text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
 
Computer & Information Science & Engineering (CISE)
design element
CISE Home
About CISE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
See Additional CISE Resources
View CISE Staff
CISE Organizations
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CISE Resources
Subscribe to receive special CISE announcements
Assistant Director's Presentations
CISE Distinguished Lecture Series
Contact CISE OAD
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

All Images


Press Release 06-053
Device Only Atoms Across May Allow Infinitesimal But Powerful Computers

Single-molecule diode may change Moore's "law" of microchip memory

Back to article | Note about images

Single-molecule diodes are gatekeepers for electrons in a circuit.

View video
Researchers at the University of Chicago recently created a single-molecule diode only a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Theorists from the University of South Florida and the Russian Academy of Sciences recently determined how the device works. The researchers found electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another.

Because the molecule in the diode is asymmetrical, it responds to electrical voltage asymmetrically. The channels conduct electrons in one direction but limit flow in the opposite direction, even if the voltage polarity reverses.

Download the high-resolution JPG version of the image. (441 KB)

Credit: Trent Schindler, National Science Foundation

 



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Computer & Information Science & Engineering (CISE)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
Oct 27, 2008
Text Only


Last Updated: Oct 27, 2008