The work described in this report was supported by the National Science Foundation under Grant
number CMS-0117853. Any opinions, findings, or conclusions are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

Cyberenvironment Project Management:

Lessons Learned

September 5, 2006

B. F. Spencer, Jr.!
Randal Butler?
Kathleen Ricker?
Doru Marcusiu?
Thomas Finholt®
lan Foster*

Carl Kesselman®

! Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL

2 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana,
IL

School of Information, University of Michigan, Ann Arbor, Ml

* Argonne National Laboratory, Argonne, IL

> Information Sciences Institute, University of Southern California, Marina Del Way, CA

Suggested citation: Spencer, B., Butler, R., Ricker, K., Marcusiu, D., Finholt, T., Foster, I., Kesselman, C. "Cyberenvironment Project
Management: Lessons Learned." (September 2006). http://neesgrid.ncsa.uiuc.edu/documents/CPMLL.pdf

pgartner
Text Box
The work described in this report was supported by the National Science Foundation under Grant number CMS-0117853. Any opinions, findings, or conclusions are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Cyberenvironment Project Management: Lessons Learned Page 2

Acknowledgments

This work received support from the George E. Brown, Jr. Network for Earthquake
Engineering Simulation (NEES) Program of the National Science Foundation under
Award Number CMS-0117853; from the National Science Foundation Middleware
Initiative; and from the National Science Foundation's NCSA CORE award.

Many former NEESgrid collaborators and current colleagues provided input and
feedback crucial to the writing of this document. We could not have proceeded without
their assistance and support.

This document could not have been conceived at all, had it not been for the years of close
collaboration of the NEES System Integrator Team that went into making the NEESgrid
a reality. We gratefully acknowledge the extensive and, in many cases, continuing
contributions of the following people to NEESgrid: Daniel Abrams, Kazi Anwar, Sung
Joo Bae, Jean-Pierre Bardet, Cristina Beldica, Joe Bester, Jeremy Birnholtz, Michelle
Butler, Randal Butler, Chris Cribbs, Mike D'Arcy, Shirley Dyke, Jim Eng, Gregory
Fenves, Filip Filippou, Thomas Finholt, lan Foster, Joseph Futrelle, Jeff Gaynor, David
Gehrig, William Glick, Glenn Golden, Scott Gose, Gullapalli, Joseph Hardin, Tomasz
Haupt, Erik Hofer, Dan Horn, Paul Hubbard, Erik Johnson, Anand Kalyanasundaram,
Carl Kesselman, Sung Jig Kim, Young Suk Kim, Samuel Lang, Robert Lau, Kincho Law,
John Leasia, Lee Liming, Doru Marcusiu, Francis McKenna, Dheeraj Motwani, Nancy
Moussa, Jim Myers, Narutoshi Nakata, Laura Pearlman, Gojkhan Pekcan, Jun Peng,
Chase Phillips, Joel Plutchak, Kathleen Ricker, Lars Schumann, Charles Severance, B. F.
Spencer, Jennifer Swift, Suzandeise Thome, Von Welch, Terry Weymouth, Guangquiang
Yang, and Nestor Zaluzec.

For helping give us a clearer picture of where NEESqrid fits into the bigger landscape of
research community cyberenvironments, as well as for their patient willingness to
provide us with the occasional "sanity check,” we would like to thank Danny Powell and
Jim Myers of NCSA. For taking the time to read and offer helpful comments and
suggestions, we'd like to thank Jerry Hajjar of the Department of Earthquake and Civil
Engineering at UIUC and Charles Severance of the School of Information at the
University of Michigan.

And finally, for providing us with her unique and invaluable point of view as a funding
agency representative, as well as her personal support for the writing and eventual
dissemination of this document, we would like to thank Joy Pauschke of the National
Science Foundation.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 3

1 Users and technologists need each other to succeed........... 7
2 You must have atarget and know how to reach it. 9

3 Leadership should be a partnership between technologists

and domain specialiStS.cc.uiiiiiiiiiiii e 15
4 Effective project management is essential at all levels....... 19
5 Communication is Crucial.......cccccceeiiiiiiiiiiiii e 21

6 Good software development practices need to be
established. ... 30

7 Experiment-based software deployment is effective for
helping users to own the software.cccceiiiiiiiiiiineeeeeens 33

8 Cyberinfrastructure is aliving entity.ccvvviiiiiiiiiiinnenee, 35

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 4

Overview

This paper describes important lessons we have learned through our experiences in
community cyberenvironment development, and specifically, through our experience
developing one of the first large-scale community cyberenvironments. That network was
the NEESgrid, which connected earthquake engineering researchers throughout the
United States and the world with each other and with experimental apparatus, enabling
them to breach disciplinary and geographical barriers to deliver innovative solutions to
seismic safety problems.

Like the contents of so many books and articles about project management, most of the
lessons set forth here may seem, at first glance, to be common sense principles, and we
do not wish to imply that our conclusions are somehow entirely new. But
cyberenvironments are breaking new ground. What we learned with NEESgrid and
subsequent similar projects is born of practical experience. We hope that, as more
research communities see how they can benefit from cyberenvironments, they will also
benefit from our experience with these large-scale, community-driven projects.

As an early cyberenvironment, NEESgrid was intended to address the goals of the
George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES)
initiatives. Specifically, these goals included 1) transforming the nation’s ability to carry
out earthquake engineering research, 2) obtaining information vital for developing
improved methods for reducing the nation’s vulnerability to catastrophic earthquakes,
and 3) educating new generations of engineers, scientists and other specialists committed
to improving seismic safety. Fifteen earthquake engineering equipment sites with
advanced testing capabilities were established under NEES to achieve these goals.

Remote Usergys Network for
(Faculty, s = Instrumented
Students, | Structures Earthquake
Practitioners) and Sites Engineeri ng
' Simulation
. - e __7"’_ __“\ i
-4 i B / { _, i
‘ High m -
Laboratory | Performance \ =
Equipment | Network(s) :
|1|1|1|1|1|1 / Ve /4— \ /;" Field Equipment
BE M IIII <=
/\

—>

Curated Data
Repository

Global
Connections
(fully developed
FY 2005 - FY 2014)

= Leading Edge
:]‘] Computation
; .

gt Remote Users:

. (K-12 Faculty and
Laboratory Equipment Students)

(Faculty and Students)

Figure 1: The NEESgrid concept.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 5

To insure that the nation’s researchers could effectively use this equipment, equipment
sites were to be operated as shared-use facilities, and NEES was implemented as a
network-enabled collaboratory. The overall goal was to enable members of the
earthquake engineering community to interact with one another, access unique, next-
generation instruments and equipment, share data and computational resources, and
retrieve information from digital libraries without regard to geographical location. The
portfolio of equipment included new or upgraded shaking tables, reaction wall facilities,
geotechnical centrifuges, tsunami wave tanks, and mobile and permanently installed field
equipment. At each site, participation by off site collaborators was to be encouraged
through advanced teleobservation and teleoperation. Invitations were issued to other
national and international research facilities to join NEES.

Two characteristics that made the NEES system integration (SI) team unusual were its
size and makeup. While NCSA and the Department of Civil and Environmental
Engineering at UIUC (CEE-UIUC) provided overall project management and
administration, the SI team was very much a geographically distributed collaboration,
with key project teams located on the West Coast and throughout the Midwest and the
South. However, the heart and soul of NEESgrid was the cooperative relationship
between more than sixty applications developers, Grid and cyberinfrastructure
researchers, social networking experts, and earthquake engineers at Argonne National
Laboratory, Mississippi State University, Pacific Northwest National Laboratory,
Stanford University, the University of California at Berkeley, UIUC and NCSA, the
University of Michigan, the University of Nevada at Reno, the University of Southern
California and the Information Science Institute at USC, and Washington University in
St. Louis.

