11806	Appendix E. The Atlantic Coast of Virginia, Maryland,
11807	and Delaware (including coastal bays)
11808	
11809	Author: James G. Titus, U.S. Environmental Protection Agency
11810	
11811	Along the Atlantic Ocean between the mouths of the Chesapeake and Delaware bays lie
11812	approximately 200 kilometers of ocean beaches-mostly barrier islandsand only 30
11813	kilometers have been developed. But the oceanfront development includes major resorts
11814	such as Ocean City (MD), Rehoboth (DE) and Dewey Beach (DE). The mainland behind
11815	those barrier islands is starting to become developed, especially in Delaware and
11816	Maryland.
11817	
11818	This appendix examines some of the implications of rising sea level on the Atlantic Coast
11819	of the DelMarVa Peninsula. We present maps and summary statistics on the low land
11820	vulnerable to rising sea level (section E.1). We then discuss the species that rely on
11821	vulnerable habitat, with a focus on the coastal bays that lie behind the barrier islands
11822	(E.2). We then briefly discuss existing coastal policies (E.3), and development and shore
11823	protection (E.4). We do not evaluate whether the implications of accelerated sea-level
11824	rise might cause those policies to change. Finally, we present new estimates of the
11825	population that inhabits the land that could be potentially inundated as sea level rises
11826	(E.5).
11827	
11828	

11829 E.1 COASTAL ELEVATIONS AND INUNDATION

- 11830 Figures E.1 and E.2 show the elevations of lands close to sea level along the Atlantic
- 11831 Coast of the DelMarVa peninsula. Most noticeable is the 764 square kilometers of tidal
- 11832 wetlands behind Virginia's undeveloped barrier islands, of which 375 square kilometers
- 11833 are mudflats, giving this area the largest concentration of mudflats in the Mid-Atlantic.
- 11834 The peninsula also has about 90–180 square kilometers of dry land and non-tidal
- 11835 wetlands within 1 meter above spring high water (see Table E.1).

Figure E.1 Lands close to sea level, DelMarVa Atlantic Coast from Chincoteague to Cape Henlopen.

Figure E.2 Lands close to sea level, the Virginia Eastern Shore from Cape Charles to Saxis and Wallops Island.

Elevations above spring high water:		Tidal	50 cm		1 meter		2 meters		3 meters		5 meters	
			Low	High	Low	High	Low	High	Low	High	Low	High
Locality	State		Cu	mulativ	e (total	l) amour	nt of Dry	Land b	elow a g	iven ele	vation	
Northampton	VA		5.1	14.5	13.0	16.8	17.9	20.6	21.4	24.6	30.5	35.0
Accomack	VA		7.5	22.6	20.1	37.7	44.5	61.7	65.8	81.2	103.7	118.9
Worcester	MD		3.7	18.6	21.7	42.4	77.5	102.8	134.0	154.6	219.1	234.6
Sussex	DE		11.1	32.4	27.6	53.5	64.5	94.9	104.2	139.5	196.5	234.2
Total			27.4	88.1	82.5	150.3	204.4	280.0	325.4	399.9	549.9	622.7
			Cu	mulativ	ve (tota	l) amou	nt of we	tlands be	elow a g	iven ele	vation	
Northampton	VA	436.4	0.3	0.8	0.7	2.1	2.8	4.4	4.6	5.2	5.8	6.1
Accomack	VA	327.3	1.3	4.1	3.5	10.4	13.5	20.7	21.9	26.2	31.2	33.7
Worcester	MD	118.5	0.4	4.3	5.0	8.8	14.1	18.1	23.4	27.0	36.0	37.6
Sussex	DE	41.0	1.7	4.9	4.2	7.5	8.8	12.2	12.9	15.7	18.9	20.7
Total		923.3 ¹	3.7	14.1	13.4	28.7	39.2	55.4	62.7	74.1	91.9	98.1
Dry and Non-tidal wetland			31	102	96	179	244	335	388	474	642	721
All Land		923	954	1025	1019	1102	1167	1259	1311	1397	1565	1644
Source: Titus and	Cacela, 2	008. Unce	ertainty	. Range	es Asso	ciated w	vith EPA	's Estin	nates of	the Area	a of Land	Close to

 Table E.1
 Low and high estimates for the area of dry and wet land close to sea level DelMarVa Atlantic Coast (square kilometers).

Source: Titus and Cacela, 2008. Uncertainty Ranges Associated with EPA's Estimates of the Area of Land Close to Sea Level. Section 1.3 in: Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea-level Rise, J.G. Titus and E. Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations. See Chapter 1 for more details. ¹ Includes 375 square kilometers of tidal mudflats in Northampton and Accomack counties.

11837

11838 The greatest concentrations of dry land within a few meters above spring high water

11839 appear to be along a few necks between the southern border of Accomack County and

11840 Wachapreague (opposite Cedar and Parramore islands), Chincoteague Island, and the

11841 mainland between Chincoteague Bay and Indian River Bay (opposite Bethany and Ocean

- 11842 City). The barrier islands are a small portion of the low land.
- 11843
- 11844
- 11845
- 11846

