Publication Citation

USGS Series Water-Resources Investigations Report
Report Number 2002-4202
Title Hydrology and chemistry of floodwaters in the Yolo Bypass, Sacramento River system, California, during 2000
Edition -
Language ENGLISH
Author(s) Schemel, Laurence E.; Cox, Marisa H.; Hager, Stephen W.; Sommer, Theodore R.
Year 2002
Originating office
USGS Library Call Number (200) WRi no.2002-4202 INTERNET
Physical description 71 p.
ISBN

Online Document Versions

Copies of the original may be available.

For more information or ordering assistance, call 1-888-ASK-USGS (1-888-275-8747), visit http://ask.usgs.gov, contact any USGS Earth Science Information Center (ESIC), or write:

USGS Information Services
Box 25286
Denver, CO 80225
Abstract

Discharges to and floodwaters in the Yolo Bypass were sampled during winter and spring, 2000. The primary purpose of the study was to link changes in water quality in the Yolo Bypass to inflows from the Sacramento River (over Fremont Weir) and from four local streams that discharge to the west side of the floodplain. Specific conductance, chloride, sulfate, dissolved inorganic nutrients, dissolved organic carbon, particulate carbon and nitrogen, suspended particulate matter (mass), and selected dissolved metals were measured in most of the samples. When the Sacramento River was spilling over Fremont Weir, the water chemistry in the Yolo Bypass was very similar to that in the river except along the western margin of the floodplain where influences of local stream inflow were evident. When flow over Fremont Weir stopped, floodwaters drained from the Yolo Bypass, and the local streams were the major discharges as the floodwaters receded eventually to the perennial channel along the eastern margin of the floodplain. After the initial draining of the floodplain, chemical concentrations at sites along the perennial channel showed strong influences of inflows from Cache Creek and Ridge Cut, which are sources of nutrients and contaminants that are potentially hazardous to wildlife. Runoff from spring storms increased flow in the perennial channel and flushed accumulated nutrients and organic matter to the tidal river. Releases of freshwater to the perennial channel might be beneficial in maintaining habitat quality for aquatic species during the dry seasons.