Impacts of Changing Land Use, Climate, and Atmospheric Chemistry on Forests of the Chesapeake Bay Watershed

Richard Birdsey, Yude Pan, John Hom, Kevin McCullough USDA Forest Service

> Eric Sprague The Conservation Fund

### **Motivation for Assessment**

- Chesapeake Bay Watershed is protected by 24 million acres of forests that:
  - Absorb pollutants
  - Sequester atmospheric CO<sub>2</sub>
  - Maintain air and water quality
- Forest health and services are threatened by:
  - Land use change
  - Climate change
  - Increasing exposure to ground-level ozone and nitrogen deposition

### **Science Questions**

- To what extent are forests threatened by air pollution and land use change?
- What is the current and future capacity of forests to sequester atmospheric CO<sub>2</sub>?
- What are current nitrogen (N) loss and retention rates under chronic N deposition?
- Will forest continue to retain N in the future, and which forests will be more sensitive to N loss?

### **Overview of Presentation**

- Analysis of Chesapeake Bay Watershed land cover and forest trends
- Climate trends and air pollution
- Nitrogen deposition, retention by forests, and future scenarios
- Complications of multiple stressors
- Support for decision making

Land cover of the Chesapeake Bay Watershed

#### **Percent Cover**

| Forest      | 61 |
|-------------|----|
| Agriculture | 29 |
| Wetland     | 3  |
| Developed   | 7  |





## Forest Types of the Chesapeake Bay Watershed

# Percent of total 24 million acres

| Oak-hickory       | 53 |
|-------------------|----|
| Maple-beech-birch | 23 |
| Loblolly pine     | 9  |
| Other types       | 15 |



### **Forest Dynamics**

| Forest Type       | Area<br>(1000 ac) | Change from<br>1990-2000 |
|-------------------|-------------------|--------------------------|
| Oak-hickory       | 12,461            | -34                      |
| Maple-beech-birch | 5,371             | +779                     |
| Loblolly pine     | 2,081             | -180                     |
| Other types       | 3,725             | -553                     |
| Total             | 23,574            | +13                      |



### Forest Carbon Budget, 1990-2000

FORCARB-2 estimators (Heath et al.)

- Chesapeake Bay Watershed forests gained 17 million metric tons C per year
- Forests are highly productive gains represent 9% of the total for all U.S. forests on just 3% of the land area
- Oak-hickory and maple-beech-birch forests gained the most C
- Land-use change caused loss of 2 million metric tons C per year

### Climate and CO<sub>2</sub> Trends in the Mid-Atlantic Region



#### From Mid-Atlantic Regional Assessment

360

350

340 Audd

### Nitrogen Deposition and Tropospheric Ozone Exposure, 1990-1999



### **PnET-CN Model**



**1. Gross photosynthesis** 2. Foliar respiration **3.** Transfer to mobile C 4. Growth and maintain resp. 5. Allocation to buds 6. Allocation to fine roots 7. Allocation to wood 8. Foliar production 9. Wood production **10. Soil respiration 11. Precipitation 12. Interception** 13. Snow-rain partition 14. Snowmelt 15. Fast flow **16.** Water uptake **17. Transpiration 18. Drainage 19. Wood litter 20 Root litter 21.** Foliar litter 22. Wood decay 23. Mineralization 24. N uptake 25. To soil solution

#### PnET Input Layers (1km)



### PnET-C/N Parameters and Validation Data Sets



- •Tree growth
- •Litterfall
- •Foliar chemistry
- •Stream samples





- USFS Forest Inventory and Analysis (FIA)
- USGS National Aquatic and Wetlands Assessment (NAWQA)
- Intensive ecosystem observations (e.g. LTER)
- Results of experiments (e.g. FACE)

