.4	7.1	4.9	12.9	15.4	22.5							
Total 81		81.5	0.5	7.6	3.5	13.9	11.1	26.8	21.0	42.7	50.1	70.1							
Dry and Nontidal wetland			5	47	24	84	71	168	130	298	359	498							
All Land	86	129	105	166	153	250	212	379	441	580									
Source: Titus and C	Cacela, 20	08. Unc	ertain	ty Rang	ges Ass	sociated	with EF	PA's Esti	imates o	f the Are	ea of La	nd							
Close to Sea Level.																			
Synthesis and Asse								•											
Strange (eds.), EPA	430R07	004. U.S	S. EPA	. Wasł	ningtor	. DC. T	he low a	nd high	estimate	Strange (eds.), EPA 430R07004, U.S. EPA, Washington, DC, The low and high estimates are based on the on									

Table F.3 Low and high estimates for the area of dry and wet land close to sea level, Potomac River (square kilometers).

Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations. For further details, see Chapter 1.

12543 Figure F.6 Lower Potomac. Elevations relative to spring high water.

12545 Figure F. 7 Upper Tidal Potomac. Elevations relative to spring high water.

12546	Maryland Side. Over the last several years, the Maryland Department of Natural
12547	Resources and other state agencies have collected LIDAR data for most of the state. In
12548	the near future it will be possible to provide a very precise estimate of the amount of land
12549	close to sea level along the Maryland side of the Potomac River. Although such an
12550	estimate was not available as this report was written, a rough estimate of the land within
12551	1 meter above the tides is possible because the DNR provided EPA with spot elevation
12552	data. Table F.3 suggests that the Maryland side of the Potomac River has between 11 and
12553	41 square kilometers of dry land and between 2 and 10 square kilometers of nontidal
12554	wetlands within 1 meter above spring high water. As Figure F.6 shows, the land within
12555	about 1 meter above the tides is concentrated around St. George Island and Piney Point in
12556	St. Mary's County, and along the Wicomico River and along Neal Sound opposite Cobb
12557	Island in Charles County. Substantial areas are within three meters of spring high water,
12558	including the southern 5 to 6 kilometers of St. Mary's County, almost all of Cobb and St.
12559	George Islands, and most of Blossom Point Proving Grounds. Relatively steep bluffs,
12560	however, are also common. Comparing the area of land close to sea level on the
12561	Maryland side to the 1300 km of shoreline along the River and its tributaries, the one-
12562	meter contour is, on average, less than 20 meters inland of the shore ¹¹⁷ . The inundation of
12563	low-lying lands is very unlikely to be a serious problem along the Maryland side of the
12564	Potomac River if sea level rises one meter.

12566 Vulnerable Habitat

¹¹⁷ The total shoreline length of the Potomac and its tributaries is approximately 1300 km and 29 square kilometers are within one meter of the tides (Jones and Wang 2008).

12567	The Lower Potomac River includes a diverse mix of land uses and habitat types. The
12568	implications of sea-level rise vary from one place to the next, depending on the land use,
12569	habitat type, and current or anticipated shoreline protection measures. The following
12570	description highlights key resources and impacts, but broad characterization of
12571	environmental implications is difficult and subject to exceptions.
12572	
12573	Freshwater tidal marshes in the Lower Potomac are found in the upper reaches of tidal
12574	tributaries. For example, freshwater tidal marshes in the Caledon Natural Area and
12575	Chotank Preserve (in Virginia) provide habitat for catfish, perch, sunfish, and carp, and
12576	support numerous turtles, including the red-eared palm slider, its close relative the
12577	yellow-belly palm slider, painted turtles, and snapping turtles. Green heron and great blue
12578	heron feed on fish and invertebrates in the marshes. Local ponds attract numerous
12579	waterfowl, including Canada geese, tundra swan, and many duck species. Other major
12580	freshwater marshes are found on Virginia's Crow's Nest Peninsula and in Maryland's
12581	Zekiah Swamp Environmental Area. In general, freshwater tidal marshes in the Lower
12582	Potomac are keeping pace with sea-level rise through sediment and peat accumulation,
12583	and are expected to continue to do so, even under higher sea-level rise scenarios (Reed et
12584	<i>al.</i> , 2008).
12585	
12586	Brackish tidal marshes are a major feature of the downstream portions of the region's
12587	rivers. For instance, major brackish marshes are found throughout Maryland's Nanjemoy
12588	Peninsula. In general, these marshes are keeping pace with sea-level rise today, but are
12589	considered marginal under moderate sea-level rise rate increases and are likely to be lost

12590	if sea level accelerates by 2 mm/yr or more (Reed et al., 2008). Loss of brackish tidal
12591	marshes would eliminate nesting, foraging, roosting, and stopover areas for migrating
12592	birds. Significant concentrations of migrating waterfowl forage and overwinter in these
12593	marshes in fall and winter. Rails, coots, and migrant shorebirds are transient species that
12594	feed on fish and invertebrates in and around the marshes and tidal creeks. The rich food
12595	resources of the tidal marshes also support rare bird species such as bald eagle and
12596	northern harrier (White, 1989). Fish species common in the brackish waters of the region
12597	include resident marsh species such as killifishes, anchovies, silversides, blennies, gobies,
12598	and hogchoker. Striped bass and white perch move in and out of marshes year-round.
12599	Anadromous fishes, including herrings and shad, as well as marine transients such as
12600	Atlantic menhaden and drum species, are present in late spring and early fall (White,
10 (01	
12601	1989).
12601 12602	1989).
	1989). Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea
12602	
12602 12603	Unnourished beaches and tidal flats of the Lower Potomac are likely to erode as sea
12602 12603 12604	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection
12602 12603 12604 12605	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection measures selected for a specific area. For example, at the mouth of the Wicomico River
12602 12603 12604 12605 12606	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection measures selected for a specific area. For example, at the mouth of the Wicomico River in Maryland are the developed areas of Wicomico Beach and Cobb Island. Assuming
12602 12603 12604 12605 12606 12607	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection measures selected for a specific area. For example, at the mouth of the Wicomico River in Maryland are the developed areas of Wicomico Beach and Cobb Island. Assuming that the shores of Cobb Island continue to be protected, sea-level rise is likely to
12602 12603 12604 12605 12606 12607 12608	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection measures selected for a specific area. For example, at the mouth of the Wicomico River in Maryland are the developed areas of Wicomico Beach and Cobb Island. Assuming that the shores of Cobb Island continue to be protected, sea-level rise is likely to eliminate most of the island's remaining beaches and tidal flats. Likewise, at the mouth of
12602 12603 12604 12605 12606 12607 12608 12609	Unnourished <i>beaches and tidal flats</i> of the Lower Potomac are likely to erode as sea levels rise. Impacts on beaches are highly dependent on the nature of shoreline protection measures selected for a specific area. For example, at the mouth of the Wicomico River in Maryland are the developed areas of Wicomico Beach and Cobb Island. Assuming that the shores of Cobb Island continue to be protected, sea-level rise is likely to eliminate most of the island's remaining beaches and tidal flats. Likewise, at the mouth of Aquia Creek, north of Virginia's Crow's Nest Peninsula, shoreline protection could

12613	diversity and abundance of species ranging from microscopic organisms to filter-feeding
12614	bivalves and deposit-feeders such as fiddler crabs and mud snails. In turn, numerous
12615	predators feed on these invertebrates, including predatory snails (such as the oyster drill),
12616	blue crab, and a variety of fishes and birds ¹¹⁸ .
12617	
12618	Finally, where the <i>cliffs and bluffs</i> along the Lower Potomac are not protected (e.g.,
12619	Westmoreland State Park, Caledon Natural Area), natural erosional processes will
12620	generally continue, helping to maintain the beaches below.
12621	
12622	Above Indian Head, the Potomac River is fresh. Tidal wetlands are generally expected to
12623	keep pace with rising sea level in these areas (see Chapter 3). Nevertheless, the Dyke
12624	Marsh Preserve faces an uncertain future. Its freshwater tidal marsh is one of the last
12625	major remnants of the original freshwater tidal marshes of the Upper Potomac River
12626	(Johnston, 2000, p. 242). The marsh proper is dominated by common freshwater tidal
12627	marsh plants, and an adjacent embayment contains one of the largest mudflats along the
12628	Upper Potomac (Johnston, 2000, p. 228). A recent survey found 62 species of fish, nine
12629	species of amphibians, seven species of turtles, two species of lizards, three species of
12630	snakes, 34 species of mammals, and 76 species of birds in Dyke Marsh (Engelhardt et al.,
12631	2005, p 4). The rare least bittern and the federally listed bald eagle breed in the marsh; it
12632	also hosts the only known breeding population of marsh wrens in the upper tidal Potomac
12633	(Johnston, 2000, p 248). Many of the fish species present (e.g., striped bass, American
12634	shad, yellow perch, blueback herring) are important for commercial and recreational

118 For general information on the fauna of soft-sediment habitats see Chapter 6 in Bertness, 1999.

12635	fisheries in the area (Mangold, 2004). A recent analysis of conditions at Dyke Marsh
12636	Preserve concluded that further study of the marsh's response to sea-level rise is needed
12637	to predict impacts and formulate restoration plans (Engelhardt et al., 2005, p. 7).
12638	
12639	Parklands on the Mason Neck Peninsula will be managed for conservation, but shoreline
12640	protection on adjacent lands may result in marsh loss and reduced abundance of key bird
12641	species. For instance, the Mason Neck National Wildlife Refuge hosts seven nesting bald
12642	eagle pairs and up to 100 bald eagles during winter. The refuge also has one of the largest

12643 great blue heron colonies in Virginia and provides nesting areas for hawks and waterfowl,

12644 as well as a stopover for migratory birds. Many of the resident and migratory birds are of

12645 high conservation priority. Studies in marshes of Virginia's Eastern Shore have found a

12646 direct relationship between marsh area and the abundance of bird species in the marsh

12647 (Watts, 1993).

12648

12649 Apart from conservation lands, much of the Upper Potomac shorefront is either beach

12650 and mudflat or is heavily developed. On the Virginia side, much of the Prince William

12651 County shoreline is developed with sandy beach (NOAA, 2005). On the Maryland side

12652 the beach at the Indian Head Naval Surface Warfare Center is likely to erode without

12653 nourishment, although plans are unclear. In developed parts of Maryland and D.C.,

12654 narrow shoreline areas are likely to erode in front of hard structures.

12655

12656 **F.1.4 Washington, D.C.**

12657 Elevations

- 12658 As Figure F.11 shows, the Potomac River originally covered the area occupied today by
- 12659 East Potomac Park, Hains Point, Washington Channel, the Tidal Basin, and the
- 12660 Reflecting Pool. The plan was to put the president's residence just northeast of the mouth
- 12661 of Tiber Creek, which was near what is now 17th and Constitution; thus the White House
- 12662 grounds originally had a tidal shoreline (Figure F.8). To improve navigation between
- 12663 Georgetown and Bladensburg, George Washington and Pierre L'Enfant envisioned what
- 12664 became the Washington City Canal from Tiber Creek to the approximate vicinity of what
- 12665 later became the Washington Navy Yard. The canal eventually ran east from the
- 12666 Potomac River along what is now Constitution Avenue, with a lock at 6th Street, and a
- 12667 connection to James Creek, which flowed into the Anacostia¹¹⁹.

¹¹⁹ For a brief history of the canal, see e.g. the web page for the Washington Canal Park: <u>http://www.washingtoncanalpark.org/history.html</u> (cited July 22, 2005).

Figure F.8 During the Presidency of John Tyler, the White House had waterfront property. Source:
 White House Historical Association (permission pending)
 White House Historical Association (permission pending)

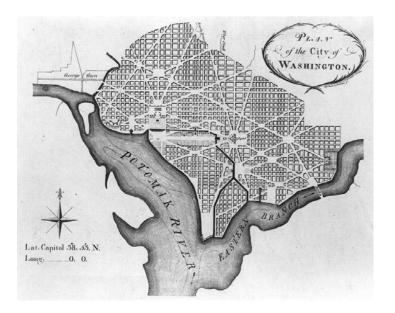
12672	The White House and especially the Capitol were built on high ground immune from
12673	flooding, but much of the land between the two was quite low (Figures F.9 and F.10).
12674	
12675	During the following decades, soil erosion from upstream farming led to the creation of
12676	wide mudflats below Georgetown. A large dredge-and-fill operation later excavated
12677	Washington Channel from the mudflats, and the extra material was used to create the
12678	shores of the Tidal Basin and the dry land on which the Lincoln Memorial, Jefferson
12679	Memorial, East Potomac Park, and Hains Point sit today (Bryan, 1914). These areas were
12680	bulkheaded from the start, because it was most efficient to construct a retaining wall and
12681	place material on one side of the wall. The canals were filled and replaced with drain

12682 pipes (see e.g. Farquhar, 2000).



Figure F.9 View of the City of Washington from Across the Anacostia River. The White House and
Capitol are on high ground. The Potomac River is in the rear ground on left and right sides. Source:
Library of Congress, "View of the City of Washington...from Arlington House..." Black and white
lithograph by Fitz Hugh Lane after P. Anderson. Published by T. Moore's Lithography, Boston.
Copyrighted 1838 by P. Anderson.

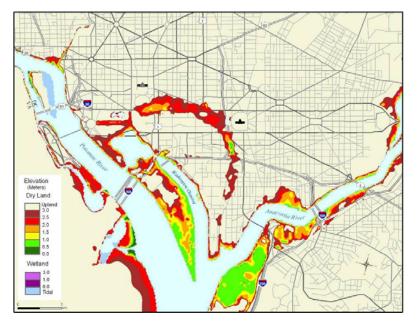
12690



- 12698 Figure F.12 shows lands close to sea level, based largely on topographic information
- 12699 provided by the District of Columbia. Within the downtown area, most of the lowest land
- 12700 is the area filled during the 1870s, such as Hains Point and the location of the former
- 12701 Tiber and James Creeks, as well as the Washington City Canal that joined them. The
- 12702 largest low area is the former Naval Air Station, now part of Bolling AFB, just south of
- 12703 the mouth of the Anacostia River. A dike protects this area. Most of the low land between
- 12704 I-295 and the Anacostia River was open water when the District of Columbia was
- 12705 originally planned (compare Figures F.11 and F.12). The District of Columbia has
- 12706 between 2.8 and 4.1 square kilometers of land below 1 meter, an area roughly half the
- 12707 size of Rock Creek Park (NPS, 2008).
- 12708

12709 Vulnerable Habitat

- 12710 The Upper Potomac River features a variety of sensitive wetland habitats potentially
- 12711 vulnerable to sea-level rise. Several major areas are managed for conservation or are the
- 12712 target of restoration efforts, making ultimate impacts uncertain.
- 12713
- 12714 The wetlands around the Anacostia River are an example. Local organizations have been
- 12715 working to reverse historical modifications and restore some of the wetlands around
- 12716 several heavily altered lakes. Restoration of the 32-acre Kenilworth Marsh was
- 12717 completed in 1993; restoration of the Kingman Lake marshes began in 2000 (USGS, date


12718	unknown). Other efforts to restore the river include conversion of some seawalls and
12719	bulkheads to woodland buffers. Given the planned buffers, marshes would be allowed to
12720	migrate in parts of Kingman Island; but shoreline armoring would also be required to
12721	protect the golf course. Monitoring of the restored habitats demonstrates that these
12722	marshes can be very productive. A recent survey identified 177 bird species in the
12723	marshes, including shorebirds, gulls, terns, passerines, and raptors as well as marsh
12724	nesting species such as marsh wren and swamp sparrow (Paul et al., 2004, p. 11).
12725	
12726	Roosevelt Island is another area where sea-level rise effects are uncertain. Fish in the
12727	Roosevelt Island marsh provide food for herons, egrets, and other marsh birds (NPS, not
12728	dated). The ability of the tidal marshes of the island to keep pace with sea-level rise will
12729	depend on the supply of sediment, and increased inundation of the swamp forest could
12730	result in crown dieback and tree mortality (Lippson and Lippson, 2006, p 218).
10701	

12732

Do Not Cite or Quote

- 12733 12734 Figure F.11 L'Enfant's Plan for the City of Washington.
 - Source: Library of Congress.

12737

12736

Figure F.12 Elevations of lands close to sea level in Washington, D.C.

