text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Geosciences (GEO)
 
Geosciences (GEO)
design element
GEO Home
About GEO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
GEO Education Program
GEO Diversity Program
See Additional GEO Resources
View GEO Staff
GEO Organizations
Atmospheric Sciences (ATM)
Earth Sciences (EAR)
Ocean Sciences (OCE)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional GEO Resources
GEO Education & Diversity Program
GEO Data Policies
Merit Review Broader Impacts Criterion: Representative Activities
GEO 2000
Facilities to Empower Geosciences Discovery 2004-2008
U.S. Global Change Research Program
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 06-097
A Link Between Rainfall and Magnetism

They are nothing alike--except for their underlying mathematics

Both tropical rainfall and magnetism are described by the math of self-organized criticality.

Both tropical rainfall and magnetism are described by the math of self-organized criticality.
Credit and Larger Version

June 29, 2006

Proving yet again that nature pays no attention to academic boundaries, two scientists at UCLA and the Santa Fe Institute have gained a deeper insight into rainfall patterns and atmospheric dynamics by using techniques originally developed for magnetic materials.

Writing in the June issue of the journal Nature Physics, physicist Ole Peters of the Santa Fe Institute and UCLA, and climatologist J. David Neelin of UCLA, argue that the onset of intense tropical rain can be described by the same mathematics as a piece of iron that's making the transition from unmagnetized to magnetized.

To illustrate the principle, explain the two scientists, whose work was funded by the National Science Foundation (NSF), the Department of Energy and the National Oceanic and Atmospheric Administration, imagine that you're dribbling rice grains onto a steadily accumulating mound of rice. Adding one more grain usually does nothing at all, except to make the pile a bit bigger. But eventually, as the sides of the pile get steeper, the balance becomes so precarious that a single falling grain can trigger an avalanche--sometimes even a catastrophic avalanche. At this point of "self-organized criticality," a tiny perturbation can produce a huge response.

So it is with an ordinary iron bar magnet that's near a certain critical temperature. At low temperatures, perturbations don't have much effect. Once the iron atoms in the bar have oriented themselves in the same direction, with their internal magnetic fields adding together, they like to stay that way; the bar is permanently "magnetized." But as the temperature goes up, meaning that the iron atoms are vibrating harder and harder, the disordering effects of the vibrations begin to overwhelm the forces that keep the atoms in line. At the critical temperature, the balance is so precarious that the slightest fluctuation can cause the entire magnet to switch north and south. Again, a tiny perturbation can produce a huge response.

And so it is with rainfall over the tropical oceans, explain the scientists, who based their conclusions on satellite remote sensing data. "The atmosphere has a tendency to move to a critical point in water vapor where the likelihood of rain dramatically increases," says Peters. "The system reaches a point where it's just about to rain; it's highly susceptible. Any additional water vapor can produce a large response."

One near-term payoff from this insight may be more accurate climate models, which currently have a tough time accurately representing precipitation.

"It's known that as water vapor increases" noted Neelin, "that there should be an onset of precipitation. These results tell us much more precisely how that transition occurs--which we can incorporate into atmospheric models".

For more information, see the UCLA news release at http://newsroom.ucla.edu/page.asp?RelNum=7142.

-NSF-

Media Contacts
M. Mitchell Waldrop, NSF (703) 292-7752 mwaldrop@nsf.gov
Stuart Wolpert, UCLA (310) 206-0511 swolpert@support.ucla.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Geosciences (GEO)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
June 29, 2006
Text Only


Last Updated: June 29, 2006