11847	E.2 VULNERABLE HABITAT
11848	Numerous species and habitats in the back-barrier bays of Maryland, Delaware, and
11849	Virginia's Eastern Shore are potentially at risk because of sea-level rise ¹⁰⁰ . This region
11850	contains the largest stretch of natural coastline along the Atlantic Coast of the United
11851	States. The region includes extensive tidal flats, back-barrier lagoonal marshes, and areas
11852	of estuarine beach behind the region's barrier islands. Fringing salt marshes occur on the
11853	mainland side of the lagoons. Habitats of particular significance include salt marsh,
11854	beach, marsh and bay islands, tidal flats, submerged aquatic vegetation, sea-level fens,
11855	and coastal plain ponds.
11856	
11857	Tidal Marshes. The region's tidal marshes provide roosting, nesting and foraging areas
11858	for a variety of bird species, including black-bellied plover, dunlin, and horned grebe,
11859	wading birds such as herons and egrets, migratory shorebirds, and many species of
11860	waterfowl ¹⁰¹ . Ducks and geese, including mallards, pintails, blue and green winged teals,
11861	gadwalls, canvasbacks, loons, buffleheads, mergansers, and goldeneyes, overwinter in the
11862	bays' marshes ¹⁰² . The marshes also provide nesting habitat for many species of concern
11863	to federal and state agencies, including American black duck, Nelson's sparrow, salt
11864	marsh sharp-tailed sparrow, seaside sparrow, coastal plain swamp sparrow, black rail,
11865	Forster's tern, gull-billed tern, black skimmers, and American oystercatchers.

¹⁰⁰ The Maryland Coastal Bays include Chincoteague, Sinepuxent, Newport, Isle of Wight, and Assawoman bays. The Delaware Inland Bays are three interconnected bays (Little Assawoman Bay, Indian River Bay, and Rehoboth Bay).

¹⁰¹ Wilson, Dave, Maryland Coastal Bays Program. In 13 June 2006 email to E. Strange, Stratus Consulting, entitled "Follow up to my visit," providing review of draft text and recounting personal observations reported in a meeting on 16 May 2006. (Dave Wilson is the outreach coordinator for the Maryland Coastal Bays Program.)

¹⁰² DNREC, Date unkown and personal observations of Chris Bason, Center for the Delaware Inland Bays, written communication to EPA, 5/14/07.

11866	
11867	Sea-level rise is considered a major threat to bird species in the Virginia Barrier
11868	Island/Lagoon Important Bird Area (IBA) (Watts, 2006). Biologists at the Patuxent
11869	Wildlife Research Center suggest that submergence of lagoonal marshes in Virginia
11870	would have a major negative effect on marsh-nesting birds such as black rails, seaside
11871	sparrows, saltmarsh sharp-tailed sparrows, clapper rails, and Forster's terns (Erwin,
11872	2004). The U.S. Fish and Wildlife Service considers black rail and both sparrow species
11873	"birds of conservation concern" because populations are already declining in much of
11874	their range (USFWS, 2002). The number of bird species in Virginia marshes was found
11875	to be directly related to marsh size; the minimum marsh size found to support significant
11876	marsh bird communities was 4.1-6.7 ha (10-15 acres) (Watts, 1993).
11877	
11877	The region's tidal marshes also support a diversity of resident and transient estuarine and
11877 11878 11879	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take
11877 11878 11879 11880	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of
11877 11878 11879 11880 11881	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997).
11877 11878 11879 11880 11881 11882	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend
11877 11878 11879 11880 11881 11882 11883	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend on the marshes for spawning and nursery habitat, including black drum, striped bass,
11877 11878 11879 11880 11881 11882 11883 11884	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend on the marshes for spawning and nursery habitat, including black drum, striped bass, bluefish, Atlantic croaker, sea trout, and summer flounder. Important forage fish that
11877 11878 11879 11880 11881 11882 11883 11884 11885	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend on the marshes for spawning and nursery habitat, including black drum, striped bass, bluefish, Atlantic croaker, sea trout, and summer flounder. Important forage fish that spawn in marsh areas include spot, menhaden, silver perch, and bay anchovy. Shellfish
11877 11878 11879 11880 11881 11882 11883 11884 11885 11886	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend on the marshes for spawning and nursery habitat, including black drum, striped bass, bluefish, Atlantic croaker, sea trout, and summer flounder. Important forage fish that spawn in marsh areas include spot, menhaden, silver perch, and bay anchovy. Shellfish
11877 11878 11879 11880 11881 11881 11882 11883 11884 11885 11886 11887	The region's tidal marshes also support a diversity of resident and transient estuarine and marine fish and shellfish species that move in and out of marshes with the tides to take advantage of the abundance of decomposing plants in the marsh, the availability of invertebrate prey, and refuge from predators (Boesch and Turner, 1984; Kneib, 1997). Marine transients include recreationally and commercially important species that depend on the marshes for spawning and nursery habitat, including black drum, striped bass, bluefish, Atlantic croaker, sea trout, and summer flounder. Important forage fish that spawn in marsh areas include spot, menhaden, silver perch, and bay anchovy. Shellfish species found in the marshes include clams, oysters, shrimps, ribbed mussels, and blue crabs (Casey and Doctor, date unknown).