12738

12739 F.1.5 Western Shore: Potomac River to Susquehanna River

- 12740 **Elevations**
- 12741 The Western Shore counties have relatively little low land, unlike the low counties across
- 12742 the Bay. As Figure F.13 shows, the Deal/Shady Side peninsula (Anne Arundel) and
- 12743 Aberdeen Proving Grounds (Harford) are the only areas with substantial amounts of land
- 12744 within 1 to 2 meters above spring high water. The block closest to the water, however, is
- 12745 similarly low in many of the older communities, including parts of Baltimore, downtown
- 12746 Annapolis, North Beach, and Chesapeake Beach.
- 12747

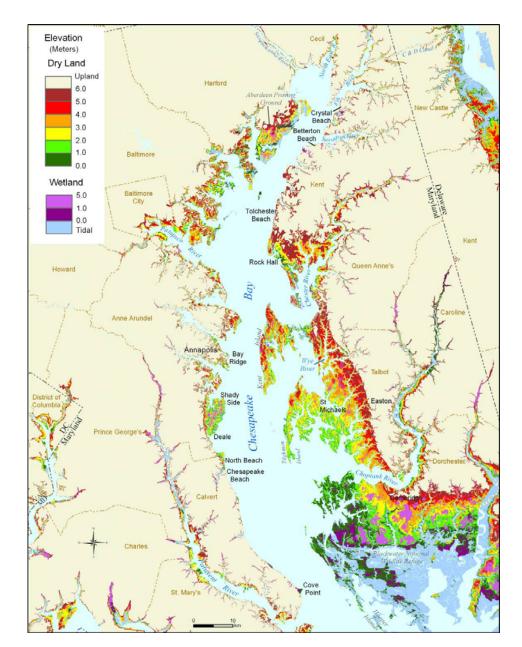
12748	Table F.4 suggests that the Maryland localities along the Western Shore (including the
12749	Patuxent River) have between 28 and 73 square kilometers of dry land within 1 meter
12750	above the tides. Most the low land is in Harford, Anne Arundel, and Baltimore Counties
12751	(all of whose planning departments provided EPA with local elevation data) ¹²⁰ . Hurricane
12752	Isabel flooded many areas between 1 and 3 meters above spring high water, including
12753	downtown Annapolis, North Beach, Chesapeake Beach, and Fells Point. (See box:
12754	Baltimore)
12755	
12756	Between the Potomac and the Patuxent Rivers, the bay shore is usually a sandy beach in
12757	front of a bank less than three meters high. Cliffs and bluffs up to 35 meters above the
12758	water dominate the shores of Calvert County. The shores north of Calvert County tend to
12759	be beaches — but these beaches become narrower as one proceeds north, where the wave
12760	climate is milder.
12760 12761	climate is milder.
	climate is milder. Vulnerable Habitat
12761	
12761 12762	Vulnerable Habitat
12761 12762 12763	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake
12761 12762 12763 12764	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is
12761 12762 12763 12764 12765	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is expected in many areas. Along the bay shorelines, marshes are expected to be marginal
12761 12762 12763 12764 12765 12766	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is expected in many areas. Along the bay shorelines, marshes are expected to be marginal with mid-range increases in sea-level rise, and to be lost with high-range increases in sea-
12761 12762 12763 12764 12765 12766 12767	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is expected in many areas. Along the bay shorelines, marshes are expected to be marginal with mid-range increases in sea-level rise, and to be lost with high-range increases in sea- level rise. The ability to migrate is likely to determine coastal marsh survival as well as
12761 12762 12763 12764 12765 12766 12767 12768	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is expected in many areas. Along the bay shorelines, marshes are expected to be marginal with mid-range increases in sea-level rise, and to be lost with high-range increases in sea- level rise. The ability to migrate is likely to determine coastal marsh survival as well as the survival of the crustaceans, mollusks, turtles, and birds that depend on the marshes. In
12761 12762 12763 12764 12765 12766 12767 12768 12769	Vulnerable Habitat A range of sea-level rise impacts are possible along the western shore of Chesapeake Bay, including potential loss of key habitats. First, partial or complete marsh loss is expected in many areas. Along the bay shorelines, marshes are expected to be marginal with mid-range increases in sea-level rise, and to be lost with high-range increases in sea- level rise. The ability to migrate is likely to determine coastal marsh survival as well as the survival of the crustaceans, mollusks, turtles, and birds that depend on the marshes. In upper reaches of tributaries, however, marsh accretion should be sufficient to counter sea-

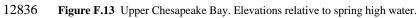
12771 •	In the upper Patuxent River, marsh areas have achieved minimal migration
12772	despite inundation. In the Jug Bay Sanctuary, marsh inundation is causing
12773	vegetation changes, compounding stress on local bird species (Shellenbarger
12774	Jones and Bosch, 2008b).
12775 •	Cove Point Marsh in Calvert County is a 150-acre freshwater, barrier-beach
12776	marsh. Numerous state-defined rare plant species are present, including American
12777	frog's-bit (Limnobium spongia), silver plumegrass (Erianthus alopecuroides),
12778	various ferns, and unique wetland communities (Steury, 2002, p 16 and 21), as
12779	well as populations of the Northeastern beach tiger beetle, the Puritan tiger beetle
12780	(both federally listed as threatened), and the rare leaf beetle <i>Glyptina maritima</i> .
12781	The marsh is continuing to migrate, but will soon hit the northern edge of local
12782	residential development.
12783 •	Saltwater intrusions may shift the fauna dependent on nontidal wetlands in Shady
12784	Side, particularly freshwater fish.
12785 •	The potential loss of the wide mudflats at Hart-Miller Island would eliminate
12786	major foraging and nesting areas for sandpipers, plovers, and terns, as well as
12787	several high conservation priority species such as the swamp sparrow (Melospiza
12788	georgiana), spotted sandpiper (Actitis macularia), and willow flycatcher
12789	(Empidonax traillii).
12790 •	Given the extent of development and shoreline armoring in Anne Arundel and
12791	Baltimore City/County, both intertidal areas and wetlands are likely to be lost
12792	with even a modest acceleration in sea level rise.
12793	

12794	Beach loss, particularly in St. Mary's, Calvert, and Anne Arundel counties along
12795	Chesapeake Bay, may occur in areas without nourishment. The widespread presence of
12796	shoreline protection can interfere with longshore transport and prevent inland retreat of
12797	beach areas. In general, beach loss will lead to habitat loss for resident insects (including
12798	the Northeastern beach tiger beetle, federally listed as threatened) and other invertebrates,
12799	as well as forage loss for larger predators such as shorebirds (Lippson and Lippson,
12800	2006) ¹²¹ .
12801	
12802	The Calvert County cliffs represent unique habitat that could be degraded by sea-level
12803	rise; however, the cliffs are not likely to be lost entirely. The Puritan tiger beetle and
12804	Northeastern beach tiger beetle, both federally listed, are present in the area. In particular,
12805	the Puritan tiger beetle depends on natural, moderate cliff erosion for habitat, both as
12806	larvae and as adults. While natural erosion processes are allowed to continue in the
12807	protected cliff areas in the southern portion of the county, shoreline protections in the
12808	more northern developed areas are increasing erosion rates (Wilcock et al., 1998). If
12809	erosion occurs at rates high enough to shear off areas to a depth below larvae burrows,
12810	Puritan tiger beetles could be eliminated. In addition, in the northern areas where the
12811	cliffs are stabilized, the rocky and sandy toes to the cliffs will be lost to inundation, along
12812	with the invertebrate community (e.g., burrowing amphipods and hermit crabs) that
12813	resides there.
12814	

¹²¹ For more detail on beach habitats and the species that occur in the mid-Atlantic region, see Shellenbarger Jones, 2008.

- 12815 Other effects on nearshore communities may be observed. In the upper Patuxent River,
- 12816 the spread of SAV more tolerant of deeper depths and higher turbidity (e.g., Hydrilla)
- 12817 may be accompanied by a decrease in larger fish, though its spread may be tempered by
- 12818 changes in salinity (Shellenbarger Jones, 2008).
- 12819


12820 F.1.6 Eastern Shore: Susquehanna River to Choptank River


12821 Elevations

- 12822 One hundred years ago, residents of the Baltimore-Washington-Annapolis area who
- 12823 wanted to go to the beach did not usually travel to Ocean City or Rehoboth on weekends.
- 12824 They went to bay beaches such as Bay Ridge (AAC, 2007) and resorts on the Eastern
- 12825 Shore such as Betterton Beach and Tolchester.

12826

- 12827 As Figure F.13 shows, the Eastern Shore above Rock Hall is dominated by bluffs and
- 12828 steep slopes rising to above 6 meters. Tolchester Beach, Betterton Beach, (Figures F.14
- 12829 to F.16) and Crystal Beach (Figure 4.9, Chapter 4) are typical in that regard. From Rock
- 12830 Hall south to around the middle of Kent Island, all of the land within a few kilometers of
- 12831 the Chesapeake Bay or its major tributaries is within 6 meters above spring high water;
- 12832 with some areas less than 3 meters above the tides. Between Kent Island and the
- 12833 Choptank River, large areas are less than 3 meters above the tides.

	Tidal 50 cm		1 meter		2 meters		3 meters		5 meters		
		Low	High	Low	High	Low	High	Low	High	Low	High
Locality		Cu	mulative	(total)	amount	of Dry	Land be	low a gi	ven elev	ation	
Prince George's		0.0	1.1	0.4	1.7	1.3	3.2	2.3	5.3	6.5	10.8
Charles		0.0	0.7	0.3	1.2	0.9	2.0	1.7	2.5	2.7	3.3
St. Mary's		0.8	3.8	2.5	8.0	8.8	18.8	18.2	30.6	38.5	48.4
Calvert		0.4	3.9	1.7	5.8	4.6	10.1	7.6	17.3	21.2	35.7
Anne Arundel		1.7	7.2	6.7	14.6	20.2	38.7	43.5	59.1	80.5	94.3
Howard		0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.3
Baltimore City		0.2	2.1	0.9	3.9	2.7	7.5	5.7	11.9	14.1	21.0
Baltimore		2.3	6.6	7.3	13.0	20.8	27.0	37.0	45.8	74.5	80.7
Harford		0.7	17.3	7.6	25.1	21.7	40.3	34.2	57.1	65.5	78.2
Total		6.1	42.7	27.5	73.4	81.1	147.8	150.3	229.7	303.7	372.7
		Cu	mulative	e (total)) amoun	t of wetl	ands bel	ow a giv	ven eleva	ation	
Prince George's	12.3	0.0	0.5	0.2	0.9	0.7	1.8	1.3	2.9	3.5	5.1
Charles	1.3	0.0	0.2	0.1	0.2	0.2	0.4	0.3	0.4	0.5	0.6
St. Mary's	7.0	0.3	1.0	0.8	2.0	2.2	3.9	3.9	5.9	7.5	8.8
Calvert	14.6	0.1	0.9	0.4	1.3	1.1	2.2	1.7	3.8	4.7	7.5
Anne Arundel	12.1	0.2	0.7	0.6	1.6	3.1	8.1	9.5	12.4	15.3	17.1
Howard	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.1
Baltimore City	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.1
Baltimore	10.5	0.1	0.3	0.3	0.7	1.0	1.3	1.5	1.7	2.2	2.3
Harford	29.4	0.2	2.5	1.2	3.8	3.3	6.2	5.2	9.0	10.2	12.0
Total	87.3	0.8	6.2	3.7	10.5	11.6	24.0	23.5	36.4	43.9	53.6
Dry and Nontidal wetland		7	49	31	84	93	172	174	266	348	426
All Land	87	94	136	119	171	180	259	261	353	435	514
Source: Titus and Cacela, 2008. Uncertainty Ranges Associated with EPA's Estimates of the Area of Land Close											
to Sea Level. Section 1.3 in: Background Documents Supporting Climate Change Science Program Synthesis and											
Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea-level Rise, J.G. Titus and E. Strange (eds.).											
EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the on the contour interval											
and/or stated root mean square error (RMSE) of the data used to calculate elevations. For more details, see											
Chapter 1.											

Table F.4 Low and high estimates for the area of dry and wet land close to sea level, Chesapeake Bay, Maryland Western Shore (square kilometers).

12837

12838 Vulnerable Habitat

- 12839 <u>Above Kent Island</u>. The environmental implications of sea-level rise effects in the upper
- 12840 Chesapeake Bay are likely to be relatively limited. The Susquehanna River provides a
- 12841 large (though variable) influx of sediment to upper Chesapeake Bay, as well as almost
- 12842 half of Chesapeake Bay's freshwater input (CBP, not dated). This sediment generally is
- 12843 retained above the Chesapeake Bay Bridge and provides material for accretion in the tidal
- 12844 wetlands of the region (CBP, 2002). The other Upper Chesapeake Bay tributaries

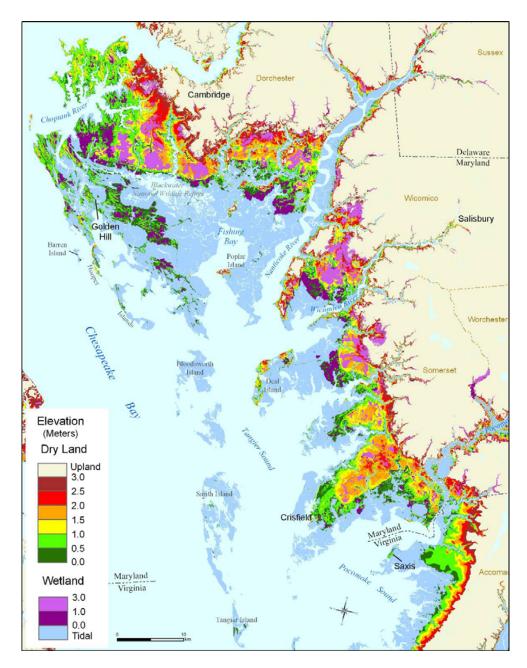
	aalaa
12846 sediment to maintain wetlands and their ecological function. As such, Upper Chesap	eake
12847 Bay will continue to provide spawning and nursery habitat for crabs and fish, as well	l as
12848 nesting and foraging habitat for migratory and residential birds, including bald eagle	es and
12849 large numbers of waterfowl. Likewise, while some of the beaches may require	
12850 nourishment for retention, the general lack of shoreline protections will minimize	
12851 interferences with longshore sediment transport. Hence, beaches are likely to remain	l
12852 intact throughout much of the region.	
12853	
12854 Two areas in the Upper Bay — Eastern Neck and Elk Neck — appear most vulneral	ole to
12855 sea-level rise effects. First, Eastern Neck Wildlife Refuge lies at the southern tip of	
12856 Maryland's Kent County. Ongoing shoreline protection efforts seek to reduce erosic	n of
12857 habitats supporting many migratory waterfowl and residential birds, as well as turtle	s,
12858 invertebrates, and the Delmarva fox squirrel (<i>Sciurus niger cinereus</i>), federally liste	d as
12859 endangered. In many marsh locations, stands of invasive <i>Phragmites australis</i> are th	e
12860 only areas retaining sediment (Shellenbarger Jones and Bosch, 2008c). Local manage	ers
12861 have observed <i>P. australis</i> migrating upland into forested areas as inundation at man	sh
12862 edges increases, although widespread marsh migration of other species has not been	
12863 observed (Shellenbarger Jones and Bosch, 2008c). The three-square bulrush marshe	s
12864 (<i>Scirpus americanus</i>) on Eastern Neck have been largely inundated, as have the blac	k
12865 needle rush marshes (Juncus roemerianus) on Smith Island and other locations, like	ly
12866 causes of reductions in black duck counts (Shellenbarger Jones and Bosch, 2008c).	

