
3.0 CAPTURING AND SEQUESTERING CARBON DIOXIDE 3.1. GEOLOGIC SEQUESTRATION

3.1.1 CO₂ CAPTURE AND SEPARATION

Fossil- and biomass-based energy conversion processes convert hydrocarbon materials (i.e., substances consisting mostly of carbon and hydrogen) into carbon dioxide and water while releasing energy. The goal of CO_2 capture and separation is to produce relatively pure CO_2 from these processes, preferably at pressures suitable for transport, storage, or reuse.

System Concepts

- *Post-combustion capture*. A chemical or physical separation process extracts CO₂ from the flue gas of a conventional air-fired combustion process. CO₂ is present in concentrations ranging from 3% to 12%. The focus is on technology for retrofitting or repowering existing power plants and industrial processes.
- Oxy-fuel combustion. Pure oxygen rather than air is charged to the combustion chamber, producing a flue gas of CO₂ and water. A portion of the CO₂ is recycled and mixed with the oxygen to absorb heat and control the reaction temperature.
- *Precombustion decarbonization*. The hydrocarbon feedstock is gasified to produce a synthesis gas made up primarily of hydrogen and carbon dioxide. The CO₂ is separated from the hydrogen before it is combusted or charged to a fuel cell.
- There are other advanced-system concepts in which fuel processing and CO₂ capture are integrated into a single stage using, for example, membranes or reduction-oxidation agents.

Representative Technologies

- The conventional technology for post-combustion capture (removing CO₂ from flue gas) is amine scrubbing. A solution of amine and water is contacted with flue gas. The amine and the CO₂ undergo a chemical reaction forming a rich amine that is soluble in the water. The rich amine solution is pumped to a desorber where it is heated, reversing the reaction and releasing pure CO₂ gas. The recovered amine is recycled to the flue-gas contactor.
- Other technologies for post-combustion capture include cryogenic distillation, membranes (polymer, ceramic, palladium, mine, or ionic liquid coated), carbon absorbents, sodium absorbents, hydrides, and lithium silicate.

Technology Status/Applications

- Amine systems are used in numerous industrial applications to capture CO₂ from flue gas for use as a commodity chemical. Cryogenic and carbon absorbent systems have been built commercially.
- Other post-combustion capture technologies are being developed at the laboratory and pilot scale.

Current Research, Development, and Demonstration

RD&D Goals

• The metrics and goals for CO₂ capture research are focused on reducing the cost and energy penalty, because analysis shows that CO₂ capture drives the cost of sequestration systems. Similarly, the goals and metrics for carbon storage and measurement, monitoring, and mitigation (MM&V) are focused on permanence and safety. All three research areas work toward the overarching program goal of 90% CO₂ capture, with 99% storage permanence at less than 20% increase in the cost of energy services by 2007, and less than 10% by 2012.

RD&D Challenges

- CO₂ exists in air-combustion flue gas at low concentration, 3-12 volume percent, which makes post-combustion removal very expensive using current approaches.
- Flue gas contains reactive impurities that can adversely affect CO₂ capture systems.
- Transport and/or storage systems may require highly pure CO₂ product, which would increase cost.
- Loss of CO₂ temperature and pressure across the capture system.
- Wide-scale application of any one capture technology will be difficult, due to real estate constraints, availability of pollutant-control equipment, resource limitations, and economic and load demographics.
- Significant cost associated with compressing CO₂ for transportation and storage.

RD&D Activities

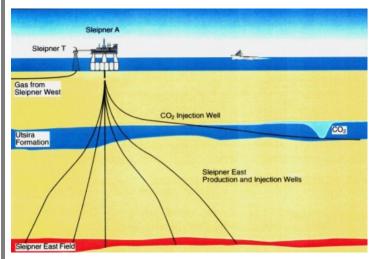
- Laboratory-scale experiments with advanced amines, ceramic membranes, high-temperature polymer membranes, vortex gas/liquid separator, ammonium and sodium bicarbonate, carbon absorbents, ionic liquids, aqueous ammonia, and electrochemical pumps.
- Pilot-scale tests with a novel oxy-fuel boiler, a CO₂/water hydrate process, a sodium-based CO₂ sorbent, aqueous K₂CO₂ promoted by piperazine, an oxygen-fired circulating fluidized bed, and a metal reduction-oxidation power generation process.

Recent Progress

- During a short three-year period, a strong portfolio of research projects for the existing and future power-generation fleet has been developed by DOE with more than 40% private-sector cost-share.
- The international community has been successfully engaged through participation in the International Energy Association Greenhouse Gas Programme, the CO₂ Capture Project with the European Commission and other international participants, and other collaborations with Canada, Australia, and Japan.
- Analysis by the Carbon Sequestration Regional Partnership on the likely and probable application of
 various technologies to different point sources has been conducted and will continue in Phase II (utility and
 nonutility).

Commercialization and Deployment Activities

• Roughly 15 Mt/yr of CO₂ is captured from anthropogenic emissions sources in the United States and used as a commodity chemical.