NEESgrid brought together a group of prominent, accomplished technologists with
experience as principal investigators and team members on research projects of their
own. The team included researchers who had developed significant, cutting-edge
cyberinfrastructure components, such as Globus and CHEF, as well as similarly novel
applications such as eNotebook and OpenSees. However, for most of the team,
developing a community-driven cyberenvironment was, in many ways, uncharted
territory. NEESgrid was not a conventional single-PI research project. The technologists
were being asked to create something that did not exist, to do so on a massive scale, to
leverage the expertise of diverse, geographically-distributed individual research teams,
gather requirements, analyze them, develop and deploy a system in just three years and
on a modest budget, and—perhaps most challenging of all—to do so in close
collaboration with a community (the earthquake engineers) that was struggling to
understand how it all fit into their world. For this community, the idea of
cyberenvironments was entirely new and presented an entirely different, and even more
daunting, set of challenges.

In this paper, we have tried to distill what we learned in confronting these challenges.

We discuss what worked, what did not, and, in some cases, how we applied these lessons
in later projects. Community cyberenvironment development is a rapidly changing field,

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 6

and each project and relationship will be unique. We hope that others who find
themselves facing similar challenges will find our experience—sometimes painful, but
always valuable—to be of use in navigating these unfamiliar waters.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 7

1 Users and technologists need each other to succeed.

The most important principle of community cyberenvironment development—and one
which we stress repeatedly throughout this document—is that the development of a
community cyberenvironment needs to be a full partnership between the user
community and the cyberinfrastructure technologists. Because the point of the
project is to advance the user community’s ability to conduct research and education, the
technologist community must respond to that community's needs. If the users are to adopt
the software and use it effectively, they must have a primary role in determining its
capabilities and functions.

Careful technologists will take the time needed to understand fully how users
currently work, and why, rather than simply assuming that the innovations they
propose are an inevitable improvement. It can be tempting to skip past this exercise to
focus directly on how things will be in the future, but this step is necessary to help keep
the technologists well-grounded and to aid in helping the two groups better understand
and communicate with each other. Users understand what they need and, moreover, why
they do things the way they do, which is not always apparent to others outside the
community. Technologists need to understand this point, as well to understand that most
researchers are not technologically naive. In other words, cyberenvironment
development is a two-way street—users need to be able to describe to technologists how
they work, and technologists need to be able to explain to users how a community
cyberenvironment can enable them to do even more.

Integrating notions of user-centered, user-driven design into cyberinfrastructure
development can be problematic, however, because cyberinfrastructure and
cyberenvironment development often advances so rapidly that it is far removed from the
everyday experience of most domain researchers. It can be unrealistic to expect potential
users to provide constructive feedback on a technology that doesn't yet exist and that
doesn't even have precursors that provide users with even a vague idea of what they could
be getting, but that, if executed successfully, could have unimaginable and unpredictable
transformative effects on their research and, possibly, their field as a whole.

Thus, it's important to keep in mind that the developers are much more intimate with both
the limits and the potential of the technology itself and are therefore in a better position to
be able to tell the users what they will and will not be able to do with a given component,
feature, or release. Technologists will also be able to make end users aware of already-
existing tools, resources, and services that can be leveraged for domain-specific
applications. Furthermore, it is the technologists' responsibility to design and build
systems that are implementable, extensible, and supportable. Technologists must use
their expertise to build systems that are flexible and that will do more than just meet
today’s needs.

Partnership not only need to begin in the early planning stage, but should be nurtured
throughout the process. Over time, both groups should benefit from the relationship—the

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 8

technologists will understand the user’s needs better, and the users will become much
more knowledgeable about the technology. The following chapters describe in detail
how the need for partnership informs every aspect of the cyberinfrastructure project as a
whole, as well as every stage of development.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 9

2 You must have atarget and know how to reach it.

Take planning seriously. “It’s not the plan that's important, it’s the planning,” goes an
observation often repeated by those who have confronted projects of apparently
overwhelming complexity, from engineers and developers to entrepreneurs to military
strategists. While a well-constructed project plan is valuable, it would not be an
exaggeration to say that the planning process itself is one of the most crucial aspects of
the development of community cyberenvironments. Indeed, it may well be the single
most important stage of the project. Sufficient planning is important for two reasons: it
helps prevent serious execution problems from developing further down the line, and it
helps establish that all-important partnership between technologists and users. It is
during the planning process that effective communication and management strategies are
developed, and it is also during the planning process that the real issues—what the
community wants, what the development team can provide, and what the obstacles are—
can begin to be identified.

At the beginning of the project, technologists and users need to jointly establish and
document what the overall goal of the project will be: what needs to be
accomplished, what can be accomplished, and how it can be accomplished. What
may not be entirely intuitive is that what is to be done requires just as much, if not more
consideration (and, consequently, planning time) as how it should be done. The project’s
goals need to be defined clearly. It shouldn’t be as broad as “make homes safer” or
“prevent hazardous ocean spills.” While these are goals that every earthquake engineer
or environmental scientist likely shares, they are not helpful in shaping the purpose of a
community cyberenvironment project, or ensuring that all participants in the project
remain focused on the goal. During the course of NEESgrid’s development, the lack of a
set of goals and expectations commonly shared with the sponsor, the community, and the
developers resulted in shifts which turned out to be costly both in terms of time and
energy.

One way to avoid such problems is to develop a Requirements Traceability Matrix
(RTM), discussed more fully in Section 4. Because this document explicitly lays out the
needs the users originally specified, it serves to remind everyone of the project’s initial
goals and helps both users and technologists ascertain what a major change in direction
will cost in terms of time, effort, and funding. In our experience, it is easy to get
distracted and add new ideas or change old ones; the RTM is a great tool to keep
discussions between the customer and the technologists focused.

An important part of this decision, and one that may not be entirely obvious, is clearly
identifying who the stakeholders in the project are and what concerns they have. It
may seem easier to simply identify the whole user community or a subset of that
community as the group of people with the most interest in the project's advancement.
However, in many cases the research community is itself evolving, and it's hard to tell
who is likely to be most invested in the project and will therefore actively engage with

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 10

and commit to it. We learned this lesson through hard experience: because NEESgrid
was NSF’s first engineering cyberinfrastructure project, and most earthquake engineers
had very little experience with cyberinfrastructure and therefore weren’t sure what could
be done with it, it was difficult to ascertain who had a vested interest in the project and
what they expected from it.

Expect the planning period to take considerably longer for community
cyberinfrastructure development than for a single-investigator research project,
and expect it to be more formal. Much of the planning for single-investigator research
projects often takes place while the funding proposal itself is being formulated, with
adjustments and revisions occurring later, particularly if the funded project requires
hiring postdoctoral researchers or graduate students. Consequently, individual Pls often
see the planning period of a single-investigator project as a mere extension of the process
that began during the writing of the proposal, and as a result, it may require only a few
months to get the bulk of the details hammered out.

However, because the scale for community cyberenvironment development is so much
larger, and the hurdle for production software so much higher, there is a great deal of
difference between writing a proposal and writing a project plan. Project planners should
expect to take anywhere from six months to two years to formulate a solid blueprint for
community cyberinfrastructure development, expect it to continue to evolve throughout
the project, and have strategies for managing the plan's evolution. Even so, there will
still be may be many factors that can only be nailed down after the project begins.

Expect the planning period, like the development period, to be iterative. In section 6
we discuss the advantages of the spiral development plan for developing software.
Through the use of mockups and prototypes to demonstrate to potential users what the
project is all about, the spiral approach is as useful for determining what is to be
accomplished as how it is to be accomplished. Community members can then provide
feedback which can be used to make modifications in successive iterations until all reach
agreement on the final design.

In developing the initial timetable, it’s important to plan—generously—for the
planning period itself, as well as to ensure that there is more than adequate time
built in for the development phase. In large part because NEESgrid was one of the first
projects of its kind, the SI team underestimated the amount of time required for both the
initial planning period and the project as a whole. The eventual duration of this planning
phase was about a year—considerably longer than expected—and in retrospect, those
involved in the original planning process believe that it may have been better spent
generating pilots and prototypes and soliciting user feedback. The lack of emphasis on
allowing users to interact with early prototypes resulted in major changes in project focus
further down the line, all of which decreased the time remaining to develop the software.
The NEESgrid project was intended to reach completion in less than four years. Projects
of similar size and scope, however, now commonly take anywhere from six to ten years
from planning to completion.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 11

Ultimately, the NEESgrid roadmap became one of our most effective planning tools.
Done in Microsoft Project and based on a Gantt chart, it was instrumental in helping the
project participants determine the order in which to undertake development and
deployment efforts, manage risk, and ensure that the integration effort would meet its
objectives and schedule. The roadmap was critical for coordinating a large, distributed
group consisting of many geographically remote teams and individuals. In developing
and reviewing the roadmap, the team confronted critical issues such as the amount of
effort required for any particular element and a meaningful risk assessment that helped
clarify where significant contingency funds should be assigned during the development
process.