12867	Likewise, loss of upland to open water is decreasing habitat for bald eagle and the
12868	Delmarva fox squirrel.
12869	
12870	Other sea-level rise impacts are possible in Cecil County, in and around the Northeast
12871	and Elk Rivers. The headwaters of the rivers are tidal freshwater wetlands and tidal flats,
12872	spawning and nursery areas for striped bass and a nursery area for alewife (Alosa
12873	pseudoharengus), blueback herring (Alosa aestivalis), hickory shad (Alosa mediocris)
12874	and white perch, as well as a wintering and breeding area for waterfowl (USFWS, 1980).
12875	Accretion is expected to be sufficient in some areas due to the large sediment inputs in
12876	the Upper Bay. However, significant armoring in the developed headwaters could
12877	interfere with sediment transport. Where accretion rates are not sufficient, wetland
12878	migration would be difficult due to the upland elevation adjacent to the shorelines. These
12879	conditions increase the chances of large tidal fresh marsh losses.
12880	
12881	Other sensitive Cecil County habitats exist. The cliffs at Elk Neck State Park and the
12882	Sassafras River Natural Resource Management Area will be left to erode naturally. The
12883	cliff swallows and Puritan tiger beetle (federally listed as threatened) will continue to use
12884	the unique habitat. Around Grove Point, Puritan tiger beetle populations may be impacted
12885	because shoreline stabilization may result in loss of beach areas.
12886	
12887	Finally, marsh loss is possible in and around the Aberdeen Proving Ground in Harford
12888	County. The Proving Ground is primarily within 5 meters of sea level and contains a
12889	large concentration of tidal wetlands (20,000 acres). The prospects for future shore

12890	protection are poorly understood here, as well as along other secured installations along
12891	Chesapeake Bay and its tributaries. The wetlands may accrete sufficient sediment to
12892	meet moderate sea-level rise rates, but higher rates would result in loss of the tidal
12893	marshes and associated ecological functions. In particular, the large bird populations
12894	(e.g., bald eagles, great blue herons, double-crested cormorants) that migrate through and
12895	nest in these marshes would be affected (MD DNR, not dated).
12896	
12897	Kent Island to Choptank River. The central eastern shore region of Chesapeake Bay
12898	contains diverse habitats, and sea-level rise holds equally diverse implications, varying
12899	greatly between sub-regions. Large expanses of marsh and tidal flats are likely to be lost,
12900	affecting shellfish, fish, and waterfowl populations. Several subregions merit
12901	consideration:
12902	• The Chester River forms the northern border of Queen Anne's County. Marshes
12903	along the river will be marginal with moderate sea-level rise rate increases, and
12904	topography will preclude migration in many areas (Reed et al., 2008). Birds that
12905	breed or feed in the Chester River marshes (e.g., Virginia rail, American black
12906	duck, great blue and green herons, osprey) will be negatively affected by the
12907	habitat and prey loss (Robbins and Blom, 1996).
12908	• Large tidal flats exist at the mouth of the Chester River (Tiner, 1995). Unless
12909	sedimentation increases significantly tidal flats are likely to be inundated if sea-
12910	level rise accelerates. Loss of tidal flats may result in a decline in the resident
12911	invertebrates and fish that use the shallow waters as well as the birds that feed on
12912	the flats (e.g., great blue and green herons) (Shellenbarger Jones and Bosch,

12012	2009 d. Dalking and Plane 1006). Effects may extend to commencial and
12913	2008d; Robbins and Blom, 1996). Effects may extend to commercial and
12914	recreational fish species that spawn or feed in the area, including king and
12915	Spanish mackerel, cobia, red drum, flounder, and bluefish (NOAA, not dated).
12916	• The Eastern Bay side of nearby Kent Island has several tidal creeks, extensive
12917	tidal flats, and wetlands. If shores are protected in this area, the marshes and tidal
12918	flats are likely to be lost (although some marsh may convert to tidal flat).
12919	Increasing water depths are likely to reduce — and eventually eliminate — the
12920	remaining SAV (largely a mix of Ruppia maritima and Zannichellia palustris); a
12921	landward migration onto existing flats and marshes will depend on sediment type
12922	and choice of shoreline structure (Shellenbarger Jones and Bosch, 2008). The
12923	loss of tidal wetlands and probable loss of SAV would cause losses to fish and
12924	birds (see Chester River discussion). Additionally, large shellfish beds in Eastern
12925	Bay may be affected by the habitat changes, with uncertain consequences.
12926	• Portions of the Wye River shore are being developed. If these shores are
12927	protected and the marshes and tidal flats in these areas are lost, the juvenile fish
12928	nurseries will be affected and species that feed in the marshes and SAV (e.g.,
12929	wading birds, striped bass, blue gill, blue crabs, oysters, and soft-shell clams) will
12930	lose an important food source (MD DNR, 2004, p. 19).
12931	
12932	Certain key marsh areas are likely to be retained. The upper reaches of tributaries,
12933	including the Chester and Choptank rivers, are likely to retain current marshes and the
12934	associated ecological services. Likewise, Poplar Island will provide a large, isolated
12935	marsh and tidal flat area. In addition, the marshes of the Wye Island Natural Resource

Management Area support a large waterfowl population, with a wintering waterfowl
count of 20,000 birds such as mallard, canvasback, and ruddy ducks and Canada geese
(MD DNR, 2004, p 18). Maryland DNR will manage Wye Island to protect its biological
diversity and structural integrity, such that detrimental effects from sea-level rise
acceleration are minimized (MD DNR, 2004, p 12).
Beach loss is also possible in some areas. The Chesapeake Bay shore of Kent Island
historically had narrow sandy beaches with some pebbles along low bluffs, as well as
some wider beaches and dune areas (e.g., Terrapin Park). As development continues,
however, privately owned shores are gradually being replaced with stone revetments. The
beaches will be unable to migrate inland, leading to habitat loss for the various resident
invertebrates, including tiger beetles, sand fleas, and numerous crab species. Shorebirds
that rely on beaches for forage and nesting will face more limited resources (Lippson and
Lippson, 2006). Likewise, on the bay side of Tilghman Island, the high erosion rates will
tend to encourage shoreline protection measures, particularly following construction of
waterfront homes (MDNR, date unknown). Beach loss, combined with anticipated marsh
loss in the area, will eliminate the worms, snails, amphipods, sand fleas, and other
invertebrates that live in the beach and intertidal areas and reduce forage for their
predators (e.g., oystercatchers, sandpipers, plovers, and glossy ibises).


12958

12959

Figures F.14 to F.16 Tolchester. 1883-2003. F.14 shows the Tolchester resort as seen from a steamship docked at the end of the peer. F.15 shows the beach looking north during 1883, before the steamship pier was constructed. F.16 shows the same beach today. Also, see Chapter 4,Figure 4.9 for a picture of bluffs overlooking Crystal Beach.

12965

Do Not Cite or Quote

12967 Figure F.17 Lower Eastern Shore: Lands close to sea level.

Shore (square i		Tidal	50	cm	1 m	eter	2 me		3 me	ters	5 me	ters
			Low	High	Low	High	Low	High	Low	High	Low	High
Locality	State		C		ve (total) amour	t of Dry	Land b	elow a giv	ven elevat	ion	
Cecil	MD		0.2	2.5	1.0	5.2	3.7	11.6	7.8	20.0	24.3	37.9
Kent	MD		0.2	8.4	4.8	15.9	16.3	32.9	28.8	56.1	71.4	105.2
Queen Anne's	MD		0.6	4.1	5.3	11.9	24.2	35.0	51.6	68.2	125.2	142.6
Caroline	MD		0.7	3.2	2.2	6.1	6.9	12.5	13.2	19.7	25.9	32.9
Talbot	MD		2.2	7.8	11.1	23.7	64.0	98.7	148.7	175.1	265.6	279.4
Sussex	DE		0.5	1.6	1.4	3.3	4.3	7.1	8.5	13.8	26.0	36.3
Dorchester	MD		30.1	120.0	150.4	214.9	281.9	312.9	358.4	386.2	461.6	474.0
Wicomico	MD		5.0	14.9	18.3	28.6	47.1	58.5	76.0	86.2	133.2	141.6
Somerset	MD		17.1	58.4	70.5	100.7	167.8	193.4	215.1	232.5	326.5	344.6
Worcester	MD		0.7	2.7	3.1	5.8	10.6	16.5	23.6	28.4	46.1	53.4
Accomack	VA		5.8	18.4	16.8	40.4	53.3	87.5	94.2	110.4	129.5	138.1
Northampton	VA		2.3	7.2	6.5	15.8	20.8	34.5	39.9	62.8	98.7	123.7
Total			65.3	249.1	291.4	472.4	701.0	901.2	1065.8	1259.5	1734.0	1909.7
			(Cumulati	ive (tota	l) amoui	nt of wet	tlands be	low a giv	en elevati	ion	
Cecil	MD	12.6	0.0	0.2	0.0	0.7	0.4	1.7	1.2	2.8	3.5	5.5
Kent	MD	18.3	0.1	1.1	0.9	2.6	3.3	5.4	5.2	7.9	9.7	14.4
Queen Anne's	MD	21.4	0.2	1.1	1.5	3.0	4.9	6.5	7.9	9.6	14.6	17.9
Caroline	MD	14.4	0.3	1.4	0.7	2.6	2.5	5.3	4.4	7.5	8.0	11.7
Talbot	MD	26.1	0.1	0.3	0.5	1.0	2.5	4.2	6.8	8.5	17.9	19.6
Sussex	DE	6.7	0.6	1.8	1.6	2.7	3.1	4.4	4.8	6.4	10.1	13.1
Dorchester	MD	424.8	14.9	45.8	53.4	70.1	94.4	104.0	113.8	120.6	140.1	142.5
Wicomico	MD	67.0	5.4	9.9	10.7	13.5	24.2	29.2	37.0	44.4	67.0	70.2
Somerset	MD	265.4	6.6	15.7	17.3	21.3	34.8	39.8	45.1	51.5	80.6	90.1
Worcester	MD	23.7	0.3	0.9	1.0	1.6	2.7	4.0	6.3	8.8	18.2	20.8
Accomack	VA	156.4	5.3	16.7	15.3	34.6	44.8	71.8	76.5	88.2	103.2	111.1
Northampton	VA	25.5	0.1	0.4	0.4	1.2	1.9	3.7	4.2	6.2	8.8	10.1
Total		1062.4	33.8	95.3	103.3	155.0	219.5	279.9	313.0	362.4	481.7	526.9
Dry and Nontida	al											
wetland			99	344	395	627	921	1181	1379	1622	2216	2437
		1062	1162	1407	1457	1690	1983	2244	2441	2684	3278	3499
Source: Titus and Cacela, 2008. Uncertainty Ranges Associated with EPA's Estimates of the Area of Land Close to												
Sea Level. Section 1.3 in: Background Documents Supporting Climate Change Science Program Synthesis and												
Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea-level Rise, J.G. Titus and E. Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the on the contour interval and/or												
stated root mean square error (RMSE) of the data used to calculate elevations. For more details, see Chapter 1.												
simea root mou	quant										- Junp tor	

 Table F.5 Low and high estimates for the area of dry and wet land close to sea level, Chesapeake Bay Eastern

 Shore (square kilometers).

12968

12969	
12970	F.1.7 The Lower Eastern Shore: Choptank River to Cape Charles
12971	Between the Choptank River and Ocohannock Creek along the eastern shore of
12972	Chesapeake Bay lies the nation's fifth largest concentration of land close to sea level (see
12973	Figure F.17). These four counties have approximately 256 to 385 square kilometers of
12974	dry land within 1 meter above the tides (see Table F.5). Water levels in roadside ditches
12975	rise and fall with the tides in the areas west of Golden Hill in Dorchester County and
12976	several necks in Somerset County. Many farms abut tidal wetlands, which are gradually
12977	encroaching onto those farms. Some landowners have responded by inserting makeshift
12978	tide gates over culverts, decreasing their own flooding but increasing it elsewhere.
12979	Throughout Hoopers Island, as well as the mainland nearby, one finds numerous
12980	abandoned driveways that once led to a home but are now ridges flooded at high tide,
12981	surrounded by low marsh or open water more recently abandoned homes surrounded by
12982	marsh, and dead trees still standing in areas where marsh has invaded a forest.
12983	
12984	Elevations
12985	Approximately halfway between Crisfield on the Eastern Shore and the mouth of the
12986	Potomac River on the Western Shore, are the last two inhabited islands in Chesapeake
12987	Bay unconnected by bridges to the mainland: Smith (Maryland) and Tangier (Virginia).
12988	Both islands are entirely below the USGS 5-foot contour.
12080	

- 12990 Along the eastern shore of Northampton County, by contrast, elevations are higher, often
- 12991 with bluffs of a few meters. Nevertheless, several blocks of homes in the Town of Cape
- 12992 Charles are within 2 meters above spring high water.
- 12993

12994 Vulnerable Habitat

- 12995 On the lower Eastern Shore of Chesapeake Bay in Maryland, habitats vulnerable to sea-12996 level rise are diverse and include beaches, various types of tidal marsh, nontidal marshes,
- 12997 and upland pine forests.
- 12998

12999	Narrow sandy beaches exist along discrete segments of shoreline throughout the region,
13000	particularly in Somerset County. Given the gradual slope of the shoreline, these habitats
13001	could accommodate moderate sea-level rise by migrating upslope, assuming no armoring
13002	or other barriers exist. Many of the beaches provide critical nesting habitat for the
13003	diamondback terrapin (Malaclemys terrapin), and proximity of these nesting beaches to
13004	nearby marshes provides habitat for new hatchlings. Maryland lists the terrapin as a
13005	Species of Concern and it is protected across much of its geographic range (although it is
13006	commercially and recreationally harvested for food in Maryland). Because of increasing
13007	shoreline protection in areas to the north, the lower Eastern Shore region is responsible
13008	for supporting a growing portion of the diamondback terrapin population (Schweizer and
13009	Henry, 2004). Erosion control and shoreline stabilizing practices block access to the
13010	beach, forcing females to travel around the obstructions, or to deposit their eggs below
13011	the high tide line. Loss of prime nesting beaches remains a major threat to the
13012	diamondback terrapin population in Chesapeake Bay (see text box) (MD DTTF, 2001).

13013	
13014	Of the 87,000 hectares of tidal marsh in the Chesapeake Bay, a majority is located in the
13015	three-county lower Eastern Shore region (Darmondy and Foss, 1979). The marshes are
13016	critical nursery grounds for commercially important fisheries (e.g., crabs and rockfish);
13017	critical feeding grounds for migratory waterfowl; and home to furbearers (e.g., muskrat
13018	and nutria). Tidal marshes will persist as sea level rises so long as they build vertically
13019	through accumulation of mineral and/or organic matter and as long as there are no
13020	shoreline barriers to migration ¹²² . The ability to build vertically in response to sea-level
13021	rise differs among the three tidal marsh types:
13022	• Submerged Upland Tidal Marsh: Submerged upland tidal marsh is the
13023	predominant marsh type in the lower Eastern Shore region, with the majority
13024	located in Dorchester and Somerset counties (Darmondy and Foss, 1979). The
13025	drainage system in these marshes is poor, and limited tidal exchange and sediment
13026	influx means that vertical marsh development occurs primarily through the
13027	accumulation of plant organic matter. As a result, accretion rates in these marshes
13028	are typically less than the rate of sea-level rise (Stevenson and Kearney, 2001). In
13029	addition, studies in Blackwater NWR demonstrate that local land surface
13030	adjustments (e.g., from groundwater withdrawal) can effectively increase sea-
13031	level rise, leading to more severe wetland loss (Stevenson et al., 2001). The
13032	accretion deficits in these marshes lead not only to decreased marsh area and
13033	increased open water, but also to a change in the proportion of high and low
13034	marsh habitats.

122 Barriers to transgression are relatively few in Dorchester and Wicomico counties, being mostly associated with developed shorelines in the vicinity of towns and cities, although eroding shorelines on marsh islands are being more frequently stabilized to slow island loss (Kearney and Stevenson, 1991).

13035	• Estua	arine Meander Tidal Marsh: In estuarine meander tidal marshes, the dominant
13036	vege	tation consists of cattails (Typha spp.), Spartina cynosuroides, and pickerel
13037	weed	d (Pontederia cordata), while more saline areas consist of the same species
13038	found	d in submerged upland marshes (e.g., Scirpus olneyi, Spartina patens, and
13039	Spar	tina alterniflora). These marshes have better drainage and a greater influx of
13040	mine	ral sediments, especially during extreme high tides when the entire marsh
13041	surfa	ce is inundated with sediment-laden river waters. Accretion rates typically
13042	exce	ed the rate of sea-level rise (Kearney and Ward, 1986); therefore, these
13043	mars	hes are more capable of surviving future sea-level rise than submerged
13044	uplar	nd marshes, and will migrate upriver as sea level rises.
13045	• Fresh	nwater Tidal Marsh: Accretion rates in freshwater tidal marshes are relatively
13046	high	because of the abundant source of riverine sediment (Kearney et al., 1988).
13047	Thes	e marshes will tolerate the greatest increases in the rate of sea-level rise.
13048	How	ever, the areal extent of tidal freshwater marshes will decrease once the
13049	entire	e river is influenced by tides and the turbidity maxima continue to migrate up
13050	the e	stuary. Salt water will intrude into the lower reaches of the tidal freshwater
13051	mars	h zone, and that marsh will likely convert to estuarine marsh.
13052		
13053	Freshwater r	iparian wetlands and swamps exist beyond the extent of tidal influence, in
13054	the upper rea	aches of the rivers. These habitats have unique ecological value for a wide
13055	array of plan	at and animal species, and function as freshwater reservoirs through the
13056	interaction o	f groundwater discharge/recharge processes and surface runoff. As sea level

- 13057 rises, tidal influences, and eventually salt water, will intrude into these habitats and
- 13058 convert them to tidal and estuarine habitats.

