Photosynthesis Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Donald Ort Lab
Archie Portis Lab
Lisa Ainsworth Lab
Steven Huber Lab
 

Research Project: IDENTIFYING AND MANIPULATING DETERMINANTS OF PHOTOSYNTHATE PRODUCTION AND PARTITIONING

Location: Photosynthesis Research Unit

Title: Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis

Authors
item Wittig, V - UNIVERSITY OF ILLINOIS
item Ainsworth, Elizabeth
item Naidu, S - UNIVERSITY OF ILLINOIS
item Karnosky, D - MICHIGAN TECH UNIVERSITY
item Long, S - UNIVERSITY OF ILLINOIS

Submitted to: Global Change Biology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: July 29, 2008
Publication Date: N/A
Publisher's URL: http://blackwellpublishing.com/journal.asp?ref=1354-1013&site=1

Interpretive Summary: The forests in the Northern Hemisphere are an important carbon sink. Rising ground-level ozone is reducing the potential for these forests to act as carbon sinks. In this study, we summarized all of the previous work to date on tree growth responses to elevated ozone concentration. Current background ground-level ozone (40 parts per billion) significant reduced the total biomass of trees by 7% compared to trees grown in charcoal-filtered control treatments. Elevation of ozone to 64 parts per billion, which is approximately the level anticipated for 2050 further reduced total biomass by 11%. The analysis also revealed that angiosperms (broad-leaf trees) are significantly more sensitive to ozone than gymnosperms (evergreens). This has important implications for the make-up of future forests. This study demonstrated that the carbon-sink strength of the Northern Hemisphere forests is already reduced by background ozone and will be even more reduced in the future if ozone continues to rise. Therefore, an important carbon sink that is offsetting global fossil fuel carbon dioxide emissions might be dimished or lost in the future. This paper provides critical information for policy-makers and managers of forest resources.

Technical Abstract: The northern hemisphere temperate and boreal forests currently provide an important carbon sink; however, current tropospheric ozone concentrations ([O3]) and [O3] projected for later this century are toxic to trees and have the potential to reduce the carbon sink strength of these forests. This meta-analysis estimated the magnitude of the impacts of current [O3] and future [O3] on the biomass, growth, physiology and biochemistry of tress representative of northern hemisphere forests. Current ambient [O3] (40 ppb on average) significantly reduced the total biomass of trees by 7% compared to trees grown in charcoal-filtered (CF) controls, which approximate pre-industrial [O3]. Above- and below-ground productivity were equally affected by ambient [O3] in these studies. Elevated [O3] of 64 ppb, which is similar to levels anticipated for ~2050, reduced total biomass by 11% compared to trees grown at ambient [O3] while elevated [O3] of 97 ppb, similar to levels anticipated for ~2100, reduced total biomass of trees by 17% compared to CF controls. The root to shoot ratio was significantly reduced by elevated [O3] indicating greater sensitivity of root biomass to [O3]. At elevated [O3], trees had significant reductions in leaf area, Rubisco content and chlorophyll content which may underlie significant reductions in photosynthetic capacity. Trees also had lower transpiration rates, and were shorter in height and had reduced diameter when grown at elevated [O3]. Further, at elevated [O3], gymnosperms were significantly less sensitive than angiosperms. Taken together, these results demonstrate that the carbon-sink strength of northern hemisphere forests is likely reduced by current [O3] and will be further reduced in the future if O3 rises to elevated levels as projected. This implies that a key carbon sink currently offsetting a significant portion of global fossil fuel CO2 emissions could be diminished or lost in the future.

   

 
Project Team
Ort, Donald
Huber, Steven
Ainsworth, Elizabeth - Lisa
 
Publications
   Publications
 
Related National Programs
  Plant Biological and Molecular Processes (302)
  Global Change (204)
 
Related Projects
   OXIDATIVE STRESS AT ELEVATED CO2 AND IMPACT ON PROTEIN PHOSPHORYLATION
   SOYFACE GLOBAL CHANGE RESEARCH
   GENETIC DETERMINANTS OF SEED PROTEIN AND OIL: CONTENT AND COMPOSITION
   IMPACT OF METHIONINE OXIDATION ON PROTEIN PHOSPHORYLATION
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House