Whatever form planning documents take, keep in mind that they are not static entities,
but living documents. Changes, both major and minor, are inevitable. Planning
documents should be used to note where the plan is less concrete and define in a process
and schedule to work those parts out. All revisions, as well as decisions for software
directions/selections, should be carefully documented and should always be transparent.
In the case of NEESgrid, the roadmap was revised several times and reflected changes in
leadership and approach as more people came to participate both in NEESgrid and in the
planning process, and as more domain scientists—members of the user community—took
a larger role.

Like the development process, the planning process must also be agile and interactive. A
planning document may be exhaustively detailed, but if it is developed without benefit of
continual user feedback, it loses much of its value. In fact, slavish adherence to a project
execution plan without regard for critical changes that would make the system under
development more worthwhile for users is a serious mistake. Early in the project, the
NEES S| Team produced a Project Execution Plan intended to set forth the organization,
systems, and overall plan for managing the project. In the end, it was abandoned for
more flexible, less time-consuming planning tools, and in retrospect, many former Sl
Team members agree that the time spent developing the plan could better have been spent
in developing prototypes that would give the user community the opportunity for more
engagement in the planning process.

Before finalizing your project plans, a number of increasingly complex pilot or
prototype projects should be conducted that build upon and advance the
infrastructure and its capabilities. This approach can help establish that the
technologists and users are working toward the same goals, clarify what will work and
what the community will need, and help determine who should make up the development
team before committing large amounts of resources. These prototypes have an additional
benefit of demonstrating progress to the community and to the funding agencies and are
useful in attracting other members of the community.

S| team members have concluded that NEESgrid could have benefited significantly from
the development of such prototypes during the planning process. As it happened, more
than halfway through the project, NEESgrid did develop two experimental setups that
could be considered prototypes: MOST (the Multi-Site Online Simulation Testbed) and a

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 12

smaller-scale version of this setup dubbed “Mini-MOST.” MOST was a joint project
between UIUC, the NEES SI team, and CU-Boulder that involved simulating, over a
large geographic distance, the response of a two-bay frame structure to an earthquake.
The two external physical supports of the structural frame were at UIUC and Boulder; the
central, inner support, however, was virtual and located in a computational server running
simulation software at NCSA. Despite its late appearance in the project’s duration, the
experiment gave the user community a much clearer sense of what NEESgrid could do
for them—and just as importantly, what the limits of the project were.

ulucC \ KU. Colorado\

Experimental Model Experimental Model

SIMULATION
COORDINATOR

Figure 2: The MOST Experiment.

Mini-MOST was also run successfully as an international experiment with one part of the
experimental frame in Tokyo and the other at UIUC. Not only did its portability and
relatively low cost make it possible to give demonstrations easily at the NEESgrid site,
but it also provided an excellent training tool for new users. In 2004, students at the
Colorado School of Mines and USC traveled to Japan to help construct and conduct a
mini-MOST experiment which connected equipment sites at their respective institutions
with an equipment site at Keio University in Tokyo. The experiment was the first NEES
multi-site simulation test to incorporate a structural control device. The students were
participants in the Research Experiences for Undergraduates in Japan in Advanced
Technologies (REUJAT) program organized by Prof. Shirley Dyke at Washington
University in Saint Louis and Prof. Makola Abdulla at Florida A&M, both of whom also

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 13

were extensively involved in adapting the mini-MOST for use by non-NEES institutions
for research, education, and outreach.’

NEESgrid benefited considerably from making projects such as MOST and mini-MOST
part of the planning process. However, in retrospect, it is now clear that because of
the project’s overall complexity, earlier and more frequent pilots could have greatly
benefited the project.

More recently, and in a different context, a pilot study was used effectively by developers
at NCSA and biologists at Michigan State University involved in developing the Long-
Term Environmental Research Network (LTER). They explored how grid technology
could be used to create a web-based environment for analyzing acoustical data. They
created a “Biophony Grid Portal””’ that demonstrated how researchers could match up the
digital signatures of sounds present in a recording against those in a digital database.

The Biophony Grid Portal was demonstrated at the LTER Coordinating Committee
meeting in September 2005 and again in November at Supercomputing 2005. This
demonstration accomplished several things: it demonstrated to the LTER community
that grid middleware technology could be used to support the community’s research
goals; it served as an exploratory study that identified which middleware components
could best meet the requirements of a production version of an LTER Grid; and it helped
identify scaling as a specific, important issue that Grid technologies could address. Most
importantly, however, it drew the technologists and researchers closer together and
helped cement a partnership crucial for undertaking a longer-term, larger-scale project.
In other words, it served to break the ice: a pilot project provides a way for technologists
who have no prior relationship with the community not only to knock on the door, but
also to walk in and introduce themselves.

Take more time for documenting and developing the design up front. Doing so can
prevent major headaches down the road. During the planning process, take time to plan
the entire lifecycle of the project, including requirements gathering and analysis, design
of the software, development activities, software documentation, unit and systems testing,
the software release strategy, packaging and distribution, and deployment and support
strategies. Don’t forget to build in plenty of time for integration at different stages of the
software release cycle.

Leverage where possible. You will save yourselves an enormous amount of effort and
cost—and your users an equally enormous amount of grief—by employing any existing
software which does what you want it to do and fits into your design. NEESgrid took
advantage of many already-available suites of services and applications such as Globus,
developed at Argonne National Laboratory and the University of Southern California,
which provided Grid support; CHEF, developed at the University of Michigan, which
provided collaborative tools that proved extremely user-friendly; OpenSees, a powerful
computational framework for developing earthquake simulation applications; and Data

® http://cive.seas.wustl.edu/wusceel/minimost/Keio.htm
7 http://www.grids-center.org/news/GCNdocs/biophony.asp

Spencer et al. 9/5/2006

http://cive.seas.wustl.edu/wusceel/minimost/Keio.htm

Cyberenvironment Project Management: Lessons Learned Page 14

Turbine, a commercial product developed by the New Hampshire engineering firm
Creare, allowed users to scroll back through data while the experiment itself was running.

Leveraged software, whether open-source or commercial, still must be integrated and can
present its own set of complications. A cost-benefit analysis of all alternative solutions in
terms of both development and longer-term maintenance should be conducted. If
integrating the software requires too much time, or its requirements end up drastically
limiting the functionality originally promised to the users, it may not be worthwhile.
Finally, a key factor to address when looking at such software is whether it has long-term
support. If the software you choose to integrate is not updated on a regular basis to repair
bugs and resolve incompatibilities, it may in the long run be more of a problem than a
solution—and you do not want to leave that kind of headache for those eventually
responsible for maintaining the completed system.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 15

3 Leadership should be a partnership between technologists
and domain specialists.

As we emphasized in Section 1, it is crucial to envision the project as a partnership
between developers and the user community from the earliest planning stages through the
final phase of transition. In the end, however, one person generally makes decisions
regarding important issues such as priorities and distribution of resources to meet
documented goals. Here, the project director plays a critical role.

We must emphasize, first, that the project director must demonstrate general leadership
qualities. Is this person strong and authoritative, with credibility within his or her field?
Can this person articulate a vision for the project that can integrate the domain needs with
the cyberinfrastructure and see it to its realization, or does he or she tend to be reactive?
Can this person make a significant commitment of time and resources (our
recommendation is as close to 100% as possible) to the project without having to deal
with the distractions of other demands on his or her attention? Does he or she have the
communication skills necessary to make sense of confusing technical explanations for an
audience new to the technology? Is he or she willing and able to make effective, timely
decisions when faced with multiple technology choices and/or technical problems? What
kind of leadership style does he or she possess, and does it mesh well with the group
dynamic and serve the best interests of the project as a whole? These are attributes
important for leading any large project, and it is crucial that whoever takes on the
leadership of a community cyberinfrastructure project possesses them.