11889	Salt Marsh Adaptation to Sea-level Rise. Salt marshes occupy thousands of acres in
11890	eastern Accomack and Northampton counties (Fleming et al., 2006). Marsh accretion
11891	experts believe that most of these marshes are keeping pace with current rates of sea-level
11892	rise, but may be unable to continue to do so if the rate of sea-level rise increases by
11893	another 2 mm/yr (Reed et al., 2008). Some local field measurements indicate that
11894	accretion rates may be insufficient to keep pace even with current rates of sea-level rise.
11895	Accretion rates as low as 0.9 mm/yr (Phillips Creek Marsh) and as high as 2.1 mm/yr
11896	(Chimney Pole Marsh) have been reported (Kastler and Wiberg, 1996), and the average
11897	relative sea-level rise along the Eastern Shore is estimated as 2.8-4.2 mm/yr (May,
11898	2002). Although some wide marshes may survive under an increase of 2 mm/year in the
11899	rate of sea-level rise, the fringing marshes along the mainland are likely to be lost (Reed
11900	<i>et al.</i> , 2008).
11900 11901	<i>et al.</i> , 2008).
11900 11901 11902	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance,
11900 11901 11902 11903	<i>et al.</i> , 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment
11900 11901 11902 11903 11904	<i>et al.</i> , 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are
11900 11901 11902 11903 11904 11905	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed
11900 11901 11902 11903 11904 11905 11906	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed today, and in some cases already converting to marsh. In unprotected areas, marshes may
11900 11901 11902 11903 11904 11905 11906 11907	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed today, and in some cases already converting to marsh. In unprotected areas, marshes may be able to migrate inland in low-lying areas. Kastler and Wiberg (1996) found that from
11900 11901 11902 11903 11904 11905 11906 11907 11908	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed today, and in some cases already converting to marsh. In unprotected areas, marshes may be able to migrate inland in low-lying areas. Kastler and Wiberg (1996) found that from 1938 to 1990 mainland salt marshes on the Eastern Shore increased in area by 8.2%,
11900 11901 11902 11903 11904 11905 11906 11907 11908 11909	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed today, and in some cases already converting to marsh. In unprotected areas, marshes may be able to migrate inland in low-lying areas. Kastler and Wiberg (1996) found that from 1938 to 1990 mainland salt marshes on the Eastern Shore increased in area by 8.2%, largely as a result of encroachment of salt marsh into upland areas (Kastler and Wiberg,
11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910	et al., 2008). In some areas, marshes may be able to migrate onto adjoining dry lands. For instance, lands in Worcester County that are held for the preservation of the coastal environment might allow for wetland migration Portions of eastern Accomack County that are opposite the barrier islands and lagoonal marshes owned by TNC are lightly developed today, and in some cases already converting to marsh. In unprotected areas, marshes may be able to migrate inland in low-lying areas. Kastler and Wiberg (1996) found that from 1938 to 1990 mainland salt marshes on the Eastern Shore increased in area by 8.2%, largely as a result of encroachment of salt marsh into upland areas (Kastler and Wiberg, 1996).

11912	Where sea-level rise leads to increased flooding of the marsh, some fishes may benefit, at
11913	least in the short term, from an increase in tidal creeks and channels, providing greater
11914	access to the marsh. However, where marshes drown, the loss of marsh primary
11915	production will impair the value of the habitat for fish and shellfish. The area's highly
11916	valued commercial and recreational fishing industry may be harmed if fish and shellfish
11917	production declines as marshes are lost.
11918	
11919	Marsh and Bay Islands. Another key habitat vulnerable to sea-level rise is the islands
11920	within the coastal bays. These islands are undergoing rapid erosion. For example, Big
11921	Piney Island in Rehoboth Bay experienced erosion rates of 30 ft/yr between 1968 and
11922	1981, and is now gone (Swisher, 1982). Seal Island in Little Assawoman Bay is eroding
11923	rapidly after being nearly totally devegetated by greater snow geese (Strange et al.,
11924	2008). Island shrinking is also apparent along the Accomack County, Virginia shore;
11925	from 1949 to 1990, Chimney Pole marsh showed a 10% loss to open water (Kastler and
11926	Wiberg, 1996). The U.S. Army Corps of Engineers has created many small dredge spoil
11927	islands in the region, many of which are also disappearing as a result of erosion (Federal
11928	Register, 2006).
11929	
11930	Sea-level rise can have both a direct and an indirect effect on these islands. The direct
11931	effect is the inundation and shore erosion discussed throughout this report. The indirect
11932	effect is that shoreline stabilization activities can prevent the formation of new islands, by
11933	limiting overwash and formation of new inlets and flood tidal deltas (US Army Corps of
11934	Engineers, 1998). The interruption of these processes may have a more important impact

11935	than the loss of dredge spoil islands, which were never designed to be permanent
11936	features.
11937	
11938	The loss of these bay islands is a concern both because they protect other natural and
11939	developed shorelines and marshes from increased erosion, and because they directly
11940	support numerous bird species. For example, hundreds of horned grebes prepare for
11941	migration at the north end of Rehoboth Bay near Thompson's Island (Ednie, undated).
11942	Several bird species of concern in this region nest on shell piles (shellrake) on marsh
11943	islands, including gull-billed terns, common terns, black skimmers, royal tern, and
11944	American oystercatchers, (Erwin, 1996; Rounds et al., 2004). Shell piles are generally
11945	free of mammalian predators. However, marsh islands are also subject to tidal flooding
11946	which reduces the reproductive success of island-nesting birds (Eyler et al., 1999).
11947	Therefore, as islands experience more erosion and flooding as a result of sea-level rise,
11948	local populations of island-nesting birds may decline.
11949	
11950	Sea-Level Fens. A rare sea-level fen vegetation community grows in the Angola Neck
11951	Natural Area along Rehoboth Bay. Because of its location, the Angola Neck sea-level fen
11952	could be lost as rising seas move inland, bringing nutrient-rich waters that are not
11953	tolerated by sea-level fen vegetation. On the other hand, sea-level rise could cause
11954	groundwater discharge to increase in volume at some locations, which would benefit fens
11955	(Strange, 2008).