13060	As submerged upland marshes migrate upslope, they encroach upon pine forests located
13061	immediately inland, causing inundation, saturation, and salinization of forest soils, and
13062	eventually tree mortality. For example, in the Beaverdam Creek area of Blackwater
13063	NWR, tidal marsh has transgressed > 100 m into the pine forest since about 1940, where
13064	trees of the leading edge of the forest are dead and decomposing (Guntenspergen and
13065	Cahoon, 2005). This forested area is habitat for the Federally endangered Delmarva Fox
13066	Squirrel.
13067	
13068	Areas of Virginia's Eastern Shore are uniquely vulnerable to sea-level rise. Large
13069	portions of Northampton and Accomack counties (184.8 and 208.2 square miles,
13070	respectively) lie near sea level (Titus and Wang, 2008). Because most of the land in the
13071	two counties is undeveloped or agricultural, the area also has a high potential for wetland
13072	creation relative to other Virginia shorelines.
13073	
13074	Most notably, the bay side of northern Accomack County is primarily tidal salt marsh,
13075	with low-lying lands (less than 2 feet above the wetlands) extending several miles inland.
13076	The county as a whole contains nearly a fifth of the state's dry land within 2 feet of mean
13077	spring high water. (Titus and Cacela 2008). Unprotected marshes are already migrating
13078	inland in response to sea-level rise, creating new wetlands in agricultural areas at a rate of
13079	40 acres per year. Given the anticipated lack of shoreline protection and insufficient

13080	sediment input, the seaward boundaries of these tidal wetlands are likely to continue
13081	retreating (Reed et al., 2008). The upland elevations are higher in southern than northern
13082	Accomack County (see Figure E.2), however, making wetland migration more difficult.
13083	
13084	The salt marshes of Accomack County support a variety of species, including rare bird
13085	species such as the seaside sparrow, sharp-tailed sparrow, and peregrine falcon (VA
13086	DCR, date unknown). Growth and survival of these species may be reduced where shores
13087	are hardened, unless alternative suitable habitat is available nearby. Furthermore, long-
13088	term tidal flooding will decrease the ability of nekton (i.e., free-swimming finfish and
13089	decapod crustaceans such as shrimps and crabs) to access coastal marshes. As the
13090	accessible area declines, a decrease in nekton production may occur.
13091	
13091 13092	The bay side of Northampton County is most notable for its beach/dune systems,
	The bay side of Northampton County is most notable for its beach/dune systems, including some wide sandy beaches near the town of Cape Charles (Varnell and
13092	
13092 13093	including some wide sandy beaches near the town of Cape Charles (Varnell and
13092 13093 13094	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand
13092 13093 13094 13095	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand accretion (such as the mouths of tidal creeks), in front of older dune features (such as
13092 13093 13094 13095 13096	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand accretion (such as the mouths of tidal creeks), in front of older dune features (such as washovers or spits), and against structures like jetties and groins (Hardaway <i>et al.</i> , 2004).
13092 13093 13094 13095 13096 13097	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand accretion (such as the mouths of tidal creeks), in front of older dune features (such as washovers or spits), and against structures like jetties and groins (Hardaway <i>et al.</i> , 2004). Beach nourishment to protect public beaches is likely. The beaches and associated
13092 13093 13094 13095 13096 13097 13098	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand accretion (such as the mouths of tidal creeks), in front of older dune features (such as washovers or spits), and against structures like jetties and groins (Hardaway <i>et al.</i> , 2004). Beach nourishment to protect public beaches is likely. The beaches and associated maritime forests provide habitat for a variety of species, most notably neo-tropical
13092 13093 13094 13095 13096 13097 13098 13099	including some wide sandy beaches near the town of Cape Charles (Varnell and Hardaway, 2005). Estuarine beach/dune systems occur in areas of stability and sand accretion (such as the mouths of tidal creeks), in front of older dune features (such as washovers or spits), and against structures like jetties and groins (Hardaway <i>et al.</i> , 2004). Beach nourishment to protect public beaches is likely. The beaches and associated maritime forests provide habitat for a variety of species, most notably neo-tropical songbirds and the federally listed threatened northeastern beach tiger beetle (Varnell and

13103	F.2 BAYWIDE POLICY CONTEXT
13104	Chesapeake Bay's watershed has tidal shores in Virginia, Maryland, the District of
13105	Columbia, and Delaware. Because the shores of the District and Delaware account for a
13106	small portion of the total, the policy context depends primarily on Virginia and Maryland
13107	This section focuses mainly on the coastal policies of these two states that focus on the
13108	Bay, but we also include some policies that apply to both ocean and bay.
13109	
13110	Coastal management officials of Maryland have cooperated with EPA since the 1980s in
13111	efforts to learn the ramifications of accelerated sea-level rise for their activities (AP,
13112	1985). Increased erosion from sea-level rise was one of the factors cited for the state's
13113	decision in 1985 to shift its erosion control strategy at Ocean City from groins to beach
13114	nourishment (AP, 1985). The state also developed a planning document for rising sea
13115	level (Johnson, 2000), and sea-level rise was a key factor motivating Maryland to become
13116	the second mid-Atlantic state to obtain LIDAR elevation data for the entire coastal
13117	floodplain.
13118	
13119	Neither Maryland nor Virginia has adopted an explicit policy to address the consequences
13120	of rising sea level. Nevertheless, the policies designed to protect wetlands, beaches, and
13121	private shorefront property are collectively an implicit policy. Both states prevent new
13122	buildings within 100 feet of most tidal shores; Maryland also limits the density of new
13123	development in most areas to one home per 20 acres within 1,000 feet (300 meters) of the
13124	shore. Virginia allows most forms of shore protection. Maryland encourages shore

13125	protection ¹²³ , but discourages new bulkheads in favor of revetments or nonstructural
13126	measures (MD DNR, 2006a). Both states have programs to inform property owners of
13127	nonstructural options, although obtaining permits for structural options is easier (NRC,
13128	2007; Johnson and Luscher, 2004). Both states work with the federal government to
13129	obtain federal funds for beach nourishment along their respective ocean resorts (Ocean
13130	City and Virginia Beach); Virginia also assists local governments in efforts to nourish
13131	public beaches along Chesapeake Bay and its tributaries. Summaries of these land use,
13132	wetlands, and beach nourishment policies follow.
13133	
13134	F.2.1 Land use
13135	The primary state policies related to land use are Maryland's Chesapeake Bay Critical
13136	Area Protection Act, Virginia's Chesapeake Bay Preservation Act, and Virginia's Coastal
13137	Primary Sand Dunes & Beaches Act.
13138	
13139	Maryland Chesapeake Bay Critical Area Protection Act. The Maryland General
13140	Assembly enacted the Chesapeake Bay Critical Area Protection Act in 1984 to reverse
13141	the deterioration of the Bay^{124} . The law seeks to control development in the coastal zone
13142	and preserve a healthy Bay ecosystem. The jurisdictional boundary of the Critical Area
13143	includes all waters of Chesapeake Bay, adjacent wetlands ¹²⁵ , dry land within 1,000 feet

124 Chesapeake Bay Critical Areas Protection Act, Maryland Code Natural Resources §8-1807. 125 I.e. all state and private wetlands designated under Natural Resources Article, Title 9 (now Title 16 of

¹²³ Code of Maryland Regulations§ 27.01.04.02.02-03

the Environment Article).

13144	of open water ¹²⁶ , and in some cases dry land within 1,000 feet inland of wetlands that are
13145	hydraulically connected to the Bay ¹²⁷ .

13147	The act created a Critical	Areas Commission to set	t criteria and approve	local plans ¹²⁸ .
			·	

- 13148 The commission recognizes three land use management sub-districts within the Critical
- 13149 Area: intensely developed areas (IDAs), limited development areas (LDAs), and resource
- 13150 conservation areas (RCAs)¹²⁹. Within the RCAs, new development is limited to an
- 13151 average density of one home per 20 acres¹³⁰, and the regulations encourage communities
- 13152 to "consider cluster development, transfer of development rights, maximum lot size
- 13153 provisions, and/or additional means to maintain the land area necessary to support the
- 13154 protective uses"¹³¹ The program limits future intense development activities to lands
- 13155 within the IDAs, and permits some additional low-intensity development in the LDAs.
- 13156 However, the statute allows up to 5% of the RCAs in a county to be converted to an
- 13157 IDA¹³².
- 13158
- 13159 The three categories were originally delineated based on the land uses of 1985. Areas that
- 13160 were dominated by either agriculture, forest, or other open space, as well as residential
- 13161 areas with densities less than 1 home in 5 acres, were defined as $RCAs^{133}$. Thus, the
- 13162 greatest preservation occurs in the areas that had little development when the act was

- 129 Code of Maryland Regulations §27.01.02.02(A).
- 130 Code of Maryland Regulations §27.01.02.05(C)(4).
- 131 Code of Maryland Regulations §27.01.02.05(C)(4).

¹²⁶ Maryland Code Natural Resources §8-1807(c)(1)(i)(2).

¹²⁷ Lands more than 1000 feet from open water may be excluded if and only if highly functional wetlands are between the land and the open water. Maryland Code Natural Resources \$-1807(c)(1)(i)(2) and \$-1807(a)(2).

¹²⁸ Maryland Code Natural Resources §8-1808.

¹³² Code of Maryland Regulations \$27.01.02.06.

¹³³ Code of Maryland Regulations §27.01.02.05.

- 13163 passed, typically lands that are far from population centers and major transportation
- 13164 corridors particularly along tributaries (as opposed to the Bay itself).

- 13166 The Critical Areas Program also established a 100-foot natural buffer adjacent to tidal
- 13167 waters¹³⁴. No new development activities, with the exception of those supporting water-
- 13168 dependent facilities, are allowed within the buffer¹³⁵. By limiting development in the
- 13169 buffer, the program prevents additional infrastructure from being located in the areas
- 13170 most vulnerable to sea-level rise. In some cases, the 100-foot buffer provides a first line
- 13171 of defense against coastal erosion and flooding induced by sea-level rise. But the
- 13172 regulations also encourage property owners to halt shore erosion¹³⁶. Nonstructural
- 13173 measures are preferred, followed by structural measures¹³⁷, with an eroding shore the
- 13174 least preferable (Titus, 1998).
- 13175
- 13176 Virginia Chesapeake Bay Preservation Act. The Chesapeake Bay Preservation Act¹³⁸
- 13177 seeks to limit runoff into the Bay by creating a class of land known as Chesapeake Bay
- 13178 Preservation Areas. The act also created the Chesapeake Bay Local Assistance Board to
- 13179 implement¹³⁹ and enforce¹⁴⁰ its provisions. Although the act defers most site-specific
- 13180 development decisions to local governments¹⁴¹, it lays out the broad framework for the

135 Code of Maryland Regulations §27.01.00.01 (C)(2).

¹³⁴ Code of Maryland Regulations §27.01.00.01 (C)(1).

¹³⁶ Code of Maryland Regulations 27.01.04.02. 02 137 Code of Maryland Regulations 27.01.04.02. 03.

¹³⁷ Code of Maryland Regulations 27.01.04.02. 03. 138 Code VA \$10.1-2100 et seq. As of August 8, 2003, the Act was posted on the Virginia Legislative

Information System website as part of the Code of Virginia at: <u>http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+TOC1001000002100000000000</u>. 139 Code VA §10.1-2102.

¹⁴⁰ Code VA §10.1-2102.

¹⁴¹ Code VA §10.1-2104.

¹⁴¹ Code VA §10.1-210)

- 13181 preservation areas¹⁴² and provides the Board with rulemaking authority to set overall
- 13182 criteria¹⁴³. The Board has issued regulations¹⁴⁴ defining the programs that local
- 13183 governments must develop to comply with the act^{145} .
- 13184
- 13185 All localities must create maps that define the locations of the preservation areas, which
- 13186 are subdivided into resource management areas¹⁴⁶ and resource protection areas
- 13187 (RPAs)¹⁴⁷. RPAs include areas flooded by the tides, as well as a 100-foot buffer inland of
- 13188 the tidal shores and wetlands¹⁴⁸. Within the buffer, development is generally limited to
- 13189 water dependent uses, redevelopment, and some water management facilities. Roads may
- 13190 be allowed if there is no practical alternative. Similarly, for lots subdivided before 2002,
- 13191 new buildings may encroach into the 100-foot buffer if necessary to preserve the owner's
- right to build; but any building must still be at least 50 feet from the shore¹⁴⁹. Property
- 13193 owners, however, may still construct shoreline defense structures within the RPA. The
- 13194 type of shoreline defense installed is not regulated (beyond certain engineering
- 13195 considerations). Consequently, hard structures can be installed anywhere along Virginia's
- 13196 shoreline.
- 13197

¹⁴² Code VA §10.1-2107(B).

¹⁴³ Code VA §10.1-2107(A).

¹⁴⁴ Chesapeake Bay Preservation Area Designation and Management Regulations (9 VAC 10-20-10 et. seq.).

^{145 9} Virginia Administrative Code §10-20-50.

¹⁴⁶ The act also provides for Resource Management Areas (RMAs) which are lands that, if improperly used or developed, have the potential to diminish the functional value of RPAs. Finally, areas in which development is concentrated or redevelopment efforts are taking place may be designated as Intensely Developed Areas (IDAs) and become subject to certain performance criteria for redevelopment. Private landowners are free to develop IDA and RMA lands, but must undergo a permitting process as well to prove that these actions will not harm the RPAs.

^{147 9} Virginia Administrative Code §10-20-70.

^{148 9} Virginia Administrative Code §10-20-80 (B).

^{149 9} Virginia Administrative Code §10-20-130 (4).

13198	Virginia Coastal Primary Sand Dunes & Beaches Act. Virginia's Dunes and Beaches Act
13199	preserves and protects coastal primary sand dunes while accommodating shoreline
13200	development. The act identifies eight counties and cities that can adopt a coastal primary
13201	sand dune zoning ordinance, somewhat analogous to a Tidal Wetlands ordinance:
13202	Accomack, Northampton, Virginia Beach, Norfolk, Hampton, Mathews, Lancaster, and
13203	Northumberland (Hardaway et al., 2001); all but Hampton and Accomack have done so.
13204	The act defines beaches as (1) the shoreline zone of unconsolidated sandy material; (2)
13205	the land extending from mean low water landward to a marked change in material
13206	composition or in physiographic form (for example, a dune, marsh, or bluff); and (3) if a
13207	marked change does not occur, then a line of woody vegetation or the nearest seawall,
13208	revetment, bulkhead or other similar structure.
13209	
13210	F.2.2 Wetlands and erosion control permits
13211	Virginia. The Tidal Wetlands Act seeks to "preserve and prevent the despoliation and
13212	destruction of wetlands while accommodating necessary economic development in a
13213	manner consistent with wetlands preservation" (VA Code 28.2-1302). It provides for a
13214	Wetlands Zoning ordinance that any county, city, or town in Virginia may adopt to
13215	regulate the use and development of local wetlands. Under the ordinance, localities create
13216	a wetlands board consisting of five to seven citizen volunteers. The jurisdiction of these
13217	local boards extends from mean low water (the Marine Resources Commission has
13218	jurisdiction over bottom lands seaward of mean low water) to mean high water where no
13219	emergent vegetation exists, and slightly above spring high water ¹⁵⁰ where marsh is

 $^{150\ {\}rm The}\ {\rm Act}\ {\rm grants}\ {\rm jurisdiction}\ {\rm to}\ {\rm an}\ {\rm elevation}\ {\rm equal}\ {\rm to}\ 1.5\ {\rm times}\ {\rm the}\ {\rm mean}\ {\rm tide}\ {\rm range},\ {\rm above}\ {\rm mean}\ {\rm low}\ {\rm water}.$

- 13220 present. The board grants or denies permits for shoreline alterations within their
- 13221 jurisdiction (Trono, 2003).