Project management is a team effort, and there is no substitute for technical experience.
The project director should possess a strong understanding of computational technology,
available resources, and the development process. However, in bridging the research and
technologist communities, the project director must also possess a strong understanding
of the needs of the user community. Where there is significant overlap between the user
community and the technology community—for example, in certain of the physical
sciences where scientists are often themselves also technologists—a member of the
technologist community can often easily take on the role of director. However, our prior
experience has suggested to us that where users and technologists initially have little in
common, a domain specialist is a more effective leader, mainly because he or she, as a
member of the user community, has a great deal of credibility among fellow engineers or
scientists. NEESgrid, we found, turned out to be just such a case in point.

Where the user and technology communities need to be bridged, the domain specialist
can provide the best of both worlds: an intimate familiarity with the specific needs of the
community and a familiarity with the technical development process, which helps ensure
more effective and realistic development activities. In his or her capacity as director of a
community cyberinfrastructure project, this person’s most important goal is to lead
effectively while creating and sustaining a partnership between research community
members and technology developers.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 16

e A domain scientist—someone well-respected in the community—is often a
more credible advocate for the technology than an “outsider” technologist.
Members of the community need to feel that the project leader—often its most
visible representative and chief cheerleader—is someone who shares their
priorities, someone who has the same things to gain or lose by adopting the
proposed technology, someone they can trust readily because he or she is also
invested in the technology and the effect that it will have on his or her future
research.

e There are some issues of perception with which the leader of a project
involving both IT and domain specialists must grapple to maintain harmony
between the two communities. The project leader needs to be aware of issues
such as best-practice disagreements or perceived discrepancies between funding
levels needed to do software development and faculty research and must be able
to explain and clear up misunderstandings that can cause rifts and resentment. As
we emphasized in Section 2, the community has got to see the greater good in the
project and understand how they will ultimately benefit, both individually.

e A domain scientist is more likely than a technologist to be able to explain to
the user community what the technology is, how it works, and what it is
supposed to do, using language, ideas, and a communication style that make
sense to them. In Section 5, we discuss the importance of good communication
between the development team and the user community in more detail, but let us
just point out here that each research community has its own common vocabulary
that may mean different things to other research groups. Users may tend to find
the explanations of how a particular component works much clearer and to the
point when provided by one of their own, who can “translate” unfamiliar
technology concepts into familiar scenarios more effectively than technologists
from outside the community—or, conversely, who can act as interpreter for the
technologists.

e A domain scientist can identify the community’s most serious questions,
concerns, and criticisms. Inevitably, there will be resistance and even
skepticism regarding the new technology from some parts of the community.
Within a given community, the people who are the most vocal do not necessarily
express the problems that are most important to the community. For outsiders
(such as technologists), it is often hard to discern the community’s real priorities.
An expert in the field can more readily recognize which issues are most important
to a community and help develop appropriate strategies to ensure the success of a
project.

e A domain specialist in charge can help technologists to see things from the
community’s perspective and do things in ways that may seem
counterintuitive to the way a development culture usually approaches
projects. It is in the nature of developers to keep a project on the cutting edge, to
keep adding new features and capabilities. At first glance such new features and

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 17

capabilities may seem positive and exciting, but they may be counterproductive
for a community’s current needs. More importantly, they risk slowing the project
down or derailing it altogether as the developers become bogged down in their
own vision of what the project should be.

e A leader from the user community will understand how other community
members conduct their research, and, as a result, will be aware of what kinds
of software, tools, and services are out there that might be leveraged. Such
awareness can, during the planning and design period, prevent technologists from
inadvertently reinventing the wheel. At the same time, a leader who is fully
aware of the rate at which cyberinfrastructure development advances can better
communicate to the user community the need to keep the project at the forefront
of computational advances. This point is especially important when one considers
that the development period for a given cyberenvironment project can be three to
five years, with an expected operation/maintenance period of ten years or more.

As the user community comes to better understand the project and its potential, its
members may start to view the project’s visions and goals differently. A certain amount
of change and adjustment is to be expected. However, a domain scientist who is intimate
with the development process can help negotiate these possible shifts in requirements so
that other members of the user community understand the consequences of changing
goals in mid-cycle.

Having a technologically savvy expert from the earthquake engineering community in
charge of NEESgrid helped both the earthquake engineers and the developers reach a
working middle ground on a number of issues, such as the spiral development model,
which we discuss in more detail in Section 6. Project managers need to have a view of
the entire development process and to be comfortable with the knowledge that it will
involve uncertainty as parts of the design either are proven to work or need to be
discarded altogether. The spiral development model involves a substantial degree of
uncertainty over a longer period of time. In the case of NEESqrid, this process proved
frustrating to those members of the earthquake engineering community for whom getting
equipment sites on line was a priority, and who needed earlier, relatively precise answers
about the system as a whole. To help alleviate their concerns, the NEESgrid director
pushed for more quality control and quality assurance, as well as for more testing and
validation of the integrated software than is often implemented during development. This
approach greatly increased the confidence of the earthquake engineering community in
NEESgrid's overall reliability.

Ultimately, however, leadership is still a partnership between domain specialists and
technologists. We must also stress that a strong technology team is necessary, with
sufficient breadth, depth, and commitment in both the cyberinfrastructure and research
applications fields to keep up with rapid changes in cyberinfrastructure development and
to design the cyberinfrastructure that will best meet user requirements. This team must
include technical leaders within the overall management team who have solid project
management skills and who are able to see above and beyond the technology itself

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 18

without being married to a specific solution. Even more importantly, they have to be able
to analyze the problem with which they are presented without reformulating it to fit their
preferred solutions.

NEESgrid’s director shared much of the decision-making process with a deputy director
for the project who represented leadership for the project’s technologists. While these
were two of the project's most visible individual leaders, there was, as we mentioned in
Section 1, a large group of subproject leads. Coming as they did from the earthquake
engineering community and the technology community, and from institutions across the
country, they provided specific kinds of leadership in different aspects of the project, and
they were consulted on a regular basis. The project’s chief architect orchestrated the
enormous work of technology integration, and social networking experts spearheaded the
crucial task of requirements gathering within the user community and developing and
maintaining the Requirements Traceability Matrix, which kept everything on track.

Other project leads worked closely with the user community, helping the sites get their
NEESgrid nodes up and running, collaborating on the new focus on data management,
and providing advocacy for both the project and the users. The project manager oversaw
the day-to-day activities of the project and the administration tasks associated with it.
And beneath this top layer of leadership, other SI team members took on crucial
leadership roles in areas such as developing applications and creating the final NEESgrid
package. NEESgrid’s success depended on the crucial skillsets these members brought to
the project as a whole.

The bottom line: choose carefully when selecting people for leadership roles. Making
changes is always difficult down the road. This is true not only for the project director,
but also for people who are tapped for management and advisory positions. Disruption is
always likely when there are changes at or near the top. Partly because NEESgrid was
one of the earliest major community cyberinfrastructure projects, lessons about effective
leadership had to be learned through trial and error, and the disruption that followed
errors created some setbacks. The appointment of a project director who had the
attributes necessary both to lead NEESgrid effectively and to strengthen relationships
within the earthquake engineering community was pivotal to putting NEESgrid on the
road to success.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 19

4 Effective project management is essential at all
levels.

Project management should include the project leadership team, external advisory groups,
funding agency liaisons, and representative user community members who provide input.

Of all these groups, the management team—your leadership team—is the most important.
NEESgrid’s management functions were coordinated through a multi-level management
strategy. At the highest level was a Project Director from within the earthquake
engineering community, a Technical Project Director experienced in large software
development and deployment who provided leadership and guidance on IT issues, and a
Project Manager who oversaw the day-to-day activities and responsibilities of team
members. Interacting constantly—daily, or even several times a day—this team made
decisions based both on their own experience and on the input of the entire management
team. The management team, in turn, included lead investigators from all of the major
project areas—a range of technical activities such as data control, data acquisition,
documentation, and collaboration, and outreach activities such as site deployment,
training, and demonstration/experiments. This larger management team, which met on a
weekly basis throughout the length of the project to discuss project status and issues, was
key to the coordination of activities across the entire project.