11957	Another rare sea-level fen community — one of only four in Virginia — is found in the
11958	Mutton Hunk Fen Natural Area Preserve fronting Gargathy Bay in eastern Accomack
11959	County (VA DCR, date unknown). The Division of Natural Heritage within the Virginia
11960	Department of Conservation and Recreation believes that chronic sea-level rise with
11961	intrusions of tidal flooding and salinity poses "a serious threat to the long-term viability"
11962	of sea-level fens (VA DCR, 2001). If rising seas reach the Mutton Hunk Fen Natural
11963	Area, the influx of nutrient-rich waters may destroy the populations of the rare plant
11964	species at this site, including the carnivorous sundew, and bladderwort (VA DCR, date
11965	unknown).
11966	
11967	Shallow Waters and Submerged Aquatic Vegetation (SAV). The potential effects of sea-
11968	level rise on eelgrass beds have not been studied directly. However, Short and Neckles
11969	(1999) estimate that, in general, a 50 cm increase in water depth as a result of sea-level
11970	rise could reduce the available light in coastal areas by 50%, resulting in a 30-40%
11971	reduction in SAV growth (Short and Neckles, 1999). Where this occurs would depend on
11972	current local conditions such as water depth, the maximum depth of eelgrass growth, and
11973	water clarity.
11974	
11975	Eelgrass beds are essential habitat for summer flounder, bay scallop, and blue crab, all of
11976	which support substantial recreational and commercial fisheries in the coastal bays
11977	(MCBP, 1999). Various waterbirds feed on eelgrass beds, including brant, canvasback
11978	duck, and American black duck (Perry and Deller, 1996).

11980	Tidal Flats. Tidal flats are abundant in this region. In areas where sediments accumulate
11981	in shallow waters and shoreline protection prevents landward migration of salt marshes,
11982	flats may become vegetated as low marsh encroaches seaward, further increasing
11983	sediment deposition and leading to an increase in low marsh and a reduction in tidal flats
11984	(Redfield, 1972). Where sediment deposition is comparatively low, marsh may revert to
11985	unvegetated flat, at least in the short term, before the area becomes fully inundated
11986	(Brinson et al., 1995).
11987	
11988	Loss of tidal flats would eliminate a rich invertebrate food source for a number of bird
11989	species, including whimbrels, dowitchers, dunlins, black-bellied plovers, and semi-
11990	palmated sandpipers (Watts and Truitt, 2002). Eighty-percent of the Northern
11991	Hemisphere's whimbrel population feeds on area flats (TNC, 2006). The whimbrel is
11992	considered a species "of conservation concern" by the U.S. Fish and Wildlife Service,
11993	Division of Migratory Bird Management (USFWS, 2002).
11994	
11995	Coastal Plain Ponds. Coastal plain ponds are small, groundwater-fed ponds that contain
11996	many rare plant species. Because they are near sea level, these unique plant communities
11997	are particularly vulnerable to sea-level rise. Such areas occur along the Eastern Shore and
11998	in the Delaware Inland Bays, especially within Assawoman Wildlife Management Area
11999	on Little Assawoman Bay ¹⁰³ .

¹⁰³ Kevin Kalasz, Wildlife Biologist, Natural Heritage & Endangered Species Program, Delaware Division of Fish and Wildlife in written communication to EPA, 5/14/07 and Chris Bason, Center for the Delaware Inland Bays, written communication to EPA, 5/14/07.

12001	Beaches. The beaches on the mainland behind the barrier island complex of the Eastern
12002	Shore occur as small strips that are relatively stable because they are protected from high
12003	energy wave action. Where beaches erode in front of shoreline protection structures and
12004	are not replenished, there will be a reduction in beach habitat. Loss of beach habitat due
12005	to sea-level rise and erosion below protective structures could have a number of negative
12006	consequences for species that use these beaches:
12007	• Horseshoe crabs rarely spawn unless sand is at least deep enough to nearly cover
12008	their bodies, about 10 cm (4 inches) (Weber, 2001). Shoreline protection structures
12009	designed to slow beach loss can also block horseshoe crab access to beaches and can
12010	entrap or strand spawning crabs when wave energy is high (Doctor and Wazniak,
12011	2005).
12012	• The rare northeastern tiger beetle depends on beach habitat (USFWS, 2004).
12013	• Photuris bethaniensis is a globally rare firefly located only in interdunal swales on
12014	Delaware barrier beaches. The firefly's habitat is at risk because of beach
12015	stabilization and shoreline hardening, which limit dune migration and the formation
12016	of interdunal swales ¹⁰⁴ .
12017	• Erosion and inundation may reduce or eliminate beach wrack communities of the
12018	upper beach, especially in developed areas where shores are protected. Beach wrack
12019	contains insects and crustaceans that provide food for many species, including
12020	migrating shorebirds (Dugan et al., 2003).
12021	

¹⁰⁴ Kevin Kalasz, Wildlife Biologist, Natural Heritage & Endangered Species Program, Delaware Division of Fish and Wildlife in written communication to EPA, 5/14/07.