13223	The Virginia Marine Resources Commission has jurisdiction over the permitting of
13224	projects within state-owned subaqueous lands. It also must " promulgate and
13225	periodically update guidelines which scientifically evaluate vegetated and non-vegetated
13226	wetlands by type and describe the consequences of use of these wetlands types" (Section
13227	28.2-1301). The commission has guidelines for wetlands, subaqueous lands, and coastal
13228	primary sand dunes and beaches. The commission has also published a pamphlet of best
13229	management practices for shoreline development that might affect wetlands, beaches, and
13230	subaqueous lands. The commission also reviews proposed projects in localities that have
13231	no local Wetlands Board by virtue of not having adopted a Wetland Zoning ordinance.
13232	
13233	The Virginia Coastal Program's web page recently posted a fairly detailed analysis of the
13234	process for issuing permits for erosion control structures (Trono, 2003), which is
13235	designed to avoid destruction of wetlands or other adverse environmental impacts. The
13236	focus of the regulations and the review processes, however, is on avoiding immediate
13237	damage to the environment. The long-term impact on the environment from preventing
13238	the landward migration of tidal habitats is not considered.
13239	
13240	Maryland. The Wetlands and Riparian Rights Act151 gives the owner of land bounding
13241	on navigable water the right to protect their property from the effects of shore erosion.

 13242
 For example, property owners who erect an erosion control structure in Maryland can

 151 Maryland Environmental Code §16-101 to §16-503.

- 13243 obtain a permit to fill vegetated wetlands 152 and fill beaches and tidal waters up to 10
- 13244 feet seaward of mean high water 153. In addition, Maryland's statute allows anyone
- 13245 whose property has eroded to fill wetlands and other tidal waters to reclaim any land that
- 13246 the owner has lost since the early 1970s154. (The Corps of Engineers has delegated most
- 13247 wetland permit approval to the state155.) The state encourages the "living shorelines"
- 13248 approach to halting erosion (e.g., marsh planting and beach nourishment) over hard
- 13249 structures and revetments over bulkheads156. Few new bulkheads are built for erosion
- 13250 control, and existing bulkheads are often replaced with revetments.
- 13251
- 13252 Shore protection structures tend to be initially constructed landward of mean high water,
- 13253 but neither the state of Virginia nor Maryland¹⁵⁷ requires their removal once the shore
- 13254 erodes to the point where the structures are flooded by the tides. Nor has either state
- 13255 prevented construction of replacement bulkheads within state waters, although Maryland
- 13256 encourages revetments.
- 13257

13258 F.2.3 Beach nourishment and other shore protection activities

- 13259 Virginia. Until 2003, the Board on Conservation and Development of Public Beaches
- 13260 promoted maintenance, access, and development along the public beaches of Virginia.

156 Maryland General Permit at 56, section IV(A)(1)(g).

¹⁵² See MD. CODE ANN., ENVIR. § 16-201 (1996); Maryland General Permit, previous note, app. at I-24, I-31. Along sheltered waters, the state encourages property owners to control erosion by planting vegetation. For this purpose, one can fill up to 35 feet seaward of mean high water. See MD. CODE ANN., ENVIR. § 16-202(a)(3)(iii) (Supp. 1997). Along Chesapeake Bay and other waters with significant waves, hard structures are generally employed.

¹⁵³ MD. CODE ANN., ENVIR. § 16-202(a)(2).

¹⁵⁴ MD. CODE ANN., ENVIR. § 16-201.

¹⁵⁵ See Baltimore Dist., U.S. Army Corps of Engineers, Dep't of the Army, Maryland State Programmatic General Permit §§ 1-5 (May 6, 1996) [hereinafter Maryland General Permit].

¹⁵⁷ The Maryland/Virginia border along the Potomac River is the low water mark. Courts have not ruled whether Maryland or Virginia environmental rules would govern a structure in Maryland waters attached to Virginia land.

13261	The largest beach nourishment projects have been along the 13 miles of public beach
13262	along the Atlantic Ocean in Virginia Beach. Annual fill projects have added 200,000 to
13263	300,000 cubic yards of land along the shore between 1st and 59th Streets (VA PBB,
13264	2000). A \$100 million Hurricane Project was completed in 2001, including both a
13265	seawall and a major sand replenishment project. During the last 50 years, the State has
13266	provided 3% of the funding for beach nourishment at Virginia Beach, with the local and
13267	federal shares being 67% and 30% respectively (VA PBB, 2000).
13268	
13269	Virginia has made a greater effort than Maryland to promote beach nourishment (and
13270	public use of beaches) along Chesapeake Bay and its tributaries. Norfolk's four guarded
13271	beaches serve 160,000 visitors each summer (VA PBB, 2000). When shore erosion
13272	threatened property, the tourist economy, and local recreation, the Beach Board helped
13273	the city construct a series of breakwaters with beachfill and a terminal groin at a cost of
13274	\$5 million (VA PBB, 2000). Across the James River, the City of Newport News and the
13275	Beach Board split the cost of a \$1 million beach restoration project at Anderson Park,
13276	Huntington Park, and King-Lincoln Beach Park. The City of Hampton's Buckroe Beach
13277	along Chesapeake Bay has had severe erosion problems. Throughout the Board's
13278	lifetime, it provided \$1.3 million for headland breakwaters and beach nourishment.
13279	Immediately to the north at the Salt Ponds public beach, the Beach Board funded a
13280	geotube project with a small amount of sand covering the tubes. More recently, the Beach
13281	Board provided \$300,000 for a breakwater and beach nourishment project along the
13282	public beach of the Town of Cape Charles on the Eastern Shore. Along the Potomac
13283	River, the Beach Board supported efforts by the Town of Colonial Beach to maintain its

13284	beach with a combination breakwater and beachfill project, contributing \$274,000 to this
13285	effort. Farther up the river at Aquia Landing in Stafford County, the Board provided
13286	\$235,000 and technical support for a headland breakwater system and beachfill project.
13287	The Board has also supported beach restoration efforts along the York River.
13288	
13289	Maryland's primary effort to protect shores along the Bay is through the Department of
13290	Natural Resource's Shore Erosion Control Program. The program provides both financial
13291	and technical assistance to Maryland property owners to resolve erosion problems
13292	through both structural and nonstructural shore erosion control projects. The state
13293	program has focused on nonstructural projects using bioengineering methods for
13294	shoreline restoration.
13295	
13296	Although beach nourishment has historically been less common along Maryland's bay
13297	shores than those of Virginia, the Department of Natural Resources has been involved in
13298	several small-scale beach restoration efforts. The most significant beach nourishment
13299	project along the Bay has been a small recreational beach at North Beach (which despite
13300	its name has replaced most of the beach with a boardwalk and revetment). Many parks
13301	and small recreational communities have also received beach nourishment, including
13302	Sandy Point, and Point Lookout state parks on the western shore, the historic resort
13303	community of Bay Ridge, Terrapin Beach State Park, and Clairborne Landing and the
13304	Choptank River Fishing Pier in Talbot County.
13305	

13306	The state has also used dredge spoils to restore Poplar and Smith islands. The Maryland
13307	Port Administration's Poplar Island Restoration Project is using dredge materials from
13308	the Port of Baltimore to restore the island to its approximate footprint in the mid-1800s
13309	(USACE, 2005). The Port and the Corps of Engineers are currently working at Smith
13310	Island to combat erosion through a program to place dredged material on portions of the
13311	island (USACE, 2001). Preliminary examinations are under way to see if dredged
13312	materials can be used to restore other Chesapeake Bay islands such as James and Barren
13313	Islands (Federal Register, 2006), or to protect valuable environmental resources such as
13314	the eroding lands of the USFWS Blackwater National Wildlife Refuge (USACE, 2005
13315	and USFWS, 2008).
13316	
13317	The preceding discussion presents a simplification of the policy context. Many of the
	The preceding discussion presents a simplification of the policy context. Many of the
13318	counties have coastal policies that may further alter coastal development — and citizens
13318 13319	
	counties have coastal policies that may further alter coastal development — and citizens
13319	counties have coastal policies that may further alter coastal development — and citizens sometimes intervene to prompt <i>ad hoc</i> policy adjustments. (Appendix E discusses a
13319 13320	counties have coastal policies that may further alter coastal development — and citizens sometimes intervene to prompt <i>ad hoc</i> policy adjustments. (Appendix E discusses a proposed development along the Blackwater River that was cancelled as a result of

13324 Chapter 5 describes the basis for ongoing studies that are analyzing land use plans, land

13325 use data, and coastal policies to create maps depicting the areas where shores may be

13326 protected and where wetlands may migrate inland. Because the maps from those studies

13327 have not yet been finalized, this section describes some of the existing and evolving

13328	conditions that may influence decisions related to future shore protection and wetland
13329	migration
13330	
13331	F.3.1 Hampton Roads
13332	Hampton Roads is the southernmost coastal planning district in Virginia. Extending from
13333	the North Carolina border to the York River, the region has 16 localities whose combined
13334	population is over 1.5 million. Lands vulnerable to sea-level rise include beaches along
13335	the Atlantic Ocean and Chesapeake Bay, both sides of the lower James River, a barrier
13336	spit and back barrier bays near North Carolina's Outer Banks, and parts of the York
13337	River.
13338	
13339	Norfolk is home to the central business district of the Hampton Roads region. Although
13340	the city's population dropped during the 1990s, the local government is taking measures
13341	to redevelop and revitalize the urban core. One example of such a measure has been the
13342	successful revitalization of the Ocean View area along the northern shore of Norfolk.
13343	Newport News has similar development to Norfolk along its southern shores, with bluffs
13344	giving rise to less dense residential areas further north along the coast. The city of
13345	Hampton is also highly developed, but overall has a much smaller percentage of
13346	commercial and industrial development than Norfolk or Newport News. Norfolk and
13347	Newport News are also home to a number of private naval shipyards and coastal military
13348	naval establishments. In Norfolk, these shipyards are located on the western shore near
13349	the central business district and served as the backbone of the local economy for nearly a

13350	hundred years. The Fort Eustis military reservation occupies Mulberry Island in northern
13351	Newport News.
13352	
13353	Outside of the urban core, localities are more rural in nature. These localities find
13354	themselves facing mounting development pressures and their comprehensive plans
13355	outline how they plan to respond to these pressures. Isle of Wight, Surry, James City, and
13356	York counties all face development pressure. Overall, however, the makeup of these
13357	outlying localities is a mix of urban and rural development, with historic towns and
13358	residential development dotting the landscape. The Town of Poquoson is an exception,
13359	being both extensively developed and very vulnerable to sea-level rise: The town is
13360	approximately 50 percent wetland and is almost entirely within three meters above sea
13361	level.
13362	
13363	Virginia Beach has sandy shores along both the Atlantic Ocean and the mouth of
13364	Chesapeake Bay. Dunes dominate the bay shore, but much of the developed ocean shore
13365	is protected by a seawall (Figures F.18a and b), and periodic beach nourishment has
13366	occurred since the mid-1950s (Hardaway et al., 2005). As the state's only ocean resort,
13367	this city has a combination of high-rise condominiums and hotels, low-rise motels,
13368	restaurants and shops, and single-family homes with high property values. The northern
13369	two thirds of the city's ocean coast is heavily developed; the southern third is within a
13370	state park or Back Bay National Wildlife Refuge.
13371	

- 13372 Along Chesapeake Bay, by contrast, the Virginia Beach shore has substantial dunes, with
- 13373 homes set well back from the shore in some areas. Although the ground is relatively
- 13374 high, beach nourishment has been required on the bay beaches at Ocean Park (Hardaway
- 13375 et al., 2005). Norfolk has maintained its beaches along Chesapeake Bay mostly with
- 13376 breakwaters and groins. Shores along other bodies of water are being armored. Of
- 13377 Norfolk's 167 miles of shoreline, 70 miles have been hardened (Berman et al., 2002).
- 13378

Figures F.18 Virginia Beach. (a) Homes set well back behind the dunes along the north-facing
 Chesapeake Bay shoreline. (b) Seawalls along the east-facing Atlantic beaches (October 1998).

- 13383 Outside of the urban core of Hampton Roads, many lands are still rural and shore
- 13384 protection is not widespread.. Since 1979, Virginia Beach has had a "Green Line"¹⁵⁸
- 13385 south of which the city tries to maintain the rural agricultural way of life. Because
- 13386 development has continued, Virginia Beach has also established a "Rural Area Line,"
- 13387 which coincides with the Green Line in the eastern part of the city and runs 3 miles south

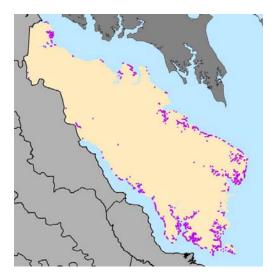
Do Not Cite or Quote

^{158 &}quot;The Green Line has been the city's most formidable defense against sprawl since its inclusion in the first Comprehensive Plan. Designed in 1979 to separate that area of the city where facilities and services could be provided within a reasonable time period (and this where urban development would be appropriate) from that area where there is no reasonable expectation of providing such services within a reasonable time (and thus where urban growth is not appropriate) the Green Line has been rigidly adhered to by the Council in the formulation and implementation of the city's land use and capital improvement planning." City of Virginia Beach, Comprehensive Plan Policy Document, at 19.

- 13388 of it in the western portion. Below the Rural Area Line, the city strongly discourages
- 13389 development and encourages rural legacy and conservation easements (VBCP, 2003). In
- 13390 effect, the city's plan to preserve rural areas will serve to preserve the coastal
- 13391 environment as sea level rises throughout the coming century and beyond. To the west,
- 13392 by contrast, the City of Chesapeake is encouraging development in the rural areas,
- 13393 particularly along major corridors. Comprehensive plans in the more rural counties such
- 13394 as Isle of Wight and James City tend to focus less on preserving open space and more on
- 13395 encouraging growth in designated areas (IWCP, 2001 and JCCP, 2003). Therefore, these
- 13396 more remote areas may present the best opportunity for long-range planning to minimize
- 13397 coastal hazards and preserve the ability of ecosystems to migrate inland.
- 13398

13399 F.3.2 York River to Potomac River

- 13400 Gloucester County's land use policies also have a strong conservation ethic. A large
- 13401 portion of the necks along Mobjack Bay has a conservation zoning that allows only low-
- 13402 density residential development "in a manner which protects natural resources in a
- 13403 sensitive environment." The intent is to preserve contiguous open spaces and protect the
- 13404 surrounding wetlands 159. The County also seeks to maintain coastal ecosystems
- 13405 important for crabbing and fishing. As a result, wetlands and beaches along Mobjack Bay
- 13406 may be able to migrate inland as sea level rises.


13407

¹⁵⁹ Gloucester County Code of Ordinances, accessed through Municode Online Codes; http://livepublish.municode.com/22/lpext.dll?f = templates&fn = main-j.htm&vid = 10843. Accessed on August 22, 2003.

13408	Gloucester County also has a suburban country side zoning, which allows for low density
13409	residential development, including clustered sub-developments 160 along part of the
13410	Guinea Neck and along the York River between Carter Creek and the Catlett islands.
13411	These developments often leave some open space that might convert to wetlands as sea
13412	level rises even if the development itself is protected. The county plan anticipates
13413	development along most of the York River. Nevertheless, a number of areas are off-
13414	limits to development. For example, the Catlett islands are part of the Chesapeake Bay
13415	National Estuarine Research Reserve in Virginia, managed as a conservation area 161.
13416	
13417	Along the Northern Neck, shoreline armoring is already very common, especially along
13418	Chesapeake Bay and the Rappahannock Rivers shores of Lancaster County. (See Figure
13419	F. 19.) Above Lancaster County, however, development is relatively sparse along the
13420	Rappahannock River. Development is proceeding along the Potomac River, by contrast.
13421	

¹⁶⁰ Definition of suburban countryside in Gloucester County Code of Ordinances, accessed through Municode Online Codes on August 22, 2003: http://livepublish.municode.com/22/lpext.dll?f = templates&fn = main-j.htm&vid = 10843: "The intent of the SC-1 district is to allow low density residential development...Cluster development is encouraged in order to protect environmental and scenic resources."