The combination of technical leadership from the area leads with direct management of
staffing and budgets from site leads allowed each team to focus on specific
responsibilities. It also freed the technical discussions from site politics and funding
issues. Often, the area leads were able to identify needs for additional work and staffing,
issues that the Project Manager documented and worked out with the site leads. This
separation of responsibilities allowed both teams to focus exclusively on the issues on
which they could act directly.

Make effective use of project management tools. While the success of the project
depends on many things, not least of which is skillful leadership and coordination by the
management team, a variety of invaluable tools are available to help you stay on track, on
deadline, and on budget. NEESgrid benefited from the use of several such tools,
including:

e A Gantt chart. We used a variation of a Gantt chart, a timeline or road map,
which kept us on track, telling us visually what tasks needed to be completed
when and how. Reviewed on a weekly basis and constantly updated, it allowed
the management team to track outstanding or uncompleted tasks. The Gantt chart
provided an effective visual tool that was targeted at the management team and an
effective way to provide progress updates to NSF.

o Effective meetings. For the NEESgrid management team, which consisted of ten

individual project teams scattered across the country, getting all progress reports
heard in a reasonable amount of time on a biweekly basis was a challenge. A

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned

Page 20

“green-yellow-red” quick-hit list format was instituted where issues were
summarized before the bi-weekly teleconference for everyone to review. During

the teleconference, each project lead got three minutes to talk about serious
problems, glitches, and delays (red), work in progress or potential problems
(yellow). Successes and completed tasks (green)—the kind of subject most

people would prefer to talk about at meetings—often were simply never

broached; there wasn’t time. When a presenter’s three minutes were up, their
time was cut off. The remaining meeting time was set aside to address problem

issues.

e A Requirements Traceability Matrix (RTM)®. The RTM provided a formal

representation of user requirements aligned against system functionality and was
used to ensure that all requirements are being met by system deliverables.
NEESgrid’s RTM listed community requirements down one side and system
capabilities across the other, allowing for a straightforward discussion of what
requirements were being met, and how, as well as identifying those that were not
addressed. The RTM captured, in a simple document, all driving requirements
and served as a point of communication between the SI team, NEES community,
and NSF. Most importantly, it served as a way to manage expectations on the
part of the user community, in that it served as a constant reminder of what the

users had originally expected.

It is important, however, to keep in mind that project management tools are only as good
as the project management team’s commitment to them. Schedules and roadmaps mean

nothing if there is neither accountability nor an incentive to continue using them.
Publicize your schedule—and keep to it.

PNNL E-Notebook

Data Models

Experiment-based Development @ Uminn
Experiment-based Development @ Fast-MOST
Data Infrastructure

Packaging/Releases

Documentation

Transitioning

Operations

Jim
Kincho/JP
Chuck
Sridhar/Laura
Joe/Randy
Doru

Cristina

Bill

Doru

Status Current
Project Contact May 12 Status
Experiment-based Deployment Doru/Sridhar Yellow Yellow
Education/Training David GREEN GREEN
Mini-MOST Outreach Shirley GREEN GREEN
Acceptance Planning/Testing Lee/Sridhar Yellow GREEN
Computational Simulation Component Greg/Tomasz Yellow Yellow

GREEN

GREEN

GREEN

GREEN

Yellow

Yellow

GREEN

GREEN

Yellow

GREEN

GREEN

Yellow

GREEN

Yellow

GREEN

Yellow

GREEN

GREEN

Figure 3: Items on the "red-yellow-green' hotlist, which helped to keep project management team

meetings short and effective.

8 http://neesgrid.ncsa.uiuc.edu/documents/TR 2003 13 v1.1.pdf

Spencer et al.

9/5/2006

http://www.neesgrid.org/documents/TR_2003_13.pdf
http://neesgrid.ncsa.uiuc.edu/documents/TR_2003_13_v1.1.pdf

Cyberenvironment Project Management: Lessons Learned Page 21

5 Communication is crucial.

Effective communication is important, among development partners, between
developers and the community, and between developers and outside groups. Good
communication on the part of all parties and an effective feedback loop are extremely
important for the success of a collaborative project.

Communication between Developers and the Community

A major challenge in creating cooperation within a community cyberinfrastructure
development project is bridging the communication gap between the development and
user communities. One consists of computer scientists, programmers, and software
engineers; the other may consist of scientists, engineers, or other researchers to whom
cyberinfrastructure may be a largely new and unfamiliar way to conduct research. Each
community possesses its own expertise and, more significantly, its own work culture and
language, with little overlap.

Clear channels of communication must be established. Both the technologist and
research communities are extremely diverse groups in terms of needs, roles, and skills,
and it's important early on to identify leaders and representatives on both sides who are
able to answer questions and articulate concerns knowledgeably. Within NEES, this was
not entirely apparent early on, which generated much confusion regarding the needs of
the user community and, more specifically, the equipment sites. The funding agency, the
user community, and the technologist community should determine who speaks for which
interested group.

Users are not all the same. Developers throw around the term “end-user” as a way to
identify all customers of their product. The problem with this approach is that it does not
recognize the differences between categories of users. Such an approach is almost
guaranteed to frustrate efforts at communication.

During the NEESgrid project a wide variety of different kinds of users were identified,
each with its own distinct set of goals and requirements. To give you a sense of how
complex the user community can be, we describe different types of users briefly below.

e Site resource providers are responsible for the operation, maintenance, and
support of site experimental equipment. Their needs include understanding the
observational and remote control capabilities of their equipment to remote
researchers, as well as data capturing and archiving.

e Site IT staff and site researchers are responsible for the operation, maintenance,
and support of both computer hardware and software comprising the NEESgrid
infrastructure, these users fall into two subcategories. System administrators need
information about computer hardware requirements, upgrades, and maintenance,
as well as software issues such as maintaining and supporting both the system

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 22

software and the NEESqrid software stack. Site researchers, on the other hand,
are concerned with the interfaces between the NEESgrid software and the site’s
experimental equipment; need well-written documentation describing the
NEESgrid software application programming interface (API) of the NEESgrid
software services.

e Remote researchers and practitioners are interested in sharing experimental
data, or viewing or actively participating in a distributed experiment. This
community needs to understand the capabilities and use of the NEESgrid software
in order to participate either as observers or active participants in an experiment.
Researchers involved in participating in distributed experiments need to
coordinate with staff at each of the collaborating sites to prepare for and
coordinate an experiment in real time.

e NSF program officers represent the funding agency staff interested in viewing
an experiment or in observing community interactions and collaborations. NSF
program officers also must have an understanding of the cyberinfrastructure
capabilities under development. Because some people in this community may
have only a more general understanding of the technologies involved, user
documentation must be of the best quality. Do not underestimate the time and
effort required to communicate effectively with the project funding agency. They
have different needs and, often, a different perspective that technologists need to
understand clearly and appreciate.

e Application developers develop software that interacts with and/or makes use of
NEESgrid capabilities and/or services. For instance, in order to develop software
to control a distributed experiment among multiple sites, application developers
needed a more detailed understanding of what the NEESgrid components were,
how they worked, and why they were necessary. Good documentation and
training aimed clearly at application developers was therefore provided.

While not every cyberinfrastructure project may include every category of users
described above, it will likely include several of them, as well as some not mentioned.
Technologists should work to document all the kinds of users with whom they will need
to communicate and how to best serve their unique needs.

Communication is a two-way street. Developers and users often approach the same
problem from two different frames of mind. Developers may strive for elegance of
design, while users want something that is practical and can address their needs as soon
as possible. By themselves, both approaches can be flawed: one may result in a
“perfect” design that may simply never be practical or useful, while the other may result
in a set of disparate tools that turns out only to be a quick fix and becomes outdated too
rapidly to be useful. It is important for technologists to make sure that applications
researchers have a clear understanding of what a given project can or cannot deliver, and
that both are using the same terminology. Likewise, it is absolutely crucial for members
of the application community to ask for clarification when descriptions are unclear, to

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 23

give considerable thought to what needs the project should address, and to express those
needs clearly to the development team.