12022	Coastal Habitat for Migrating Neotropical Songbirds. Southern Northampton County is
12023	one of the most important bird areas along the Atlantic Coast of North America for
12024	migrating neotropical songbirds such as indigo buntings and ruby-throated hummingbirds
12025	(Watts, 2006). Not only are these birds valued for their beauty but they also serve
12026	important functions in dispersing seeds and controlling insect pests. It is estimated that a
12027	pair of warblers can consume thousands of insects as they raise a brood (Mabey et al., not
12028	dated).
12029	
12030	Migrating birds concentrate within the tree canopy and thick understory vegetation found
12031	within the lower 10 km (6 mi) of the peninsula within 200 m (200 yd) of the shoreline.
12032	Loss of this understory vegetation as a result of rising seas would eliminate this critical
12033	stopover area for neotropical migrants, many of which have shown consistent population
12034	declines since the early 1970s (Mabey, not dated).
12035	
12036	E.3 COASTAL POLICY CONTEXT
12037	Less than one fifth of the Delmarva's ocean coast is developed. Unless conservation
12038	policies are reversed or conservation organizations change their priorities, the portion that
12039	is now developed is probably all that will be developed during the next century. All of
12040	Virginia Eastern Shore's 124-km ocean coast is owned by the U.S. Fish and Wildlife
12041	Service, NASA, the State, or The Nature Conservancy. Of Maryland's 51 kilometers of
12042	ocean coast, 36 kilometers are along Assateague Island National Seashore. The densely
12043	populated Ocean City occupies only approximately 15 kilometers. More than three-
12044	quarters of the barrier islands and spits in Delaware are part of Delaware Seashore State

12045	Park, while the mainland coast is about evenly divided between Cape Henlopen State
12046	Park and resort towns such as Rehoboth, Dewey Beach, and Bethany Beach. With
12047	approximately 15 kilometers of developed ocean coast each, Maryland and Delaware
12048	have pursued beach nourishment to protect valuable coastal property and preserve the
12049	beaches that make the property so valuable (Hedrick et al., 2000).
12050	
12051	The mainland along the back barrier bays has been developed to a greater extent than the
12052	respective ocean coast in all three states. Development pressures are greatest at the
12053	northern end of the DelMarVa due to the relatively close proximity to Washington,
12054	Baltimore, and Philadelphia. Although connected to the densely populated Hampton
12055	Roads area by the Chesapeake Bay Bridge-Tunnel, southern portions of the DelMarVa
12056	are not as developed as the shoreline to the north.
12057	
12058	Maryland has the most stringent policies governing development along coastal bays.
12059	Recently, the preservation policies of the Chesapeake Bay Critical Areas Act ¹⁰⁵ have
12060	been extended to the coastal bays of Worcester County, requiring new development to be
12061	set back 100 feet from the wetlands or open water ¹⁰⁶ , and limiting future development
12062	density to 1 home per 20 acres along most undeveloped areas ¹⁰⁷ . The Virginia counties of
12063	the DelMarVa have shores along both the Atlantic Ocean and Chesapeake Bay, and the
12064	100-foot setback that applies along Chesapeake Bay ¹⁰⁸ applies to the coastal bays as well.

¹⁰⁵ See Appendix D for a discussion of these policies.

¹⁰⁶ Code of Maryland Regulations §27.01.00.01 (C)

¹⁰⁷ Maryland Natural Resources Code §8-1807(b).

¹⁰⁸ See Appendix F for a discussion of these policies.

12065	The Delaware Department of Natural Resources has proposed a 100-foot setback along
12066	the coastal bays (DNREC, 2007); Sussex County currently requires a 50-foot setback ¹⁰⁹
12067	

12068 E.4 DEVELOPMENT AND SHORE PROTECTION

12069 As Chapter 5 discussed, ongoing studies are analyzing land use plans, land use data, and

12070 coastal policies to create maps depicting the areas where shores may be protected and

12071 where wetlands may migrate inland. Because the maps from those studies have not yet

12072 been finalized, this section describes some of the existing and evolving conditions that

12073 may influence decisions related to future shore protection and wetland migration

12074

12075 With development accounting for only 15-20% of the ocean coast, the natural shoreline

12076 processes are likely to dominate along most of these shores. Within developed areas,

12077 counteracting shoreline erosion in developed areas with beach nourishment may continue

12078 as the primary activity in the near term. The Corps of Engineers has begun to actively

12079 plan for beach nourishment of the northern part of Assateague Island, to prevent the

12080 increased risks of flooding to nearby developed areas that might otherwise accompany a

12081 disintegration of this barrier island (US Army Corps of Engineers, 2001).

12082

- 12083 Preventing the inundation of low-lying lands may eventually be necessary as well.
- 12084 Elevating these low areas appears to be more practical than erecting a dike around a
- 12085 narrow barrier island (Titus, 1990). Most land surfaces on the bayside of Ocean City were
- 12086 elevated during the initial construction of residences (McGean, 2003). In an appendix for

109 Sussex County, DE. 2007. Buffer zones for wetlands and tidal and perennial nontidal waters. Section 115-193, Sussex County Code. Enacted July 19, 1988 by Ord. No. 521.

Formatted: Bullets and Numbering

12087	EPA's 1989 Report to Congress, Leatherman concluded that the only portion of Fenwick
12088	Island where bayside property would have to be elevated with a 50 cm rise in sea level
12089	would be the portion in Delaware (i.e., outside of Ocean City) (Leatherman, 1989). He
12090	also concluded that Wallops Island, South Bethany, Bethany, and Rehoboth Beach are
12091	high enough to avoid tidal inundation for the first 50–100 cm of sea-level rise.
12092	
12093	Along the coastal bays, market forces have led to extensive development in Delaware but
12094	relatively sparse development in Virginia, largely due to their relative proximity to major
12095	population centers. Worcester County, Maryland, reflects a balance between
12096	development and environmental protection resulting from both recognition of existing
12097	market forces and a conscious decision to preserve Chincoteague Bay. Development is
12098	extensive along most shores opposite Ocean City. Development is along the bay shores
12099	near Ocean City inlet. In the southern portion of the county, conservation easements or
12100	the Critical Areas Act preclude development along most of the shore. Although the
12101	Critical Areas Act encourages shore protection, and conservation easements in Maryland
12102	preserve the right to armor the shore, these low-lying lands are more vulnerable to
12103	inundation than erosion and are therefore possible candidates for wetland migration.
12104	Since 2004, the Maryland Department of Natural Resources has been working with the
12105	U.S. Geological Survey (USGS) to model the risk of flooding and inundation as sea level
12106	rises for Worcester County (MDNR and USGS, 2006). Maryland's Coastal Bays
12107	National Estuary Program has long included sea-level rise as a factor to be addressed in
12108	plans to protect the bays.
12109	