¹⁶¹ See the Research Reserve's web page at http://www.vims.edu/cbnerr/about/index.htm; accessed on May 12, 2007.Virginia Institute of Marine Science. (date unknown). "About Chesapeake Bay National Estuarine Research Reserve in Virginia." <u>http://www.vims.edu/cbnerr/about/index.htm</u>. Accessed May 12, 2007.

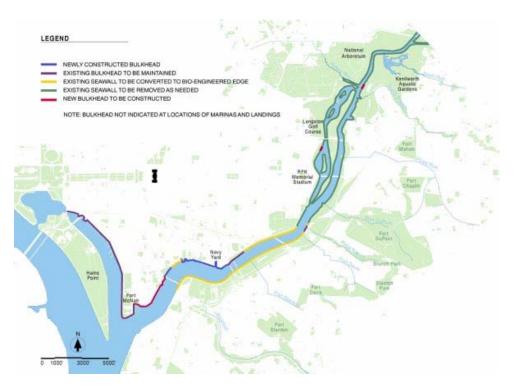
13423Figure F. 19 Location of shoreline armoring within the Northern Neck. Each dot indicates the presence of13424a bulkhead or revetment within about 1,000 feet. Therefore, the armoring is not necessarily as continuous13425as the map might appear to imply. The dots that appear to be inland are actually along tidal creeks. Source:13426Northern Neck Planning District.

13427

13428 **F.3.3 Potomac River**

- 13429 West of Chesapeake Bay, the southwestern shoreline of the Potomac River is the border
- 13430 between Maryland and Virginia¹⁶². As a result, islands in the Potomac River, no matter
- 13431 how close they are to the Virginia side of the river, are part of Maryland or the District of
- 13432 Columbia. Moreover, most efforts to control erosion along the Virginia shore take place
- 13433 partly in Maryland (or DC) and thus could potentially be subject to Maryland (or DC)
- 13434 policies¹⁶³.
- 13435
- 13436 Development is proceeding along approximately two-thirds of the Potomac River shore.
- 13437 Nevertheless, most shores in Charles County (Maryland) are in the resource conservation

163 The Virginia Shore across from the District of Columbia is mostly owned by the federal government, which would be exempt from DC policies.


¹⁶² See Maryland v. Virginia, 540 US (2003), slip opinion at 2.

13438	area defined by the state's Critical Areas Act (and hence limited to one home per 20
13439	acres) (MD DNR, 2007). A significant portion of Prince George's County's shoreline
13440	along the Potomac and its tributaries are owned by the National Park Service and other
13441	conservation entities that seek to preserve the coastal environment (MD DNR, 2000).
13442	
13443	In Northern Virginia, parks also account for a significant portion of the shore. In Outside
13444	the park lands, several developers have set development back from low-lying marsh areas
13445	to avoid problems associated with flooding and poor drainage, or created developments
13446	with lot sizes greater than 10 acres. In Stafford County, the CSX railroad line follows the
13447	river for several miles, and is set back to allow shores to erode, but not so far back as to
13448	allow for development between the railroad and the shore ¹⁶⁴ .
13449	
13449 13450	F.3.4 Washington DC
	F.3.4 Washington DC The low land vulnerable to sea level rise in the District of Columbia includes portions of
13450	
13450 13451	The low land vulnerable to sea level rise in the District of Columbia includes portions of
13450 13451 13452	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the
13450 13451 13452 13453	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the Potomac River south of the mouth of the Anacostia. These facilities are unlikely to be
13450 13451 13452 13453 13454	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the Potomac River south of the mouth of the Anacostia. These facilities are unlikely to be given up to rising sea level; city officials are currently discussing the flood control
13450 13451 13452 13453 13454 13455	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the Potomac River south of the mouth of the Anacostia. These facilities are unlikely to be given up to rising sea level; city officials are currently discussing the flood control infrastructure necessary to avoid portions of the downtown area from being classified as
13450 13451 13452 13453 13454 13455 13456	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the Potomac River south of the mouth of the Anacostia. These facilities are unlikely to be given up to rising sea level; city officials are currently discussing the flood control infrastructure necessary to avoid portions of the downtown area from being classified as part of the 100-year floodplain. Nevertheless, natural areas in the city account a
13450 13451 13452 13453 13454 13455 13456 13457	The low land vulnerable to sea level rise in the District of Columbia includes portions of the downtown area, the monuments, Columbia Island, and the military lands along the Potomac River south of the mouth of the Anacostia. These facilities are unlikely to be given up to rising sea level; city officials are currently discussing the flood control infrastructure necessary to avoid portions of the downtown area from being classified as part of the 100-year floodplain. Nevertheless, natural areas in the city account a substantial portion of the city's shore, such as Roosevelt Island and the shores of the

¹⁶⁴ Personal communication with Mark Remsberg, Community Development, King George County, December 17, 2004.

Do Not Cite or Quote

- 13468 Figure F.20 District of Columbia Plans to restore natural shores along Anacostia River.
- 13469 Source: DCOP, 2003.
- 13470

13467

13471 F.3.5 Western Shore: Potomac River to Susquehanna River

- 13472 Compared with the Potomac River, Maryland's Critical Areas Act is unlikely to preserve
- 13473 a major portion of the Western Shore, which was largely developed before the act was

13474	passed. Stone revetments are common along the mostly developed shores of Anne
13475	Arundel and Baltimore countiesYet the Western Shore also has one of the only shore
13476	protection policies in the nation that prohibits shore protection along an estuary, even
13477	when the prohibition means that homes will be lost. Calvert County's erosion policy is
13478	designed to preserve unique cliff areas that border Chesapeake Bay. They are a unique
13479	visual landmark and provide habitat to plants and wildlife, including endangered species.
13480	
13481	The County allows erosion control structures in certain developed areas to protect
13482	property interests, but also bans structures in other areas to protect endangered species
13483	and the unique landscape. Cliffs in Calvert County are separated into three categories
13484	according to the priority for preservation of the land:
13485	• Category 1 provides the greatest environmental protection. No shore protection is
13486	allowed and new development must be set back from the cliff edge by 300 feet.
13487	• Category 2 allows limited shoreline armoring. Shore protection is allowed solely to
13488	protect built before 1997. A 200-foot setback for new development is also required.
13489	• Category 3 comprises all remaining cliff areas on the Chesapeake Bay. Shore
13490	protection is allowed ¹⁶⁵ .
13491	
13492	Although a county policy prohibiting shore protection would appear to run counter to the
13493	state law granting riparian owner the right to shore protection, to date no legal challenges
13494	to the cliff policy have been made. The state has accepted the County's policy, which is

¹⁶⁵ Personal communication from Dr. David Brownlee to William Nuckols and Daniel Hudgens, December 14, 2000.

13495	embodied in the County's critical areas plan submitted to the state under the Critical
13496	Areas Act.
13497	
13498	Recognizing the potential environmental implications, living shoreline protection is
13499	becoming increasingly commonplace along the Western Shore.
13500	
13501	F.3.6 Eastern Shore: Susquehanna River to Choptank River (Cecil, Kent, Queen
13502	Anne's, Caroline, and Talbot counties)
13503	The decline of the bay beach resort has coincided with a decline in public demand for a
13504	bay beach. For those who have built or purchased homes near the ocean during the last
13505	few decades, one of the most important reasons for purchasing a home has been the
13506	amenity that one can walk to the beach — an amenity that would be lost if the beach were
13507	to disappear. Hence substantial expenditures have been devoted to beach nourishment to
13508	avoid having to choose between losing the beach and losing the first row of homes.
13509	Along Chesapeake Bay, by contrast, recent coastal development has not placed a high
13510	value on the beach. The new bayfront subdivisions often provide no public access to the
13511	beach, and as shores erode, people erect shore-protection structures that eventually
13512	eliminate the beach (Titus, 1998). Some traditional access points have been closed (Titus,
13513	1998). Maintaining a beach remains important to some of the older bay resort
13514	communities where residents have long had a public beach — but even communities with
13515	"beach" in the name are seeing their beaches replaced with shore protection structures ¹⁶⁶ .
13516	

¹⁶⁶ E.g. Chesapeake Beach, North Beach, Tolchester Beach all have more armored shores than beach.

13517	Maryland's Critical Areas Act, however, is likely to restrict the extent of additional
13518	development along the Eastern Shore of Chesapeake Bay to a greater extent than along
13519	the Western Shore. The resource conservation areas where development is discouraged
13520	include half of the Chesapeake Bay shoreline between the Susquehanna and Choptank
13521	rivers. Among the major tributaries, most of the Sassafras, Chester, and Choptank rivers
13522	is similarly preserved; the Act did not prevent development along most of the Wye, Elk,
13523	and North East rivers. Existing development is most concentrated in the northern areas
13524	near I-95, Kent Island, and the various necks near Easton and St. Michaels
13525	
13526	Extrapolating the recent bayfront model for development along Chesapeake Bay would
13527	lead one to expect beaches to be replaced with shoreline armoring. However, if bay
13527 13528	lead one to expect beaches to be replaced with shoreline armoring. However, if bay beaches were to come back into vogue, then efforts to maintain them might involve either
13528	beaches were to come back into vogue, then efforts to maintain them might involve either
13528 13529	beaches were to come back into vogue, then efforts to maintain them might involve either beach nourishment or allowing shores to erode naturally. Scientists are starting to
13528 13529 13530	beaches were to come back into vogue, then efforts to maintain them might involve either beach nourishment or allowing shores to erode naturally. Scientists are starting to recognize environmental value to bay beaches ¹⁶⁷ and homeowners are starting to place
13528 13529 13530 13531	beaches were to come back into vogue, then efforts to maintain them might involve either beach nourishment or allowing shores to erode naturally. Scientists are starting to recognize environmental value to bay beaches ¹⁶⁷ and homeowners are starting to place

- 13535 inundation. Wetlands are taking over portions of Hoopers and Deal Islands, but shore
- 13536 erosion is the more serious threat. During the middle of the 19th century, watermen who
- 13537 made their living by fishing Chesapeake Bay made their homes on various islands in this
- 13538 region. Today, Bloodsworth and Lower Hoopers islands are uninhabitable marsh, and the

¹⁶⁷ E.g., see Nordstrom, 1997 and NRC, 2007. Nordstrum "Estuarine Beaches". National Research Council. "Mitigating Shoreline Erosion".

13539	erosion of Barren and Poplar islands led people to move their homes to the mainland.
13540	Smith Island is now several islands, and it has a declining population. Hoopers and Deal
13541	islands are becoming gentrified. Virtually all of the beaches along Chesapeake Bay are
13542	eroding. Shore erosion of beaches and clay shores along the Chester, Nanticoke, and
13543	Chester rivers is less — but enough to induce shoreline armoring along most developed
13544	portions.
13545	
13546	The lower Eastern shore has a history of abandoning lowlands to shore erosion and rising
13547	sea level to a greater extent than other parts of the state.
13548	
13549	Today Smith and Tangier are the only inhabited islands without a bridge connection to
13550	the mainland. Government officials at all levels are pursuing efforts to prevent the loss of
13551	these lands, partly because of their unique cultural status and — in the case of Tangier —
13552	a town government that works hard to ensure that the state continues to reinvest in
13553	schools and infrastructure. The Corps of Engineers has several planned projects for
13554	halting shore erosion, but to date, serious efforts to elevate the land are not under way.
13555	The replacement of traditional lifestyles with gentrified second homes may increase the
13556	resources available to preserve these islands.
13557	
13558	The mainland of Somerset County vulnerable to sea-level rise is mostly along three
13559	necks. Until recently, a key indicator of the cost-effectiveness of shore protection was
13560	the availability of a sewer line ¹⁶⁸ . As sea level rises, homes without sewer may be
13561	condemned as septic systems fail. The incorporated town of Crisfield, in the
	168 The mounds systems have made it possible to inhabit low areas with high water tables.

southernmost neck, has long had sewer service, which has been recently expanded to
nearby areas. The town itself is largely encircled by an aging dike. Deal Island, no longer
the thriving fishing port of centuries gone by, still has moderate density housing on most
of the dry land.
Wicomico County's low-lying areas are along both the Wicomico and Nanticoke Rivers.
Unlike Somerset, Wicomico has a large urban/suburban population, with the Eastern
Shore's largest city, Salisbury. Planners accept the general principals of the state's
Critical Areas Act, which discourages development along the shore.
Much of coastal Dorchester County is already part of Blackwater Wildlife Refuge. The
very low land south of Cambridge that is not already part of the refuge is farmland. A
development of approximately 1000 acres was recently proposed and approved along
Egypt Road south of Cambridge; but as a result of citizen opposition it was later
cancelled and the state plans to buy most of the property. The County plan does not
anticipate development in most of the low-lying lands west of Cambridge. On the higher
ground along the Choptank River, by contrast, many waterfront parcels are being
developed.

BOX F.1: The Diamondback Terrapin, Malaclemys Terrapin

The diamondback terrapin, *Malaclemys terrapin*, comprising seven subspecies, is the only turtle that is fully adapted to life in the brackish salt marshes of estuarine embayments, lagoons, and impoundments (Ernst and Barbour, 1972). Its range extends from Massachusetts to Texas in the narrowest of coastal strips along the Atlantic and Gulf coasts of the United States (Palmer and Cordes, 1988). Extreme fishing pressure on the species resulted in population crashes over much of their range so that by 1920 the catch in Chesapeake Bay had fallen to less than 900

pounds. The Great Depression put a halt to the fishery, and during the mid-20th century, populations began to recover (CBP, 2006). Although a modest fishery has been reestablished in some areas, stringent harvest regulations are in place in several states. In some instances, States have listed the species as endangered (Rhode Island), threatened (Massachusetts), or as a "species of concern" (Georgia, Delaware, New Jersey, Louisiana, North Carolina, and Virginia). In Maryland, the status of the northern diamondback subpopulation is under review (MD DNR, 2006b).

Effects of Sea-level Rise

The prospect of sea-level rise, along with land subsidence at many coastal locations, increasing human habitation of the shore zone and shoreline stabilization, places the habitat of terrapins at increasing risk. Because human infrastructure (*i.e.*, roadways, buildings, and impervious surfaces) leaves tidal salt marshes with little or no room to transgress inland, the ecosystem that terrapins depend on may be lost with concomitant extirpation of the species.

13582

13583 F.4 POPULATION OF LANDS CLOSE TO SEA LEVEL

13584 F.4.1 Chesapeake Western Shore

- 13585 Table F.6 estimates the population of lands close to sea level for each of the localities
- 13586 along the Western Shore of Chesapeake Bay or its tributaries. The greatest concentration
- 13587 of people living close to sea level is in the various localities around Hampton Roads. The
- 13588 uncertainty range reflects the lack of precision in the elevation data. Although Maryland
- 13589 now has LIDAR for most of the state, when our elevation data set was assembled it was
- 13590 unavailable; as Figure 1.1 shows (Chapter 1), we had better elevation data in the
- 13591 Hampton Roads area than most of the Western Shore.

			low and high	estimates of		
			lation below a			
		• •	(thousa			
	50c	m	1n	1	2n	n
Locality	Low	High	Low	High	Low	High
Hampton Roads						
Chesapeake	3.4	13.9	3.4	19.8	12.5	50.2
Hampton	6.1	19.7	6.1	35.6	19.0	98.5
Isle of Wight	0.0	0.3	0.0	0.3	0.0	0.4
James City County	0.0	0.1	0.0	0.5	0.0	0.7
Newport News	4.1	6.8	4.1	7.7	6.8	17.9
Norfolk	9.2	30.6	9.2	40.1	29.8	166.8
Poquoson	0.5	5.1	0.5	8.4	4.9	11.6
Portsmouth	1.1	8.5	1.1	12.3	8.3	45.4
Suffolk	0.0	0.8	0.0	1.2	0.0	1.9
Surry	0.0	0.0	0.0	0.0	0.0	0.006
Virginia Beach	4.8	28.4	4.8	47.8	25.2	168.8
York	1.8	4.5	1.8	5.5	4.3	10.3
Total	30.9	118.7	30.9	179.2	110.6	572.6
Northern Neck/Middle Po	eninsula)					
Essex	0.0	0.2	0.0	0.2	0.0	0.4
Gloucester ^a	0.2	2.7	0.2	3.3	2.7	5.2
King and Queen	0.0	0.0	0.0	0.1	0.0	0.2
King William	0.0	0.3	0.0	0.9	0.0	1.3
Lancaster	0.0	0.6	0.0	0.6	0.1	1.6
Mathews	0.0	1.3	0.0	1.8	1.3	4.2
Middlesex	0.0	0.1	0.0	0.2	0.1	0.4
Northumberland ^b	0.0	0.1	0.0	0.1	0.0	2.8
Richmond County	0.0	0.0	0.0	0.1	0.0	0.2
Total	0.2	5.3	0.2	7.3	4.2	16.3

Table F.6 Population of lands close to sea level: Western Shore.

				estimates of a given elevat	tion	
-	50ci	n	1n	,	2n	n
Locality	Low	High	Low	High	Low	High
Maryland						
Anne Arundel	0.0	2.9	0.0	10.2	2.8	21.2
Baltimore City	0.0	0.3	0.0	1.5	0.0	6.3
Baltimore County	*	*	*	*	*	*
Calvert	0.0	1.3	0.0	1.8	1.0	3.3
Charles ²	0.0	0.1	0.0	1.2	0.0	1.8
Harford	0.0	0.9	0.0	1.0	0.9	2.9
Prince George's ^b	0.0	0.3	0.0	0.5	0.1	1.6
St. Mary's ^b	0.0	1.3	0.0	2.7	0.8	5.6
Total	0.0	7.1	0.0	18.9	5.6	42.7
* Data unavailable. a. Figures are for the entire b. Figures are for the entire	•	· 1	1		-	

Table F.6 Population of lands close to sea level: Western Shore (cont.).