Market Context

• Development of approaches for economically decarbonizing fossil fuels will allow the carbon-free production of electricity and hydrogen, and will take advantage of an existing fossil fuel infrastructure that accounts for more than 80% of the energy consumed in the United States and internationally.

3.1.2 CO₂ STORAGE IN GEOLOGIC FORMATIONS

Technology Description

Sleipner North Sea Project

Large amounts of CO₂ (about a billion tons per year) may need to be stored as a part of a future global atmospheric stabilization strategy. CO₂ can be injected into depleting oil fields, gas fields, and unmineable coal-bearing formations to enhance resource recovery. A portion of the CO₂ remains underground, although current industry practices are geared strongly toward minimizing the CO₂ left underground – and little or no attention is paid to the CO₂ that is not recovered. R&D is focused on revamping conventional enhanced oil recovery, gas recovery, and enhanced coalbed methane processes so that they can serve a dual purpose: resource recovery and CO₂ storage. Other high permeability formations filled with brine, organic-rich shale beds, and other nonconventional geologic structures have potentially enormous CO₂ storage capacities. Research is focused on learning more about these formations and developing the capabilities needed to use them as CO₂ repositories.

System Concepts

- CO₂ is captured from a large anthropogenic point source, and transported and injected into a depleting oil field, unmineable coal seam, saline formation, depleting gas field, shale, or other geologic structure amenable to CO₂ storage. There are five different mechanisms that can trap CO₂ in geologic formations:
 - Structural trapping: A layer or "cap" of impermeable rock that overlies the formation of porous rock into which the CO₂ is injected prevents upward flow of CO₂. This is the mechanism that caused natural deposits of crude oil, natural gas, and CO₂.
 - Capillary trapping: The surface of sandstone and other rocks preferentially adheres to saline water versus CO₂. If there is enough saline water within a pore (75-90% of the pore volume), it will form a capillary plug that traps the residual CO₂ within the pore space.
 - Dissolution in saline water: CO₂ is soluble in saline water, and will dissolve in solution on contact.
 - Mineralization: Over longer periods of time, dissolved CO₂ can react with minerals in the formation to form solid carbonates. There may be ways to enhance this reaction.
 - Adsorption: Coal and other organically rich formations will preferentially absorb CO₂ onto carbon surface as a function of reservoir pressure. In some cases, such as coal beds, CO₂ displaces methane, which can be recovered to enhance economics.
- In an oil field, the CO₂ displaces the oil in place and also dissolves in the oil, decreasing the oil viscosity and enabling more of it to be recovered. A portion of the injected CO₂ remains stored in a reservoir as a free gas, in brine or oil solution, or in carbonate minerals.
- Leakage of sequestered CO₂ back to the surface may occur through faults, active or abandoned wells, and microseepage.

Representative Technologies

- Natural gas storage fields provide experience of injecting significant quantities of gas into geologic formations.
- Technologies will borrow extensively from the petroleum industry in the areas of drilling simulation; completion of injection wells; processing, compression, and pipeline transport of gases, including acid gases; operational experience of CO₂ injection for enhanced oil recovery and natural gas storage; and subsurface reservoir engineering and characterization.
- Enhanced coal bed methane recovery using nitrogen.

Technology Status/Applications

- The Mount Simon reservoir underlying Illinois, Indiana, Michigan, Kentucky, and Pennsylvania has been approved for industrial waste disposal and underlies a region with numerous fossil energy power plants.
- Industry has experience with more than 400 wells for injecting industrial wastes into saline formations.
- The petroleum technology is readily adaptable to subsurface CO₂ storage.

Current Research, Development, and Demonstration

RD&D Goals

- Develop domestic CO₂ underground storage repositories capable of accepting around a billion tons of CO₂ per vear.
- Demonstrate that CO₂ storage underground is safe and environmentally acceptable, and an acceptable GHG mitigation approach.
- Demonstrate an effective business model for CO₂ enhanced oil recovery and enhanced coalbed methane, where significantly more CO₂ is permanently stored than under current practices.
- Develop cost-effective methods to survey large land areas and locate zones of potential CO₂ leakage.
- Provide monitoring techniques that can reliably evaluate the stability, capacity, rate of leakage, and permanence of carbon dioxide stored in geologic formations.
- Develop publicly accepted monitoring protocols.

RD&D Challenges

- Develop the capability to inject CO₂ into saline formations with low permeability.
- Harness geochemical reactions to enhance containment.
- Develop injection practices that preserve cap integrity.
- Develop an understanding of the properties of shales and other unconventional hydrocarbon-bearing formations that determine how they will react to CO₂ injection.
- Develop the ability to track CO₂ transport.
- Develop field practices that optimize CO₂ storage and resource recovery.
- Develop the ability to predict the CO₂ storage capacity and potential resource recovery of a particular formation.
- Develop models that are able to simulate the fate and transport of CO₂ in geologic formations and along potential migration pathways.
- Develop the ability to track the fate and transport of injected CO₂.
- Develop methods to locate well bores, with and without casing, that might potentially leak.
- Develop surface and near-surface monitoring technologies that will allow public demonstration of the safety of CO₂ storage.
- Develop a better understanding of the chemistry of coal and CO₂, and conduct comprehensive R&D program on all physical and chemical aspects of CO₂ interactions with reservoir phases.