12110	The Maryland Coastal Bays Program considers erosion (due to sea-level rise) and
12111	shoreline hardening major factors contributing to a decline in natural shoreline habitat
12112	available for estuarine species in the northern bays (MCBP, 1999). Much of the shoreline
12113	of Maryland's northern coastal bays is protected using bulkheads or stone riprap,
12114	resulting in unstable sediments and loss of wetlands and shallow water habitat (MCBP,
12115	1999). Armoring these shorelines will prevent inland migration of marshes, and any
12116	remaining fringing marshes will ultimately be lost. The Maryland Coastal Bays Program
12117	estimated that more than 607 hectares (1,500 acres) of salt marshes have already been
12118	lost in the coastal bays as a result of shoreline development and stabilization techniques
12119	(MCBP, 1999). If shores in the southern part of Maryland's coastal bays remain
12120	unprotected, marshes in low-lying areas will be allowed to potentially expand inland as
12121	seas rise.
12122	
12123	E.5 POPULATION OF LANDS CLOSE TO SEA LEVEL
12124	Table E.2 shows the populations of lands close to sea level for the four counties along the
12125	Atlantic Coast of the DelMarVa peninsula. Because Maryland provided LIDAR elevation
12126	data, the estimates for Worcester county are most reliable. In spite of the higher
12127	population densities, Worcester County has fewer people vulnerable to a 50 cm rise than
12128	Sussex County, presumably in part because Ocean City's bay side is mostly 1-2 meters
12129	above spring high water. (See elevation map of Ocean City.) The two counties have
12130	similar populations within two meters above spring high water. With the undeveloped
12131	
12131	barrier islands and generally steep slopes along the mainland, the Virginia counties have

Table E.2 Population of Lands Close to Sea Level: The Atlantic Coast of Virginia, Maryland, and Delaware.

	Low and high estimates of population below a given elevation (thousands)					
	50cm	n	1n	n	2m	
County	Low	High	Low	High	Low	High
Delaware						
Sussex ¹	1.1	7.2	1.1	9.5	7.1	17.0
Maryland						
Worcester ²	0.0	1.1	0.6	3.2	6.4	12.6
Virginia						
Accomack ²	0.8	7.0	0.8	7.6	6.9	9.3
Northampton ²	0.0	0.3	0.0	0.6	0.2	1.1
Total	1.9	15.5	2.5	20.8	20.6	40.0
¹ Figures are for the Watersheds. ² Figures are for the	entire county. Co entire county. Co	unty is split bet unty is split bet	ween Chesape	eake, Atlantic C	oast, and Del	aware Bay ersheds.

Figure E.3

12135 12136 12137

BOX E.1: Elevating Ocean City as Sea Level Rises

Logistically, the easiest time to elevate low land is when it is still vacant, or during a coordinated rebuilding. Low parts of Ocean City's bay side were elevated during the initial construction. As sea level rises, the town of Ocean City has started thinking about how it might ultimately elevate.

Ocean City's relatively high bay sides make it much less vulnerable to inundation by spring tides than other barrier islands. Still, some streets are below the 10-year flood plain, and as sea level rises, flooding will become increasingly frequent.

However, the town cannot elevate the lowest streets without considering the implications for adjacent properties. A town ordinance requires property owners to maintain a 2% grade so that yards drain into the street. The town construes this rule as imposing a reciprocal responsibility on the town itself to not elevate roadways above the level where yards can drain, even if the road is low enough to flood during minor tidal surges. Thus, the lowest lot in a given area dictates how high the street can be.

As sea level rises, failure by a single property owner to elevate could prevent the town from elevating its streets, unless it changes this rule. Yet public health reasons require drainage, to prevent standing water in which mosquitoes breed. Therefore, the town has an interest in ensuring that all property owners gradually elevate their yards so that the streets can be elevated as the sea rises without causing public health problems.

Ocean City has developed draft rules that would require that, during any significant construction, yards be elevated enough to drain during a 10-year storm surge for the life of the project, considering projections of future sea-level rise. The draft rules also state that Ocean City's policy is for all lands to gradually be elevated as the sea rises.¹

Note: 1. This discussion is based on the presentation by Terry McGean, city engineer, Town of Ocean City, to *Coastal Zone 2003*.