13592

13593 **F.4.2 Potomac River**

13594 Table F.7 estimates the population of lands close to sea level along for each of the

13595 counties along the Potomac River and the District of Columbia. The absence of good

13596 elevation data makes these estimates very uncertain. Because Lewisetta is below the

13597 USGS "5-ft" contour, the low estimate for Northumberland should include the population

13598 of that community for the 2-meter case. The "high estimates" are also partly an artifact of

13599 our data limitations. In Fairfax County, for example, the NOAA analysis found 1647

13600 people living in Census blocks that are entirely below the lowest topographic contour (the

13601 10-ft contour). However, tens of thousands of people live in Census blocks with some

13602 land below that contour, and hence the high estimate of 6000 people.

13603

13604

Table F.7 Population of la	ilus ciose to se					
			ow and high			
			below a giver	<u>ı elevation (t</u>	housands)	
	50ci	m	<u> </u>	1	<u>2n</u>	1 IIII
County	Low	High	Low	High	Low	High
District of Columbia	0.0	0.2	0.0	0.2	0.2	5.6
Maryland						
Charles ^a	0.0	0.1	0.0	1.2	0.0	1.8
Prince George's ^a	0.0	0.3	0.0	0.5	0.1	1.6
St. Mary's ^a	0.0	1.3	0.0	2.7	0.8	5.6
Virginia						
Alexandria	0.0	3.1	0.0	7.6	0.0	11.0
Arlington	0.0	0.0	0.0	1.6	0.0	2.5
Fairfax	0.0	6.1	0.0	9.5	0.0	10.2
King George	0.0	0.4	0.0	0.4	0.0	0.4
Northumberland ^a	0.0	0.1	0.0	0.1	0.0	2.8
Prince William	0.0	2.2	0.0	2.4	0.0	2.5
Stafford	0.0	0.0	0.0	0.1	0.0	0.2
Westmoreland	0.0	0.4	0.0	0.8	0.0	2.2
Total	0.0	14.2	0.0	27.1	1.1	46.3
a. Figures are for the entire c	ounty. County	is split betw	een Chesapea	ake and Poton	nac River Wa	tersheds.

Table F.7 Population of lands close to sea level: Potomac River.

13605

13606

13607 The District of Columbia was able to provide better elevation data than Maryland and

13608 Virginia (See Figure 1.1 in Chapter 1). Approximately 200 people live in low-lying areas

13609 near Georgetown that are potentially vulnerable to sea-level rise.

13610

13611 F.4.3 Chesapeake Bay Eastern Shore

13612 Table F.8 estimates the population of lands close to sea level for each of the counties

13613 along the Eastern Shore of Chesapeake Bay or its tributaries. Somerset, Dorchester, and

13614 Accomack counties have the largest populations living within one meter above spring

13615 high water¹⁶⁹. These three counties have islands that have long been populated by

13616 watermen (Smith, Hoopers, and Tangier, respectively), as well as low-lying towns such

¹⁶⁹ Worcester and Sussex Counties have substantial populations living in low lying areas along the Atlantic Coast. Their small areas close to sea level in the Chesapeake Bay watershed are lightly populated.

- 13617 as Crisfield, Toddville, and Chesconessex. The uncertainty range reflects the lack of
- 13618 precision in the elevation data. Thus, the Maryland calculations are more accurate.

13619

	Lo	w and high esti	mates of popul (thousar	ation below a gi nds)	iven elevation	
	50cn	n 🗌	1m	,	2m	
County	Low	High	Low	High	Low	High
Delaware						
Sussex ¹	1.1	7.2	1.1	9.5	7.1	17.0
Maryland						
Caroline	0.3	0.6	0.3	0.6	0.4	0.9
Cecil	0.0	0.3	0.0	0.7	0.2	1.3
Dorchester	0.0	0.6	0.7	2.0	3.5	4.2
Kent	0.0	0.5	0.0	1.0	0.0	1.7
Queen Anne's	0.0	0.1	0.1	0.2	0.7	2.2
Somerset	1.2	3.8	4.5	6.2	8.1	9.7
Talbot	0.0	0.1	0.1	0.3	0.9	1.7
Wicomico	0.1	0.1	0.1	0.4	0.9	1.2
Worcester ²	0.0	1.1	0.6	3.2	6.4	12.6
Virginia						
Accomack ²	0.8	7.0	0.8	7.6	6.9	9.3
Northampton ²	0.0	0.3	0.0	0.6	0.2	1.1
Total	7.3	30.7	12.3	45.1	42.5	86.0

Table F.8 Population of lands close to sea level: Eastern Shore.

² Figures are for the entire county. County is split between Chesapeake and Atlantic Coast Watersheds.

13620

BOX F.2: Planning for Sea-level Rise in Baltimore

Only 3.2% of the City of Baltimore's 210 square kilometers of land is currently within the coastal floodplain. This land, however, includes popular tourist destinations such as Inner Harbor and the Fells Point Historic District, as well as industrial areas, some of which are being redeveloped into mixed use developments with residential, commercial, and retail land uses. The map below depicts the areas that the city expects to be flooded by category 1, 2, 3 and 4 hurricanes, which roughly correspond to water levels of 1.75 meters (6 feet), 3 meters (10 feet), 4.2 meters (14 feet), and 5.5 meters (18 feet) above NAVD. Approximately 250 homes are vulnerable to a category 1, while 700 homes could be flooded by a category 2 hurricane. As Hurricane Isabel passed in September 2003, water levels in Baltimore Harbor generally reached approximately 8 feet above NAVD, flooding streets and basements, but resulting in only 16 flood insurance claims.

The city's All Hazards Plan explicitly includes rising sea level as one of the factors to be considered in land use and infrastructure planning.¹⁷⁰ The All Hazards Plan has as an objective to "develop up-to-date research

about hazards" and a strategy under that objective to "study the threat, possible mitigation and policy changes for sea-level rise." As a first step toward accurate mapping of possible sea-level rise scenarios the city is exploring options for acquiring LIDAR. Policies developed for floodplain management foreshadow the broad methods the city is likely to use in its response.

Map: Inundation Zone under Category 1, 2, 3, and 4 hurricanes.

Property values are high, and there is a longstanding practice of armoring shores to facilitate port-related activities and more recently, protect waterfront structures from shore erosion. In most areas, there is not enough room between the harbor and waterfront buildings to fit a dike. Even where there is room, the loss of waterfront views would be unacceptable in tourist and residential

areas. In addition, storm sewers, which drain by gravity into the harbor, would have to be fit with pumping systems.

Fells Point Historic District

This historic community has 60 acres within the 100-year flood plain. Fells Point is a Federal Historic District and pending approval as a Local Historic District. The row houses here were built predominantly in the early to mid-19th century and cannot be easily elevated. Elevating brick and stone structures is always more difficult than elevating a wood frame structure. But because row houses are, by definition, attached to each other, elevating them one at a time is not feasible. Many of these homes have basements, which already flood. FEMA regulations do not permit basements in new construction in the floodplain and treats existing basements as requiring mitigation. Possible mitigation for basements includes relocation of utilities, reinforcement of walls, and filling.

In theory, homes could be remodeled to add stairways and doors to convert what is now the second floor to a first floor and convert the first floors to basements. But doing so would reduce the livable space. Moreover, federal and local preservation laws, as well as community sensibilities, preclude adding third stories to these homes. Elevating streets is also problematic because below-grade utilities need to be elevated. In the last decade only one street was elevated specifically to reduce flooding.

Do Not Cite or Quote

FEMA Flood Hazard Mapping and Sea-level Rise

Baltimore City is a participating jurisdiction in the National Flood Insurance Program (NFIP) through its regulation of development in the floodplain and through overall floodplain management. The city is currently funded through the Cooperative Technical Partnership (CTP) to update its flood maps. Federal flood mapping policies require that Flood Insurance Rate Maps (FIRMs) be based on existing conditions. At the time the mapping agreement was created (2005), FEMA would not allow use of the CTP funds to include additional mapping of sea-level rise or the mapping of projected future BFE. As a result, the city will be permitting new structures with effective functional lifespan of 50 to 100 years but elevated only to current flood elevations. One strategy to surmount this limitation is to add "freeboard," or additional elevation to the effective BFE. Baltimore already requires one additional foot of freeboard.

The City of Baltimore is concerned, however, that 1 to 2 additional feet of freeboard is inequitable and inefficient. If flood levels will be, for example, 1 meter higher than the flood maps currently assume, then lands just outside the current flood boundary are also potentially vulnerable. If the city were to add 1 meter of freeboard to property in the floodplain, without addressing adjacent properties outside the floodplain, then adjacent property owners would have divergent requirements that city officials would find difficult to justify.

Infrastructure

Baltimore has two regional sewerage plants. One of them, the Patapsco Wastewater Treatment Plant, sits on ground that is less than two meters above mean sea level and floods occasionally. The facility itself is elevated and currently drains by gravity into the Patapsco River. With a significant rise in sea level, however, pumping will be needed and possibly additional protections against storms. Numerous streets, with associated conduits and utility piping, are within the existing tidal floodplain and would potentially be impacted by sea-level rise.

13621

13622

13623 APPENDIX F REFERENCES

13624	AAC (Anne Arundel	County), 2007:	"History of AA	County."	Accessed May	6, 2007 at
-------	-------------------	----------------	----------------	----------	--------------	------------

- 13625 http://www.aacounty.org/AboutAACo/history.cfm (Bay Ridge).
- 13626 AP (Associated Press), 1985: "Doubled Erosion Seen for Ocean City." Washington Post,
- 13627November 14th. (Maryland Section).
- 13628 Berman, M.R., Berquist, H., Dewing, S., Glover, J., Hershner, C.H., Rudnicky, T.,
- 13629 Schatt, D.E., and Skunda, K., 2000: Mathews County Shoreline Situation Report,
- 13630 Special Report in Applied Marine Science and Ocean Engineering No. 364,
- 13631 Comprehensive Coastal Inventory Program, Virginia Institute of Marine Science,
- 13632 College of William and Mary, Gloucester Point, Virginia, 23062.
- 13633 Bertness, M.D. 1999: The Ecology of Atlantic Shorelines. Sinauer Associates Inc.,
- Sunderland, MA.

13635	Blanton, D., 2000: Jamestown's Environment.
13636	http://www.virtualjamestown.org/essays/blanton_essay.html Accessed 1/18/08.
13637	Bryan, W.B., 1914: A History of the National Capital from Its Foundation through the
13638	Period of the Adoption of the Organic Act. 1790-1878. New York: Macmillan,
13639	669 pages.
13640	CBP (Chesapeake Bay Program). Bay Trends and Indicators, Accessed at:
13641	http://www.chesapeakebay.net/status/status_dev.cfm?SID =
13642	201&SUBJECTAREA = INDICATORS Chesapeake Bay Program. Bay Trends
13643	and Indicators. (date unknown) Nontidal Sediment Loads and River Flow to the
13644	Chesapeake Bay. http://www.chesapeakebay.net/status/status_dev.cfm?SID =
13645	201&SUBJECTAREA = INDICATORS. Accessed 1/18/08.
13646	CBP (Chesapeake Bay Program), 2002: The Impact of Susquehanna Sediments on the
13647	Chesapeake Bay. Scientific and Technical Advisory Committee Workshop
13648	Report. May 2000.
13649	CBP (Chesapeake Bay Program), 2006: Diamondback Terrapin.
13650	http://www.chesapeakebay.net/diamondback_terrapin.htm. Accessed January 25,
13651	2008.
13652	CPCP (City of Poquoson Comprehensive Plan), 1999: Environmental Element. Accessed
13653	at: http://www.ci.poquoson.va.us/ on July 17, 2006.
13654	Darmondy, R.G., and J.E. Foss, 1979: Soil-landscape relationships of tidal marshes of
13655	Maryland. Soil Sci. Soc. Am. J. 43: 534-541.
13656	DCOP (District of Columbia Office of Planning), 2003: Anacostia Riverparks Target
13657	Area Plan and Riverwalk Design Guidelines.
13658	Engelhardt, K.A. M., S. Seagle, and K.N. Hopfensperger, 2005: Should we restore Dyke
13659	Marsh? A management dilemma facing George Washington Memorial Parkway.
13660	Final Report. Submitted to the George Washington Memorial Parkway, National
13661	Park Service, National Capital Region, McLean, VA. July 24, 2005.

	CCSP	4.1	
--	------	-----	--

13662	Ernst, C.H. and R.W. Barbour, 1972: Turtles of the United States. University of
13663	Kentucky Press, Lexington, KY, 347 pp.
13664	Farquhar, M., 2000: "The City's Pretty New Face 'Boss' Shepherd Got the Job Doneat
13665	a Steep Price. Washington Post Staff Writer, Tuesday, November 28, 2000.
13666	Federal Register, Notices, Volume 71, Number 174, September 8, 2006: Availability of
13667	a Draft Integrated Feasibility Report and Environmental Impact Statement for the
13668	Mid-Chesapeake Bay Island Ecosystem Restoration Project in Dorchester County,
13669	on Maryland's Eastern Shore.
13670	Hardaway, C.S., Jr., Milligan, D.A., Varnell, L.M., Wilcox, C., Thomas, G.R., Comer,
13671	T.R., 2005: "Shoreline Evolution, Chesapeake Bay Shoreline, City of Virginia
13672	Beach, Virginia" Virginia Institute of Marine Sciences, College of William and
13673	Mary.
13674	Hardaway, C.S., Jr., D.A. Milligan, L.M. Varnell, G.R. Thomas, W.I. Priest, L.M.
13675	Menghini, T.A. Barnard, and C. Wilcox, 2004: Northampton County Dune
13676	Inventory. Technical Report. Virginia Institute of Marine Science, College of
13677	William & Mary, Gloucester Point, Virginia.
13678	Hardaway, C.S., L.M. Varnell, D.A. Milligan, G.R. Thomas, and C.H. Hobbs, 2001:
13679	Chesapeake Bay Dune Systems: Evolution and Status." Virginia Institute of
13680	Marine Science. 2001.
13681	IWCP (Isle of Wight Proposed Comprehensive Plan), 2001:
13682	JCCP (James City County Comprehensive Plan), 2003: Land Use and Environment
13683	Chapters.
13684	Johnson, G.H. and C.H. Hobbs, 1994: "The Geological History of Jamestown Island."
13685	Jamestown Archaeological Assessment Newsletter: 1, no. 2/3 (Spring/Summer
13686	1994):9-11.

|--|

13687	Johnson, Z.P., October 2000: A Sea Level Rise Response Strategy for the State of
13688	Maryland. Maryland Department of Natural Resources, Coastal Zone
13689	Management Division
13690	Johnson, Z. and A Luscher, 2004: "Management, Planning, and Policy Conference
13691	Sessions" in K.G. Sellner and N. Fisher (eds) Hurricane Isabel in Perspective
13692	Linthicum, MD: Chesapeake Research Consortium Publication 05-160.
13693	Johnston, D.W., 2000: The Dyke Marsh preserve ecosystem. Virginia Journal of marine
13694	Science 51:223-273.
13695	Jones, R. and J. Wang, 2008: Interpolating Elevations: Proposed Method for Conducting
13696	Overlay Analysis of GIS Data on Coastal Elevations, Shore Protection, and
13697	Wetland Accretion. Section 1.2 in: Background Documents Supporting Climate
13698	Change Science Program Synthesis and Assessment Product 4.1: Coastal
13699	Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E. Strange (eds.).
13700	EPA 430R07004. U.S. EPA, Washington, DC."
13701	Kearney, M.S., and J.C. Stevenson, 1991: Island land loss and marsh vertical accretion
13702	rate evidence for historical sea-level changes in Chesapeake Bay. Journal of
13703	Coastal Research 7: 403-416.
13704	Kearney, M.S., R.E. Grace, and J.C. Stevenson, 1988: Marsh loss in Nanticoke estuary,
13705	Chesapeake Bay. Geographical Review 78(2): 205-220.
13706	Kearney, M.S., and L.G. Ward, 1986: Accretion rates of brackish marshes in a
13707	Chesapeake Bay estuarine tributary. Marine Geology Letters 6: 41-49.
13708	Leatherman, Stephen P., 1992: "Vanishing Lands." Environmental Media Productions.
13709	Lippson, A.J., and R.L. Lippson, 2006: Life in the Chesapeake Bay. Third Edition. An
13710	Illustrated Guide to the Fishes, Invertebrates, Plants, Birds, and Other Inhabitants
13711	of the Bays and Inlets from Cape Cod to Cape Hatteras. The Johns Hopkins
13712	University Press, Baltimore Maryland.

