text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
 
Biological Sciences (BIO)
design element
BIO Home
About BIO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
Supplements & Other Opportunities
See Additional BIO Resources
View BIO Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional BIO Resources
FY 2009 BIO Budget Excerpts
National Ecological Observatory Network (NEON)
Funding Opportunities for Neuroscience
Supplements & Other Opportunities
Merit Review Broader Impacts Criterion: Representative Activities
BIO Reports
Merit Review
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 08-193
In Alaska's Forests, Dried Mushrooms to the Rescue?

Tiny organisms may slow global warming

Photo of mushrooms, sphagnum moss and cranberry.

Warmer, drier climate may slow the release of carbon dioxide by fungi that produce mushrooms.
Credit and Larger Version

November 2, 2008

The fight against climate warming has an unexpected ally: mushrooms growing in dry spruce forests covering Alaska, Canada, Scandinavia and other northern regions, according to new research.

Results of the study appear online Nov. 3, 2008, in a paper in the journal Global Change Biology.

When the soil in these forests is warmed, fungi that feed on dead plant material, such as mushrooms, dry out and produce significantly less climate-warming carbon dioxide than fungi in cooler, wetter soil.

The finding came as a surprise to scientists, who expected warmer soil to emit larger amounts of carbon dioxide; extreme cold is believed to slow down the process by which fungi convert soil carbon into carbon dioxide.

"Although microbes such as fungi are among the smallest of life forms, they're also incredibly diverse and abundant," said Matt Kane, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research. "It's becoming increasingly apparent that our understanding of large-scale processes, such as how ecosystems respond to climate change, requires a greater comprehension of the biology of these small creatures."

Knowing how forests cycle carbon is crucial to accurately predicting global climate warming. This is especially important in northern forests.

Global warming is expected to hit northern latitudes hardest, raising temperatures between five and seven degrees Celsius by the year 2100.

"We don't get a vicious cycle of warming in dry, boreal forests, but instead, we get the reverse, where warming actually prevents further warming from occurring," said Steven Allison, an ecologist at the University of California at Irvine (UCI), and lead author of the paper.

Soils in the far north contain carbon from dead grasses, trees and shrubs. Like humans, fungi and bacteria in soil use plant carbon as a food source and convert it into carbon dioxide.

Allison and colleague Kathleen Treseder, also an ecologist at UCI, sought to find out what happens to carbon dioxide levels when boreal forest soil not containing permafrost is warmed.

About one-third of the world's boreal forests do not contain permafrost, which is mostly located in Alaska, Canada, Western Siberia and Northern Europe.

The scientists conducted their experiment in a spruce forest near Fairbanks, Alaska. They built small greenhouses and identified similar unheated plots nearby to serve as controls. Both plots received equal amounts of water.

In mid-May when growing season began, air and soil temperatures were the same in greenhouses and control plots. When greenhouses were closed, air temperature rose about five degrees Celsius, and soil temperature rose about one degree.

The scientists took measurements in the greenhouses and unheated plots and found that by growing season's end in mid-August, soil in warmed greenhouses produced about half as much carbon dioxide as soil in cooler control plots.

A soil analysis found that about half as much active fungi were present in experimental greenhouse samples compared with samples from the controls. When fungi dry out, they either die or become inactive and stop producing carbon dioxide, the scientists said.

"It's fortuitous for humans that the fungi are negatively affected by this warming," said Treseder. "It might help offset a little bit of the carbon dioxide we are putting directly into the atmosphere by burning fossil fuels. It's not so great, however, for the fungi."

This work was also supported by the U.S. Department of Energy and a NOAA Climate and Global Change Postdoctoral Fellowship.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Jennifer Fitzenberger, UCI (949) 824-3969 jfitzen@uci.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Biological Sciences (BIO)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
November 5, 2008
Text Only


Last Updated: November 5, 2008