12142	APPENDIX E REFERENCES
12143	Boesch, D.F., and R.E. Turner, 1984: Dependence of fishery species on salt marshes: the
12144	role of food and refuge. Estuaries 7:460-468.
12145	Brinson, M.M., R.R. Christian, and L.K. Blum, 1995: Multiple states in the sea-level
12146	induced transition from terrestrial forest to estuary. <i>Estuaries</i> 18:648–659.
12147	Casey, J., and S. Doctor, date unknown: Status of finfish populations in the Maryland
12148	Coastal Bays. Chapter 8.4 in Wazniak, C.E. and M.R. Hall (Ed.) Maryland's
12149	Coastal Bays: Ecosystem Health Assessment 2004. DNR-12-1202-0009.
12150	Maryland Department of Natural Resources, Tidewater Ecosystem Assessment,
12151	Annapolis.
12152	DNREC (Delaware Department of Natural Resources and Environmental Control), date
12153	unknown: Discover Delaware's Inland Bays. Document No. 40-01-01/03/03/01.
12154	Available online at:
12155	www.dnrec.state.de.us/dnrec2000/Library/Misc/InlandBays.pdf. Accessed
12156	<u>1/14/08</u>
12157	DNREC (Delaware Department of Natural Resources and Environmental Control),
12158	2007: Inland Bays Pollution Control Strategy and Proposed Regulations. April
12159	2007. DNREC, Division of Water Resources, Dover, DE.
12160	Doctor, S., and C.E. Wazniak, 2005: Status of horseshoe crab, Limulus polyphemus,
12161	populations in Maryland coastal bays. Chapter 8.7 in Wazniak, C.E. and M.R.
12162	Hall (Ed). 2005. Maryland's Coastal Bays: Ecosystem Health Assessment 2004.
12163	DNR-12-1202-0009. Maryland Department of Natural Resources, Tidewater
12164	Ecosystem Assessment, Annapolis, MD.
12165	Ednie, A.P., date unknown: Birding Delaware's Prehistoric Past: Thompson's Island at
12166	Delaware Seashore State Park. Available online at:
12167	http://www.dvoc.org/DelValBirding/Places/ThompsonsIslandDE.htm. Accessed
12168	1/14/08.

12169	Erwin, R.M. 1996: Dependence of waterbirds and shorebirds on shallow-water habitats
12170	in the mid-Atlantic coastal region: An ecological profile and management
12171	recommendations. Estuaries 19(2A):213-219.
12172	Erwin, R.M., G.M. Sanders, and D.J. Prosser, 2004: Changes in lagoonal marsh
12173	morphology at selected northeastern Atlantic Coast sites of significance to
12174	migratory waterbirds. Wetlands 24:891–903.
12175	Eyler, T.B., R.M. Erwin, D.B. Stotts, and J.S. Hatfield, 1999: Aspects of hatching
12176	success and chick survival in gull-billed terns in coastal Virginia. Waterbirds
12177	22:54–59.
12178	Federal Register, Notices. Volume 71, Number 174, September 8, 2006: Availability of
12179	a Draft Integrated Feasibility Report and Environmental Impact Statement for the
12180	Mid-Chesapeake Bay Island Ecosystem Restoration Project in Dorchester County,
12181	on Maryland's Eastern Shore.
12182	Fleming, G.P., P.P. Coulling, K.D. Patterson, and K. Taverna, 2006: The Natural
12183	Communities of Virginia: Classification of Ecological Community Groups,
12184	Second Approximation. Virginia Department of Conservation and Recreation,
12185	Division of Natural Heritage, Richmond, VA. Available online at:
12186	http://www.dcr.virginia.gov/natural_heritage/ncintro.shtml. Accessed 1/14/08.
12187	Hedrick, C., W. Millhouser, and J. Lukens, 2000: State, Territory, and Commonwealth
12188	Beach Nourishment Programs: A National Overview. Office of Ocean & Coastal
12189	Resource Management Program Policy Series. Technical Document 00-01. March
12190	2000. U.S. Department of Commerce, National Oceanic and Atmospheric
12191	Administration, National Ocean Service.
12192	Kastler, J.A., and P.L. Wiberg, 1996: Sedimentation and boundary changes of Virginia
12193	salt marshes. Estuarine, Coastal and Shelf Science 42:683–700.

|--|

12194	Kneib, R.T., 1997: The role of tidal marshes in the ecology of estuarine nekton. In
12195	Ansell, A.D., R.S. Gibson, and M. Barnes (eds.) Oceanography and Marine
12196	Biology, An Annual Review. Volume 35:163–220.
12197	Leatherman, S., 1989: National Assessment of Beach Nourishment Requirements
12198	Associated with Accelerated Sea level Rise. In U.S. EPA, Report to Congress:
12199	The Potential Effects of Global Climate Change on the United States.
12200	Mabey, S., B. Watts, and L. McKay, date unknown: Migratory Birds of the Lower
12201	Delmarva: A Habitat Management Guide for Landowners. The Center for
12202	Conservation Biology, College of William and Mary, Williamsburg, Virginia.
12203	May, M.K., 2002: Pattern and Process of Headward Erosion in Salt Marsh Tidal Creeks.
12204	Master's Thesis, Department of Biology, Eastern Carolina University, Greenville,
12205	NC.
12206	MCBP (Maryland Coastal Bays Program), 1999: Today's Treasures for Tomorrow:
12207	Towards a Brighter Future. The Comprehensive Conservation and Management
12208	Plan for Maryland's Coastal Bays. Maryland's Coastal Bays Program, , Berlin,
12209	MD, Final Draft, June 1999.
12210	McGean, Terry. City Engineer, Town of Ocean City, Maryland. Presentation to Coastal
12211	Zone 2003.
12212	MDNR and USGS (Maryland Department of Natural Resources, and U.S. Geological
12213	Survey), 2006: Worcester County Sea Level Rise Inundation Model. Technical
12214	Report.
12215	Perry, M.C., and A.S. Deller, 1996: Review of factors affecting the distribution and
12216	abundance of waterfowl in shallow-water habitats of Chesapeake Bay. Estuaries
12217	19:272–278.
12218	Redfield, A.C., 1972: Development of a New England salt marsh. Ecological
12219	Monographs 42:201–237.