The NEESgrid collaboration experienced initial tension because it was, in a way, a
collision between two such disparate cultures. As a result, the project team made a
number of assumptions that turned out to be erroneous, creating difficulties in defining
the community’s initial requirements. In some cases, language was at fault—specifically,
differing terminologies and differing use of common phrases. A word that means one
thing to a computer scientist may mean something very different to an earthquake
engineer. Consequently, we learned that understanding, mapping, and using the language
of the applications community was crucial to successful community building.

As we discussed in Section 3, judicious selection of a qualified project director from the
user community can go a long way in bridging this cultural and linguistic gap. But there
are other aspects of communication that need to be reinforced for a successful
relationship between the development and user communities.

Choose carefully who speaks for the technologists. The technologists among us freely
acknowledge that many software engineers are less noted for their communication skills
than for their development prowess. As a result, they may not always be aware of the
impact their words have on user community members. A common miscommunication is
the confusion of what, in the abstract, is technically “doable” versus what is “doable”
within the context—and constraints—of the project itself. When a developer says, “Yes,
that can be done,” he may merely mean that it is theoretically feasible to implement a
particular feature. However, without the intercession of the management team—who is
both aware of the priorities and constraints of the project in a way that the developer may
not be—and who also has the power to say no—the user may then interpret this as a
commitment, which can cause conflict within the community when it proves impossible
to make good on the promise.

At the outset, users need to be able to see the end goal as clearly worthwhile.
Developers are paid to create the software, but users are compensated little, if at all, for
their efforts in adapting, learning to use, and testing the software. Users need to perceive
that they are getting something important out of the project and that their input is valued
in order for them to be fully engaged from the beginning.

If users do not know what to do with the software, or why they should use it, they
will never use it, because they do not know they need it yet. Ideally, you want the
users to know what the benefits will be to them early in the project in order to initiate a
feeling of excitement and anticipation about the project. We cannot emphasize enough
the importance of early and frequent pilot projects, which can most effectively give users
an idea of what the software can do for them, as well as a starting point for improving
design and functionality.

Do no harm. Users are often committed to existing solutions. They want to know what
they can do with the new tool that they cannot already do with existing tools.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 24

Technologists, on the other hand, often approach the users with existing solutions in
mind. As a result, technologists often force on users a set of solutions that the users
neither understand nor need, ending in frustration and wasted effort for all concerned.
Technologists need to understand why and how users already do things. With the new
tool, users should be able to do what they already do and either make that easier or, at the
very least, not make it any more difficult. The new tool should only provide new
capabilities and improvements to the current way of doing things. If no way is found to
improve on the existing technology, it might be a sign that the project’s overall goals and
objectives need to be adjusted. As discussed in Section 2, before beginning the design
process, existing tools should be identified that will provide the functionality the user
community needs. The rationale for building a new tool should be clearly articulated.

Developers need to ensure that users are trained sufficiently in the use of a tool
before assessing whether the tool meets the needs of their community. While users
should be responsible for making a sincere effort to try the tool out, technologists should
be sure to allow for enough time for users to learn and apply new tools before
determining that the tool simply doesn’t work and discarding it. Rigorous user testing is
also necessary to eliminate bugs and glitches and ensure that users are satisfied with the
final product.

Users need to be able to take ownership of and responsibility for their
infrastructure. Mechanisms to support the user community as they take responsibility
for their infrastructure need to be developed in advance. Requirements of what will be
needed for the community to take ownership, maintain, and evolve the project need to be
clearly defined early in the project in order for the community to hire, train, and involve
their own technical staff while expertise from the IT team is available.

Do not overestimate the community’s grasp of the new technology and the
development process. Technologists need to ensure that the community understands
fully both the purpose and the use of the software. At the same time, do not underestimate
their ability to learn the new technology quickly.

Demonstrations of prototypes should be planned to solicit feedback, to demonstrate
progress, and to build the community's confidence in the implementation. Providing
a research community with concrete examples of what a system will be able to do is
essential to increasing the likelihood that it will be successfully accepted and adopted.
This is the first step in this iterative approach to software development, discussed in
Section 5, which involves implementing a prototype system early on at a cooperating
early adopter site and, through collaboration with that site, making incremental
adjustments and upgrades. Enabling the applications community to see what they will be
getting and what it will be able to do for them can strengthen their relationship with the
developers; in addition to demonstrating progress, it also provides a way for the user
community to give feedback and help shape the final product to a much greater extent,
particularly in the case of data and collaborative tools.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 25

Several such demonstrations took place throughout the development of NEESgrid,
beginning with a prototype demonstration at the University of Nevada at Reno in late
2002 that remotely tested three shake tables; a three-site test in July 2003 called the
Multi-Site Online Simulation Test (MOST) that combined physical experiments at the
University of Colorado at Boulder and UIUC with numerical simulation at NCSA; and
the NEESgrid Reference Implementation,® which consisted of two miniaturized versions
of MOST that sites could use to test their installations.

In retrospect, we believe that there should have been more such prototypes and
demonstrations—and earlier. We recommend, in fact, that on the very first day of the
project, the project team should make a “mockup”—in as simple a form as a set of
presentation slides—available to the user community. Doing so helps not only to give
the users a good sense of what they will be getting, but also to clarify what users need at
the beginning of the design process.

As community engagement increases, continuously gather and update user requirements
in a formal and systematic manner that allows for sound decisions about future software
directions. Map the user requirements into your requirements traceability document
(described in Section 2) to show specifically how each user requirement is mapped into
the software's functionality.

Workshops where the users participate to learn about project status and prototype
demonstrations provided valuable ways in which to build the relationships between
the IT and the scientific community. During NEESgrid a few training workshops were
held, even before the final software release, to start familiarizing the system
administrators of the local NEES hardware with the software and to get them better
acquainted with the software developers. Such workshops are valuable also for gathering
feedback on the system and understanding documentation needs.

% http://cive.seas.wustl.edu/wusceel/minimost

Spencer et al. 9/5/2006

http://neesgrid.ncsa.uiuc.edu/documents/TR_2004_04.pdf
http://cive.seas.wustl.edu/wusceel/minimost

Cyberenvironment Project Management: Lessons Learned Page 26

Figure 4: Workshop held at Newmark Laboratory, UIUC, April 14, 2004.
Communication within the Development Community

It should go without saying that a close-knit team of talented developers is essential to
any project. Brought together in 2001, the NEES System Integrator team was just such a
group, counting among its numbers the key developers and architects of several
important technologies that would play major roles in the evolution of cyberinfrastructure
development, such as Globus, CHEF (now Sakai), and many of the tools developed
under the NSF Middleware Initiative.

Integration should be a focused effort: so much so, in fact, that these projects should
emphasize integration; development is secondary. Obviously, development will be
needed to fill technology gaps and to aid in integration, but all team members need to
understand that they are building an integrated “system,” and that close cooperation is
required. Including all developers, testers, documenters, trainers, and software release
engineers in the integration effort ensures that software versions are uniform,
accomplishes the component integration tasks more efficiently, and facilitates testing the
release as a complete system. In short, the team must be working from a common
architecture and design principles with the goal of integrating the collection of software.
Documentation is important, but equally so is effective communication among the
development teams.

Do not let dates slip during development phase. Admittedly, this principle can be hard
to follow. Despite the best planning, unforeseen obstacles can still prevent the delivery
of a specific feature by a particular date, and such delays can strain the relationship
between the technologists who are providing the functionality and the users who are
expecting it, whose research may depend on its being released by a certain date. Such
problems can be avoided by approaching software releases in two different ways. The
first approach is a timed release, in which you target a specific date and release the
software on that date regardless of what new functionality it includes. The second

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 27

approach is a functionality release, in which a particular date is not specified, and the new
functionality is released when it is ready. For our part we found that a timed release was
a better strategy for keeping the project on schedule. We augmented this strategy with
feature releases (as they became available) interspersed between the timed releases.

Focus is extremely important; immersion works. One important way NEESgrid
developers succeeded in sticking to deadlines for final releases was to hold week-long
development sessions we called “integration weeks.” These sessions allowed the team to
immerse themselves in the project without distractions. All members of the team would
gather in one place to finish a release, with the goals to be met by the release clearly in
mind. Integration week was very structured: each morning and evening, the team would
meet to talk about what had been achieved, what the next objectives would be, and
whether priorities needed to be readjusted. During the day coffee and meals would be
provided—the team often quite literally would not leave the building. Everyone was
entirely focused and dedicated to meeting the deadline. As an important side benefit, the
week-long immersion strengthened relationships within the IT group and promoted a
team approach to resolving problems and making progress toward the goal.