13713	Mangold, M. F., R.C. Tipton, S.M. Eyler, and T.M. McCrobie, 2004: Inventory of Fish
13714	Species Within Dyke Marsh, Potomac River (2001-2004). U.S. Fish and Wildlife
13715	Service in conjunction with Maryland Fishery Resources Office, Annapolis, MD.
13716	22 October 2004.
13717	MD DNR (Maryland DNR), not dated: Bald Eagle Fact Sheet. Available online at
13718	http://www.dnr.state.md.us/wildlife/baldeagle.html. Accessed 5/23/06.
13719	MD DNR (Maryland DNR), not dated: Maryland Shoreline Changes Online, from the
13720	Maryland Department of Natural Resources. Available online at
13721	http://shorelines.dnr.state.md.us/sc_online.asp. Accessed 1/23/08.
13722	MD DNR (Maryland DNR), 2000: Maryland Atlas of Greenways, Water Trails, and
13723	Green Infrastructure. Maryland Greenway Commission. Available online at
13724	http://ww.dnr.state.md.us/greenways/counties/princegeorge.html. Accessed
13725	01/26/08.
13726	MD DNR (Maryland DNR), 2004: Land and Water Conservation Service. Wye Island
13727	NRMA Land Unit Plan.
13728	MD DNR (Maryland DNR), 2006a: Shoreline Erosion Control Guidelines for Waterfront
13729	Property Owners. Maryland Department of Natural Resources, Water Resources
13730	Administration, Tidal Wetlands Division.
13731	MD DNR (Maryland DNR), 2006b: DNR receives approval for diamondback terrapin
13732	conservation, Press Release, 2 August, 2006.
13733	MD DNR (Maryland DNR), 2007: Bay Smart: A Citizen's Guide to Marylands Critical
13734	Area Program. Available online at
13735	http://www.dnr.state.md.us/criticalarea/download/baysmart.pdf. Accessed
13736	January 26, 2008.
13737	MD DTTF (Maryland Diamondback Terrapin Task Force), 2001: Findings and
13738	Recommendations, Final Report to the Secretary of the MD DNR, September
13739	2001, Executive Order 01.01.2001.05.

13740	Maryland Shoreline Changes Online, from the Maryland Department of Natural
13741	Resources. Available online at http://shorelines.dnr.state.md.us/sc_online.asp.
13742	Accessed 1/18/08. Maryland Shorelines Online. Shoreline Changes Online.
13743	http://shorelines.dnr.state.md.us/sc_online.asp Accessed 1/18/08.
13744	Moore, K., 1976: Gloucester County Tidal Marsh Inventory. Special Report No. 64 in
13745	Applied Science and Ocean Engineering. Virginia Institute of Marine Science,
13746	Gloucester Point, Virginia.
13747	NOAA (National Oceanic and Atmospheric Administration). Guide to Essential Fish
13748	Habitat Designations in the Northeastern United States. Summary of Essential
13749	Fish Habitat for the Chester River. http://www.nero.noaa.gov/hcd/md2.html.
13750	Accessed July 20, 2006.
13751	NOAA (National Oceanic and Atmospheric Administration), 2005: Environmental
13752	Sensitivity Index Map. Virginia.
13753	Nordstrom, K.F. and C.T. Roman, editors, 1997: Estuarine Shores: Evolution,
13753 13754	Nordstrom, K.F. and C.T. Roman, editors, 1997: Estuarine Shores: Evolution, Environments, and Human Alterations. John Wiley & Sons, New York.
13754	Environments, and Human Alterations. John Wiley & Sons, New York.
13754 13755	Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions.
13754 13755 13756	Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park:
13754 13755 13756 13757	Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed
13754 13755 13756 13757 13758	 Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed 1/18/08.
13754 13755 13756 13757 13758 13759	 Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed 1/18/08. NPS (National Park Service), Not dated: Description of Roosevelt Island. Accessed
13754 13755 13756 13757 13758 13759 13760	 Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed 1/18/08. NPS (National Park Service), Not dated: Description of Roosevelt Island. Accessed online at http://www.nps.gov/gwmp/pac/tri/backgrnd.html on 20 July 2006.
13754 13755 13756 13757 13758 13759 13760 13761	 Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed 1/18/08. NPS (National Park Service), Not dated: Description of Roosevelt Island. Accessed online at http://www.nps.gov/gwmp/pac/tri/backgrnd.html on 20 July 2006. NRC (National Research Council), 2007: Mitigating Shore Erosion Along Sheltered
13754 13755 13756 13757 13758 13759 13760 13761 13762	 Environments, and Human Alterations. John Wiley & Sons, New York. NPS (National Park Service), 2008: "Rock Creek Park: Frequently Asked Questions. ("The main section of Rock Creek Park is 1754 acres.") "Rock Creek Park: Frequently Asked Questions." http://www.nps.gov/rocr/faqs.htm Accessed 1/18/08. NPS (National Park Service), Not dated: Description of Roosevelt Island. Accessed online at http://www.nps.gov/gwmp/pac/tri/backgrnd.html on 20 July 2006. NRC (National Research Council), 2007: Mitigating Shore Erosion Along Sheltered Coasts. National Research Council of The National Academies, Washington, DC.

CC31 4.1

13766	Paul, M., C. Krafft, and D. Hammerschlag, 2004: Avian Comparisons Between Kingman
13767	and Kenilworth Marshes. Final Report 2001-2004. USGS publication available
13768	online at: http://www.pwrc.usgs.gov/resshow/hammerschlag/anacostia.cfm.
13769	Accessed 1/18/08.
13770	Paxton, B.J. and B.D. Watts, 2002: Bird Surveys of Lee and Hill Marshes on the
13771	Pamunkey River: Possible Affects of Sea-Level Rise on Marsh Bird
13772	Communities. Center for Conservation Biology Technical Report Series. CCBTR-
13773	03-04. College of William and Mary, Williamsburg, VA, 31 pp.
13774	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
13775	Leonard, R.A. Orson, and J.C. Stevenson, 2008: Site-Specific Scenarios for
13776	Wetlands Accretion in the Mid-Atlantic Region. Section 2.1 in Background
13777	Documents Supporting Climate Change Science Program Synthesis and
13778	Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise,
13779	J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA.
13780	Robbins, C.S. and E.A.T. Blom, 1996: Atlas of the Breeding Birds of Maryland and the
13781	District of Columbia. University of Pittsburgh Press. Pittsburgh, PA.
13782	Shellenbarger Jones, A., 2008: "Overview of Coastal Habitats and Environmental
13782 13783	Shellenbarger Jones, A., 2008: "Overview of Coastal Habitats and Environmental Implications of Sea Level Rise," Section 3.1 in Background Documents
13783	Implications of Sea Level Rise," Section 3.1 in Background Documents
13783 13784	Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product
13783 13784 13785	Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M.
13783 13784 13785 13786	Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA.
13783 13784 13785 13786 13787	 Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA. Shellenbarger Jones, A. and C. Bosch, 2008a: "Middle Peninsula," Section 3.12 in
13783 13784 13785 13786 13787 13788	 Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA. Shellenbarger Jones, A. and C. Bosch, 2008a: "Middle Peninsula," Section 3.12 in Background Documents Supporting Climate Change Science Program Synthesis
13783 13784 13785 13786 13787 13788 13789	 Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA. Shellenbarger Jones, A. and C. Bosch, 2008a: "Middle Peninsula," Section 3.12 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level
13783 13784 13785 13786 13787 13788 13789 13790	 Implications of Sea Level Rise," Section 3.1 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA. Shellenbarger Jones, A. and C. Bosch, 2008a: "Middle Peninsula," Section 3.12 in Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S.

CCSP 4.1	

and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level
Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S.
EPA.
Shellenbarger Jones, A. and C. Bosch, 2008c: "Upper Chesapeake Bay Shoreline,"
Section 3.17 in Background Documents Supporting Climate Change Science
Program Synthesis and Assessment Product 4.1: Coastal Elevations and
Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.),
EPA430R07004, Washington, DC: U.S. EPA.
Shellenbarger Jones, A. and C. Bosch, 2008d: "Central Eastern Shore," Section 3.18 in
Background Documents Supporting Climate Change Science Program Synthesis
and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level
Rise, J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S.
EPA.
Schweizer, D., and P.F.P. Henry, 2004: GIS assessment of terrapin turtles nesting areas
in need of protection in the Chesapeake Bay, MD. 18th Annual Meeting of the
Society of Conservation Biology, New York, NY. July 30th - August 2nd, 2004.
poster presentation.
Steury, B., 2002: The Vascular Flora of Cove Point, Calvert County, Maryland. The
Maryland Naturalist 45(2): 1-28.
Stevenson, J.C., M. Kearney, and L.W. Staver. Impacts of eroding marshes on seagrass
habitats. Presentation at the Estuarine Research Federation Conference: An
Estuarine Odyssey, November 408, St. Pete Beach, Florida. OR Stevenson, J.C.,
J. Rooth, M.S. Kearney, and K. Sundberg, 2001: The health and long term
stability of natural and restored marshes in Chesapeake Bay. pp 709-735. In M.P.
Weinstein and D.A. Kreeger (Eds.), Concepts and Controversies in Tidal Marsh
Ecology. Kluwer Academic Press, Dordecht, Netherlands.
Tiner, R.W. and D.G. Burke, 1995: Wetlands of Maryland (Map). U.S. Fish and Wildlife
Service, Region 5, Hadley, MA.

13822	
13823	Titus, J.G., 1998: Rising seas, coastal erosion, and the takings clause: how to save
13824	wetlands and beaches without hurting property owners. Maryland Law Review
13825	57(4): 1279-1399.
13826	Titus, J.G., and D. Cacela, 2008: Uncertainty Ranges Associated with EPA's Estimates
13827	of the Area of Land Close to Sea Level. Section 1.3b in: Background Documents
13828	Supporting Climate Change Science Program Synthesis and Assessment Product
13829	4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.
13830	Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC
13831	Trono, K.L., 2003: An Analysis of the Current Shoreline Management Framework in
13832	Virginia: Focus on the Need for Improved Agency. As of December 1, 2004, the
13833	report is posted as Virginia Shoreline Management Analysis Report from the
13834	Virginia Coastal Program's publications web page.
13835	USACE (U.S. Army Corps of Engineers), 2001: Smith Island, Maryland. Environmental
13836	Restoration and Protection. Final Integrated Feasibility Report and Environmental
13837	Assessment. May 2001. Submitted by USACE Baltimore District in cooperation
13838	with Somerset County, Maryland, Maryland Department of Natural Resources,
13839	and Maryland Department of the Environment.
13840	USACE (U.S. Army Corps of Engineers), (date unknown): Poplar Island Environmental
13841	Restoration Site. Available online at:
13842	http://www.nab.usace.army.mil/projects/Maryland/PoplarIsland/index.html. Last
13843	updated August 3, 2005. Accessed January 21, 2008.
13844	USFWS (U.S. Fish and Wildlife Service), (date unknown): Profile of the Plum Tree
13845	Island National Wildlife Refuge. Accessed online at
13846	http://www.fws.gov/refuges/profiles/index.cfm?id = 51512 on July, 20 2006.
13847	USFWS (U.S. Fish and Wildlife Service), 2008: Blackwater National Wildlife Refuge.
13848	Wetland Restoration. Avaailable online at:

13849	http://www.fws.gov/blackwater/restore.html. Last updated January 22, 2008.
13850	Accessed January 22, 2008.
13851	USFWS. (U.S. Fish and Wildlife Service), 1994: Northeastern Beach Tiger Beetle
13852	(Cicindela dorsalis dorsalis) Recovery Plan. Hadley Massachusetts. 60 pp.
13853	USFWS (U.S. Fish and Wildlife Service), 1980: Atlantic coast ecological inventory:
13854	Wilmington. Washington, D.C.: No. 39074-A1-EI-250.
13855	USGS. (U.S. Geological Survey), date unknown:
13856	http://www.pwrc.usgs.gov/resshow/hammerschlag/anacostia.cfm Anacostia
13857	Freshwater Tidal Reconstructed Wetlands
13858	http://www.pwrc.usgs.gov/resshow/hammerschlag/anacostia.cfm Accessed
13859	1/22/08.
13860	VA DCR (Virginia Department of Conservation and Recreation), 1999: Bethel Beach
13861	Natural Area Preserve, fact sheet.
13862	http://www.dcr.virginia.gov/natural_heritage/documents/pgbethel.pdf. Accessed
13863	January 25, 2008.
13864	VA DCR. (Virginia Department of Conservation and Recreation), date unknown:
13865	Parkers Marsh Natural Area Preserve Fact Sheet. Available online at
13866	http://www.dcr.virginia.gov/natural_heritage/natural_area_preserves/parkers.shtm
13867	1. Accessed 9/24/2007.
13868	VIMS (Virginia Institute of Marine Science), date unknown: Chesapeake Bay National
13869	Estuarine Research Reserve in Virginia. Goodwin Islands. Accessed at
13870	http://www.vims.edu/cbnerr/reservesites/goodwin.htm on November 20, 2006.
13871	Chesapeake Bay National Estuarine Research Reserve in Virginia: Goodwin
13872	Islands. http://www.vims.edu/cbnerr/reservesites/goodwin.htm. Accessed
13873	November 20, 2006.
13874	VA PBB (Virginia Public Beach Board), 2000: 20 Years of Coastal Management.
13875	Richmond, Virginia: Board on Conservation and Development of Public Beaches.

13876	VBCP (Virginia Beach Comprehensive Plan), 2003: Introduction and General Strategy:
13877	Policy Document.
13878	Varnell, L.M., and C. Scott Hardaway Jr., 2005: A risk assessment approach to
13879	management of estuarine dunefields. Ocean & Coastal Management 48:767-781.
13880	Watts, B.D. and C. Markham, 2003: The Influence of salinity on diet, prey delivery, and
13881	nestling growth in bald eagles in the lower Chesapeake Bay: Progress Report.
13882	Center for Conservation Biology Technical Report Series, CCBTR-03-06.
13883	College of William and Mary, Williamsburg, VA. 5pp.
13884	Watts, B. D., 1993: Effects of marsh size on incidence rates and avian community
13885	organization within the lower Chesapeake Bay. Center for Conservation Biology
13886	Technical Report CCBTR-93-03, College of William and Mary.
13887	White, C.P., 1989: Chesapeake Bay: Nature of the Estuary, A Field Guide. Tidewater
13888	Publishers, Centreville, MD. Pages 107-123.
13889	Wilcock, P.R.; D.S. Miller; R.H. Shea; and R.T. Kerhin, 1998: Frequency of effective
13890	wave activity and the recession of coastal bluffs: Calvert Cliffs, Maryland.
13891	Journal of Coastal Research, 14(1), 256-268.