#### **Scenarios of Atmopsheric N Deposition**



#### Forest N export and retention in the Chesapeake Basin watershed.

|             |        |                   |                | J · · · · · J · |        |           |
|-------------|--------|-------------------|----------------|-----------------|--------|-----------|
| Tree        | Area   | Total N loss      | Min            | Mean            | Мах    | Retention |
| Groups      | (km²)  | (Mg N)            | (kg N m2 yr-1) |                 |        | (%)       |
| N. Hardwood | 20,298 | 3,013.88          | 0.313          | 1.4847          | 2.725  | 86        |
| Spruce-fir  | 22     | 4.97              | 0.617          | 2.2580          | 4.444  | 78        |
| Oak-hickory | 52,065 | 5,326.24          | 0.179          | 1.0230          | 2.766  | 90        |
| Pine        | 7,404  | 1,023.37          | 0.207          | 1.3822          | 10.590 | 84        |
| Oak-pine    | 14,724 | 2,248.66          | 0.224          | 1.5272          | 5.817  | 84        |
| Region      | 94,514 | 11,617 <b>.00</b> | 0.179          | 1.2291          | 10.590 | 88        |

#### *Current N Scenario (Mean N deposition = 10.04 kg N ha*-1 yr-1)

### Retention of N Deposition by Forests Through 2050





### Retention of N Deposition by Forests Through 2100



### N-saturation Effect: Non-linear Increase in N loss

| Scenarios       | N deposition<br>(kg N /ha/yr) | N loss rate<br>(kg N /ha/yr) | Total N loss<br>(Mg N /yr) | Change<br>(vs. 2000) |
|-----------------|-------------------------------|------------------------------|----------------------------|----------------------|
| 2000 N dep.     | 10.04                         | 1.23                         | 11,617                     | -                    |
| 2050 constant   | 10.04<br>10.04                | 1.56<br>5 30                 | 14,791<br>50 087           | + 27%<br>+ 331%      |
| 2050 increasing | 15.77                         | 3.62                         | 34.250                     | + 195%               |
| 2100 Increasing | 21.51                         | 15.38                        | 145,345                    | + 1151%              |

### Effects of Changing Land Use on N Export

- Current forests export 11,500 Mg/yr
- Loss of 10% of forest cover increases N export by 4,000 Mg/yr (35% increase)
- Gain of 10% forest cover decreases N export by 3,900 Mg/yr (34% decrease)

### Conclusions about N Deposition and Retention by Forests

- The current N retention rate is 88%
- Constant N deposition for 50 years would lower retention to 84% and increase total N export 27%
- Constant N deposition for 100 years would lower retention to 47% and increase total N export by 330%
- Increasing N deposition for 50 years would lower retention to 77% and increase total N export by 195%
- Increasing N deposition for 100 years would lower retention to 28% and increase total N export by 1151%
- Continued N deposition will "saturate" forests causing an increasing inability to retain N
- Increasing N export from forests will dramatically increase the load on N in Chesapeake Bay and it estuaries

#### Complications Regarding Effects of Multiple Factors

Run 1: control Run 2: scenario Run 3: scenario Run 4: scenario Run 5: scenario Run 6: Scenario Run 7: Scenario

> Running years: 1800-2000



Fixed 280 ppmv

No ozone input

No N input

Mean climate

Ramped up to 366 ppmv

Ramped up to current level

Ramped up to current level

**Historical climate** 

### Effects of Interactions of Climate Change and Air Pollution on Forest Productivity

**Forest Annual NPP in Delaware River Basin** 



+20% +11% +5% +41% +31% +22%

The Combined Effects of Increasing  $CO_2$ , Tropospheric Ozone, and N deposition on Forest Productivity = +20% NPP



The N saturation effect is significantly reduced with increasing CO<sub>2</sub>

### Comments on Science Questions and Information Needs

- Scientists need to hear what questions are important from the decisionmakers
- Attributing responses of ecosystems to single factors is complicated by interactions with multiple factors
- It is a great challenge to convey the complexity of ecosystem responses in ways that highlight options for decisionmakers
  - Maps
  - Graphs
  - Focused summary statements
  - Simulation tools

### Effective Communication about Complex Issues

- Instill confidence that information is based on sound science
- Increasing use of integrated data-model approaches (results are realistic)
- Good old-fashioned "resource analysis" is essential

### Barriers to Using Climate Information in Decisionmaking

- Our ability to influence climate is rather limited, so there is a tendency to focus on things we can control
- Climate is just one of many factors affecting ecosystems
- The role of climate could be integrated into analyses as....
  - ...a source of uncertainty
  - ...an issue of risk management

### How to Maintain Dialogue with Decision Makers

- Seek opportunities to use scientific models as decision-support tools in assessments
- Work with stakeholders to develop decision-support tools for more general applications
- Make available summary data sets, model parameters, and functional relationships