Testing and validation is a key aspect of integration. Each integration week had as its
target the production of a well-tested release that met certain criteria established in
advance. For NEESgrid, the software and documentation was tested in the Mini-MOST
testbed as a way to validate the release. This sort of real testing meant that just getting
the software to build and deploy was not good enough; it also had to work as
documented. In addition, we had a set of well-defined acceptance tests that were
developed in collaboration with the community. The team utilized these acceptance tests
during the integration week as a way to test modules (unit tests) and test the entire system
(workflow tests) more fully.

Communication between Developers and Relevant Groups Outside Project

Both developers and the funding agency need to understand the broader
significance of what is being done. Cyberinfrastructure projects are often not merely
stand-alone projects, but important models that are of interest to other communities. In
the case of NEESqrid, developers were dealing with earthquake engineers, but discovered
that the project was being watched with interest by other communities, such as
environmental scientists, seismologists, and oceanographers, who saw NEES and
NEESgrid as the first of many such “observatories” to be built. Members of a
cyberinfrastructure development team should think carefully about how their project is
being viewed by other communities, and how they can leave a lasting, positive
impression.

Relationships with external groups should foster an environment of support and
mutual trust. While the project management team’s leadership is central, good
relationships with other management groups are important. In the case of NEESgrid, the
Project Director also coordinated formal communication between the project and the Pls
at the equipment sites, the NEES Consortium Development Team, and the National

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 28

Science Foundation.”® The Consortium Development Project, a project of the
Consortium of Universities for Research in Earthquake Engineering (CUREE), was
responsible for the creation of the NEES Consortium and the submission of the original
proposal for building and operating the NEES collaboratory.

The Executive Advisory Board, an independent entity comprising prominent domain
scientists and IT experts, served in an advisory capacity to the NEESgrid Project
Director. The Board’s makeup ensured that both the interests of the earthquake
engineering community and perspectives regarding technical fields central to the
NEESgrid system architecture and user interface components were well-represented. The
EAB met twice a year to review and make recommendations on NEESgrid technical
directions, strategies, and project management; recommend strategies for improving
communications with the community and with the National Science Foundation; and
advise the Project Director as needed on overall administrative issues.

An Executive Advisory Board with sufficient depth and breadth in both the
cyberinfrastructure and application fields can be a valuable ally to the management team
and to the project team as a whole, providing honest assessments of the team’s progress
while advocating for the project to sponsors and the community. For this to occur,
however, the members of the EAB have to be as committed to the project as the project
team themselves. And, just as importantly, there needs to be close, regular interaction—
and, most important, trust—between the EAB and the management team. A regular and
frequent review of the cyberinfrastructure project by a project external advisory
committee can keep the project from becoming too insular and ensure that the team keeps
up with new developments in cyberinfrastructure capabilities.

It has also been suggested that having representatives from other user communities on the
EAB might prove advantageous, in the sense that tools and applications could be
leveraged from those communities to the current project. Likewise, these representatives
could explore the possibility of applying the technologies currently under development to
technological problems confronting their own communities. In any case, broader
communities with whom the user community may need to interoperate should be
identified—these may be not only research communities, but educational and
international communities as well.

The project lead is not just responsible for managing “down” (within the project)
but also for managing “up”—making sure that the sponsor and others are satisfied
with the project's progress. A close, positive relationship provides strong impetus for
NSF to help move the project forward and provide direction. For that to happen, the
sponsor needs to know that progress is being made and that the things that need to be
done are getting done. The sponsor needs to stay in touch not only in the matter of status
and direction, but in order to help the project leadership to succeed through promoting
relationships with other communities and providing awareness of current issues.

10 http:/Awww.nees.org/About NEES/History/

Spencer et al. 9/5/2006

http://www.nees.org/About_NEES/History/

Cyberenvironment Project Management: Lessons Learned Page 29

Genuine partnership in this context can be challenging; it is sometimes hard to
distinguish from micromanagement. The funding agency representative who wants a
good working relationship makes frequent site visits, takes tours, and is intimately
familiar with everything the project does; at the same time, he or she does not get buried
in details but maintains an effective high-level relationship.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 30

6 Good software development practices need to be
established.

In any project, managing software development must address issues related to version
control, backups, integration, testing, and packaging to name a few. The larger the
software development project the more critical these issues become. Releasing a quality
product requires disciplined use of testing procedures and infrastructure.

Software development practices vary from one institution to another as well as from one
developer to another, which means that identifying and imposing a single standard for
software development can often be challenging. A more feasible approach is to achieve
agreement about some common practices such as modular design, software management
control policies, quality assurance through unit testing, development of appropriate
documentation, definition of APIs (or Web services interfaces), identification of
dependencies, and proper integration testing of components as a whole system.

Some of the common practices that we emphasized for NEESgrid included:

e Testing and quality assurance. The testing framework for the software
components, as well as the integrated system, is critical to project success.
A feature may function as expected one day; make a small change, and it
may not work at all the following day. Moreover, all features may work
independently, but a change in one component by a single developer may
cause trouble with the integrated system. Tests must be repeated
frequently—ideally, daily or even multiple times a day if necessary.

e A modular design approach. It is important to be able to adopt part of the
package and scale up to the full-blown package over time—users may want
one part of the bundle, but should not have to take the whole thing. Do not
give people too big a bite to handle.

e Documented code. All software code must be documented in sufficient
detail that it can be readily supported by other developers. Standard code
documentation guidelines should be enforced.

e Documentation of design philosophy and changes to original plans.
Design decisions change for good reasons, but those reasons are often
forgotten. If not documented, decision processes tend to be repeated
unnecessarily.

e Source code revision control. All code must be accessible by all
developers in a proper source code revision control system. Otherwise, time
is wasted dealing with inconsistent versions and other problems.

e Additional documentation, including documentation geared to the
technical maintainers of the systems/hardware and manuals for the
system’s users. During the course of NEESgrid development each
component was meticulously documented, and manuals were updated
regularly as necessary. The documents were made available online through
a sortable database at the NEESgrid website.

Spencer et al. 9/5/2006

http://www.neesgrid.org/news/documents.php?sort=subj

Cyberenvironment Project Management: Lessons Learned Page 31

e A spiral development strategy should be employed to manage expectations in
the user community and to get appropriate feedback about prototypes that can be
incorporated into future design and implementation. Technologies essential to the
development of cyberenvironments evolve both rapidly and perpetually. An
iterative, or spiral development model, uses existing implementations to develop
prototype solutions while preparing to port prototypes to newer implementations
that will be available in the future.

Based on the NEESgrid software development plan, the release schedule of dependent
software, the need to develop early prototypes, and the recognition that some
requirements were likely to be revised or significantly changed, a plan for the distribution
of the NEESgrid software was established. The software distribution plan consisted of
three major releases, with minor release in between major releases as required.

e The first software distribution consisted of the basic NEESgrid functionality and
was distributed only to a subset of the community identified as early adopters.
Early adopter sites were identified as those sites that were prepared to work
directly with the system integration team to deploy, test, and provide
feedback about the NEESgrid software.

e The second software distribution was designed to represent a nearly complete set
of functionality of the NEESgrid system. This distribution was targeted to the
entire NEESgrid community as a way to get them early exposure to the software
and capabilities.

e The final distribution was targeted to the entire NEESgrid community and was to
differ from the second release only in offering a hardened version of the
NEESgrid software. In reality, the final distribution included some capabilities
that were intended for the second release but were not included for various
reasons.

Experiment-based development (use scenarios) enables developers to anticipate
revisions to requirements and engage parts of the user community early on in the
project. This approach includes the identification of real-world experiments and
workflows that can be used to test integrated software services and capabilities
throughout the development process. During this phase, members of a system integrator
team work closely with a small number of user community sites to develop early
capabilities and demonstrate them, while at the same time involving real users closely in
the development. The prototypical example of this process was the MOST experiment.
Not only did this approach help validate the first prototypes, but new and revised
requirements could also be identified early enough in the project to prevent a significant
impact on final implementation. These new or revised requirements could be used in the
spiral software development model to provide more useful software in the next release.