RD&D Activities

- Study geochemical reactions involving CO₂ in a laboratory.
- Study the natural analogs of geochemical CO₂ conversion. Study rock samples from CO₂ bearing geologic formations to better understand in situ geochemical/geobiological reactions.
- Develop CO₂ tracking technology, e.g., sonic, chemical tracers.
- Study CO₂ transport in the Sleipner Vest gas field, via the International Energy Agency's Greenhouse Gas Programme.

- Assessment of techniques for finding abandoned wells near a potential sequestration site.
- Develop models to simulate migration of CO₂ through multiple subsurface formations.
- Novel injection techniques to increase CO₂ storage in saline formations.
- CO₂ storage in coal beds. Laboratory measurements of CO₂/CH₄ sorption and coal swelling under confined and unconfined conditions, ARI and industry consortium, commercial-scale field demonstration in the San Juan Basin; Consol horizontal drilling, Alabama geologic survey, screening model for Black Warrior.
- Apply surface and near-surface monitoring techniques such as surface CO₂ flux, injection tracers in soil-gas, and changes in shallow aquifer chemistry for CO₂ leakage.
- Study chemical reactions involving CO₂ and cement from new or existing wells as a possible source of leakage.
- CO₂ storage in oil reservoirs. Weyburn, reservoir mapping, West Pearl Queen, CO₂ monitoring and simulation.
- Airborne reconnaissance of a 38,000-acre EOR/sequestration site to locate wells, faults, and other potential CO₂ leakage zones.
- Other RD&D activities in DOE, Australia, the European Union, Japan, etc.

Recent Progress

- Major saline formations underlying the United States have been identified.
- Initiated a pilot-scale test of CO₂ storage in a depleted oil reservoir.
- Completed pilot-scale injection of CO₂ into the Frio deep saline aquifer and field tested near-surface monitoring techniques.
- Initiated several field tests with key industrial companies participating and providing cost-share: Consol Inc. CBM,-Appalachia ARI, CBM-San Juan Basin; Strata Production C. Permian Basin; Pan Canadian Resources EOR-Canada.

Commercialization and Deployment Activities

- Since 1999, Statoil has been injecting CO₂ at a rate of 1 Mt/yr into the Sleipner Vest gas field in a sandstone aquifer 1,000m beneath the North Sea.
- About 70 oil fields worldwide use CO₂ for enhanced oil recovery.
- Another project uses CO₂ from Dakota Gasification for enhanced oil recovery in the Weyburn field in Canada. CO₂ is transported via pipeline.
- The pipeline enables extensive use of CO₂ for enhanced coal bed methane recovery in the San Juan basin.
- There are plans for using CO₂ for enhanced oil recovery in Kansas, using CO₂ from ethanol production.
- Planned test in Kansas using landfill gas for enhanced coal bed methane recovery.

Market Context

• Development of approaches for economically decarbonizing fossil fuels will allow the carbon-free production of electricity and hydrogen, and will take advantage of an existing fossil fuel infrastructure that accounts for more than 80% of the energy consumed in the United States and internationally.

3.1.3 NOVEL SEQUESTRATION SYSTEMS

Technology Description

In the long term, CO₂ capture can be integrated with geologic storage and/or conversion. Many CO₂ conversion reactions are attractive but too slow for economic chemical processes.

System Concepts

- Using impurities in captured CO₂ (e.g., SO_x, NO_x) or additives enhances geologic storage. This is a possible opportunity to combine CO₂ emissions reduction and criteria pollutant-emissions reduction.
- Conducting reactions on CO₂ while it is being stored underground can alleviate the problem with slow kinetics.
- In situ mineralization is an important trapping mechanism, that there may be ways to enhance it.
- Rejected heat from electricity generation and CO₂ compression can help drive CO₂ conversion process.
- Air capture of CO₂.

Representative Technologies

- Capture of CO₂ from flue gas and algal conversion to biomass.
- Capture of CO₂, storage in a geologic formation, and in situ biological conversion to methane.

Technology Status/Applications

Conceptual.

Current Research, Development, and Demonstration

RD&D Goals

- Demonstrate viable chemical or biological conversion approaches at the laboratory scale.
- Develop robust conceptual designs for integrated capture, storage, and conversion systems.

RD&D Challenges

- CO₂ conversion reaction kinetics are slow, energy requirements are high.
- For biological in situ CO₂ conversion, must provide food and remove waste.
- Truly novel concepts may be required to meet the ultimate "stretch" goals of the program. Technology breakthroughs could come from concepts associated with areas not normally related to traditional energy technologies (e.g., nanotechnology). Tapping areas where current researchers do not have an energy mindset will require new approaches for soliciting proposals for R&D projects.

RD&D Activities

- Laboratory and pilot-scale experiments with biological and chemical conversion.
- Conceptual studies of integrated systems and in situ CO₂ conversion.

Recent Success

• Several cost-shared research projects have been initiated.

Commercialization and Deployment Activities

None.