|--|

12220	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
12221	Leonard, R.A. Orson, and J.C. Stevenson, 2008: Site-Specific Scenarios for
12222	Wetlands Accretion in the Mid-Atlantic Region. Section 2.1 in Background
12223	Documents Supporting Climate Change Science Program Synthesis and
12224	Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise,
12225	J.G. Titus and E.M. Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA.
12226	Rounds, R.A., R.M. Erwin, and J.H. Porter, 2004: Nest-site selection and hatching
12227	success of waterbirds in coastal Virginia: Some results of habitat manipulation.
12228	Journal of Field Ornithology 75:318.
12229	Schupp. C., 2007: North End Restoration Project Annual Report. Assateague, Island
12230	National Seashore: National Park Service; National Park Service 2007.
12231	Assateague Island North End Restoration Project. Accessed December 13, 2007
12232	http://www.nps.gov/asis/naturescience/resource-management-documents.htm.
12233	Short, F.T., and H.A. Neckles, 1999: The effects of global climate change on seagrasses.
12234	Aquatic Botany 63:169–196.
12235	Strange, E. et al., 2008: "Coastal Habitats and Environmental Implications of Sea Level
12236	Rise: Virginia Eastern Shore," Section 3.9 in Background Documents Supporting
12237	Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal
12238	Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.),
12239	EPA430R07004, Washington, DC: U.S. EPA.Swisher, M.L. 1982. The rates and
12240	causes of shore erosion around a transgressive coastal lagoon, Rehoboth Bay,
12241	Delaware. M.S. Thesis, College of Marine Studies, University of Delaware,
12242	Newark, DE. 210 pp.
12243	Titus, J.G., 1990: Greenhouse effect, sea level rise, and barrier Islands: case study of
12244	Long Beach Island, New Jersey. Coastal Management 18:65-90.
12245	Titus, J.G., and D. Cacela, 2008: Uncertainty Ranges Associated with EPA's Estimates
12246	of the Area of Land Close to Sea Level. Section 1.3b in: Background Documents

12247	Supporting Climate Change Science Program Synthesis and Assessment Product
12248	4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.
12249	Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC
12250	TNC (The Nature Conservancy), 2006: Project profile for the Virginia Coast Reserve.
12251	Available online by searching on "field guides" at
12252	http://www.nature.org/wherewework. Accessed 2006.
12253	USACE (U.S. Army Corps of Engineers), 2001: Final Finding of No Significant Impact
12254	and Environmental Assessment, Assateague Island Short-term Restoration:
12255	Modifications to Proposed Project and Development of a Dredging Plan.
12256	Worcester County, Md. Baltimore District, July 2001.
12257	USACE (U.S. Army Corps of Engineers), 1998: Ocean City, Maryland, and vicinity
12258	water resources study- final integrated feasibility report and Environmental
12259	Impact Statement. U.S. Army Corps of Engineers, Baltimore District.
12260	USFWS (U.S. Fish and Wildlife Service), 2002: Birds of Conservation Concern 2002.
12261	Division of Migratory Bird Management, Arlington Virginia. Table 30. Available
12262	online at: http://www.fws.gov/migratorybirds/reports/reports.html. Accessed on
12263	1/14/08.
12264	USFWS (U.S. Fish and Wildlife Service), 2004: Eastern Shore of Virginia and
12265	Fisherman Island National Wildlife Refuges Comprehensive Conservation Plan.
12266	Chapter 3: Refuge and Resource Descriptions of Northeast Regional Office,
12267	Hadley, Massachusetts. Available online at:
12268	http://library.fws.gov/CCPs/eastshoreVA index.htm. Accessed January 27, 2008.
12269	VADCR (Virginia Department of Conservation and Recreation), 2001: The Natural
12270	Communities of Virginia. Ecological Classification of Ecological Community
12271	Groups. First Approximation. Division of Natural Heritage Natural Heritage
12272	Technical Report 01-1, January 2001.

12273	VADCR (Virginia Department of Conservation and Recreation), date unknown: Mutton
12274	Hunk Fen Natural Area Preserve.
12275	http://www.dcr.virginia.gov/natural_heritage/natural_area_preserves/muttonhunk.
12276	shtml. Last updated 2006. Accessed January 27, 2008.
10077	Watta P.D. 2006: Synthesizing Information Passurass for the Virginia Important Pird
12277	watts, B.D., 2000. Synthesizing information Resources for the virginia important Bird
12278	Area Program: Phase I, Delmarva Peninsula and Tidewater. Center for
12279	Conservation Biology Technical Report Series, CCBTR-06-05. College of
12280	William and Mary, Williamsburg, VA.
12281	Watts, B.D., and B.R. Truitt. 2002: Abundance of shorebirds along the Virginia barrier
12282	islands during spring migration. The Raven 71(2):33-39.
12283	Watts, B.D., 1993: Effects of Marsh Size on Incidence Rates and Avian Community
12284	Organization within the lower Chesapeake Bay. Center for Conservation Biology
12285	Technical Report CCBTR-93-03, College of William and Mary, Williamsburg,
12286	Virginia. 53 pp.
12287	Weber, R.G. 2001: Preconstruction horseshoe crab egg density monitoring and habitat
12288	availability at Kelly Island, Port Mahon, and Broadkill Beach Study areas.
12289	Prepared for the Philadelphia District Corps of Engineers, Philadelphia, PA.
12290	December 2001.
12291	