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 32

For NEESgrid, this approach also led to the development of the NEESgrid Reference
Implementation, also known as Mini-MOST, which was a physical model representative
of a simple experiment that could be used to validate future software in a lab
environment. This relatively inexpensive physical experiment was built and used to test
later version of NEESgrid software by the system integration team developers without the
need to use full scale equipment at any of the early adopter sites. This same apparatus
could be used by other equipment sites to validate their deployment of the NEESgrid
software before using their expensive full-scale equipment.

e O P

Figure 5: The Mini-MOST implementation in use at a NEESgrid workshop for system
administrators in April, 2004,

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 33

7 Experiment-based software deployment is effective
for helping users to own the software.

Experiment-based deployment provides an effective method for site integration and
functionality validation and can help kick off software handoff. The process involves
experiments proposed by equipment sites or individuals within the user community on
which members of the technologist community collaborate. Experiment-based
deployment allows the Sl team to test the system's architecture and components, identify
new requirements as they arise, and engage a larger part of the community in the
deployment effort while at the same time giving them the opportunity to begin doing
science.

NEESgrid 2.0 was the point where the NEES SI team turned from experiment-based
development to experiment-based deployment, with the goals of understanding and
gaining experience with site integration with the NEESgrid software and validating the
software using real site-specific experiments. The selection of equipment sites for early
deployment was determined by their willingness to work with us as well as their level of
technical and IT sophistication. As the target date for the final release approached,
deployments became more and more routine. Our objectives for each site included 1) a
successful deployment, 2) validation that the software was working at a site, and 3) site
acceptance of the software.

For each experiment, the equipment site involved would plan and communicate the basic
experiment to the SI engagement team, including such information as the identification of
a project lead, technical contacts, experiment requirements, and an estimated time frame
for the experiment. Once the Sl had confirmed the proposal’s feasibility based on the
available capabilities and features of the NEESgrid, the SI engagement team worked
directly with the ES project lead to coordinate the implementation tasks in preparation for
the experiment. After the experiment was successfully run, the ES was expected to
provide a report of the experiences and results of the experiment, and to release software
that was developed in collaboration with the SI. Reports and software were posted on the
NEESgrid web site and were used to validate the status of ES engagement in NEESqrid.
These also provided valuable feedback to the engagement team to improve the
experiment-based deployment process at the remaining ES sites.

An example of one such experiment involved a tsunami basin apparatus, located at
Oregon State University. This was hooked up to both video capture and the NEES data
acquisition mechanism, which then stored the experimental data along with metadata in
the site’s NEESpop server. Both the development team and the earthquake engineers at
OSU were pleased with the experiment as a whole. The experiment used the existing Sl
components available in the NEESpop in a new and different way, the engineers
observed that the setup permitted them to do in a very brief time something that would
have been very time consuming if performed manually, and the SI team received useful

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 34

feedback about improvements that would need to be made to the NEESpop hardware
specifications. A more detailed description of this process may be found online.™

As sites deployed the NEESqrid software, they had to integrate it with their local
environment. The early sites were encouraged to make their implementations available
to the community. Often, other sites had similar equipment and setups; these additional
reference implementations directly helped other sites get online faster. It was an
important advance in that it was the community's first step towards the self-sufficiency
that we describe in the final section.

Y http://neesgrid.ncsa.uiuc.edu/documents/NEESgrid_epd_strat req v1.0.doc

Spencer et al. 9/5/2006

http://www.neesgrid.org/documents/TR_2003_17.pdf
http://neesgrid.ncsa.uiuc.edu/documents/NEESgrid_epd_strat_req_v1.0.doc

Cyberenvironment Project Management: Lessons Learned Page 35

8 Cyberinfrastructure is a living entity.

When a development team delivers the finished technology to the community, the
community must be prepared to support and possibly extend it. Good communication
(Section 5), experiment-based development (Section 6) and experiment-based
deployment (Section 7) help ensure successful adoption of the software by the
community as a whole. ldeally, the developer should also be the operator.

However, there may be circumstances where, for whatever reason, the cyberinfrastructure
development team hands the technology off to a third party to maintain, support, and
upgrade it. In the case of such a handoff, a smooth transition is crucial. If the
developer will not be responsible for long-term maintenance, then there should be at
least a year's overlap between the developer and the operator to fix bugs and to ensure
that the operator understands the software capabilities.

Those involved in the handoff need to work closely together to define a transition
plan to define tasks, timelines, and responsibilities among the technologists and the
community to which the transition is being made. In October, 2004, the NEES SI
team handed off responsibility for maintenance and support of the NEES network to the
NEESit Services Center, operated by the San Diego Supercomputing Center at UCSD.
Six months ahead of time, the two teams began working cooperatively to put together a
detailed transition plan that took into account all the areas that would require attention
and catalogued in painstaking detail all the tasks associated with those areas and those
people who would be responsible for them. Until the formal handoff on October 1, 2004,
the transition was managed as a project in and of itself. With the exception of a modest
number of bug fixes and adjustments, the handoff was a success. However, were we to
suggest improvements in the process, we believe that closer involvement between the
development team and the maintenance team could only help. Specifically, during the
first year of operations, both the cyberdevelopment team and the cyberoperations team
should jointly operate the software, with the former transitioning into the full operation in
year two and the latter helping the user community to use and adopt the software features.

Because the cyberenvironment is a living entity, it is important for the
infrastructure support team to remember that the lessons of the original
development process continue to be applicable. The original SI team fulfilled all of its
deliverables, but neither the technologies on which the system was based nor the needs of
the user community stopped evolving. Furthermore, user community adoption does not
happen within a year or two. Software needs to be tested and tried by the community to
assess what works and what does not. Technologists within or external to a community
who are maintaining the software/system need to be proactive in keeping that partnership
alive. They must seek out and identify users who can benefit from the software and help
them adapt the software to their needs and learn to use it. 1f no one knows the software is
there, or what it can do for them, or how to use it, it will cease to be useful. It is our
experience that technology as complex as NEESgrid, as an example of a
cyberenvironment, requires solid support and, more importantly, advocacy to build
acceptance and enthusiasm and to continue to evolve the cyberenvironment to meet the

Spencer et al. 9/5/2006

Cyberenvironment Project Management: Lessons Learned Page 36

needs of the community. Thus, a plan for using for the cyberinfrastructure as delivered
and leveraging its acceptance in the user community to extend its functionality has to be
well-defined.

The relationship between communities is also a living thing. We began this paper by
emphasizing the importance of a strong partnership between technologists and users, and
we emphasized that this partnership is important from beginning to end. However, in
closing we should emphasize that while it's important that users are able to “own” the
technology and become self-sufficient, the benefits of maintaining ties to the CI
technologist community are very worthwhile.

Involvement between the earthquake engineering community and the technologist
community did not end with the NEESgrid handoff to SDSC. For example, members of
the Mid-America Earthquake Center (MAE) are currently involved with researchers at
NCSA in developing the MAEViz cyberenvironment,* a tool integrating spatial
information, data, and visual information into a framework that allows users to evaluate
and analyze seismic losses. NEESgrid opened the door to new ways of doing research
for the earthquake engineering community.

Cyberinfrastructure projects may come to a close, and the relationship may, over time,
undergo changes in the communities’ level of involvement with one another and in the
nature of technology, but members of the user and technology communities continue to
collaborate in other ways as rapidly-developing cyberinfrastructure opens up increasing
possibilities for doing research that was never before thought possible. The relationship
can benefit both sides for a long time to come.

12 http://maeviz.cee.uiuc.edu/

Spencer et al. 9/5/2006

http://maeviz.cee.uiuc.edu/

	Users and technologists need each other to succeed.
	You must have a target and know how to reach it.
	Leadership should be a partnership between technologists and
	Effective project management is essential at all levels.
	Communication is crucial.
	Good software development practices need to be established.
	Experiment-based software deployment is effective for helpin
	Cyberinfrastructure is a living entity.

