text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 08-118
A Colorful Approach to Solar Energy

Dyed-glass breakthrough channels energy into solar cells

An artist's representation shows a cost-effective solar concentrator.

An artist's representation shows a cost-effective solar concentrator.
Credit and Larger Version

July 10, 2008

View a video interview of electrical engineer Marc Baldo of MIT.

Revisiting a once-abandoned technique, engineers at the Massachusetts Institute of Technology (MIT) have successfully created a sophisticated, yet affordable, method to turn ordinary glass into a high-tech solar concentrator.

The technology, which uses dye-coated glass to collect and channel photons otherwise lost from a solar panel's surface, could eventually enable an office building to draw energy from its tinted windows as well as its roof.

Electrical engineer Marc Baldo, his graduate students Michael Currie, Jon Mapel and Timothy Heidel, and postdoctoral associate Shalom Goffri, announced their findings in the July 11 issue of Science.

"We think this is a practical technology for reducing the cost of solar power," said Baldo.

The researchers coated glass panels with layers of two or more light-capturing dyes. The dyes absorbed incoming light and then re-emitted the energy into the glass, which served as a conduit to channel the light to solar cells along the panels' edges. The dyes can vary from bright colors to chemicals that are mostly transparent to visible light.

Because the edges of the glass panels are so thin, far less semiconductor material is needed to collect the light energy and convert that energy into electricity.

"Solar cells generate at least ten times more power when attached to the concentrator," added Baldo.

Because the starting materials are affordable, relatively easy to scale up beyond a laboratory setting, and easy to retrofit to existing solar panels, the researchers believe the technology could find its way to the marketplace within three years.

The new technology emerged in part from an NSF Nanoscale Interdisciplinary Research Team effort to transfer the capabilities of photosynthesis to solar technology.

The researchers' approach succeeded where efforts from the 1970s failed because the thin, concentrated layer of dyes on glass is more effective than the alternative--a low concentration of dyes in plastic--at channeling most of the light all the way to the panel edges. However, the current technology still needs further development to create a system that will last the 20- to 30-year lifetime necessary for a commercial product.

For additional information, see the MIT release at: http://web.mit.edu/newsoffice/2008/solarcells-0710.html

-NSF-

Media Contacts
Joshua A. Chamot, NSF (703) 292-7730 jchamot@nsf.gov
Teresa Herbert, Massachusetts Institute of Technology (617) 258-5403 therbert@MIT.EDU

Program Contacts
Rajinder Khosla, NSF (703) 292-8339 rkhosla@nsf.gov

Principal Investigators
Marc Baldo, Massachusetts Institute of Technology (617) 452-5132 baldo@MIT.EDU

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Marc Baldo explains a breakthrough solar concentrator he developed with students and collaborators.
View Video
Marc Baldo explains a breakthrough solar concentrator he developed with students and collaborators.
Credit and Larger Version

Photo showing organic solar concentrators that collect and focus different colors of sunlight.
Organic solar concentrators collect and focus different colors of sunlight.
Credit and Larger Version

Photo of Marc Baldo and Shalom Goffri of MIT holding examples of organic solar concentrators.
Marc Baldo and Shalom Goffri, both of MIT, hold examples of organic solar concentrators.
Credit and Larger Version

Cover of the July 11 issue of Science magazine.
The researchers' findings are announced in the July 11 issue of Science magazine.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
July 10, 2008
Text Only


Last Updated: July 10, 2008