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Singular spectrum analysis for time series with missing
data

David H. Schoellhamer
U.S. Geological Survey, Sacramento, California

Abstract. Geophysical time series often contain missing
data, which prevents analysis with many signal processing
and multivariate tools. A modification of singular spec-
trum analysis for time series with missing data is developed
and successfully tested with synthetic and actual incomplete
time series of suspended-sediment concentration from San
Francisco Bay. This method also can be used to low pass
filter incomplete time series.

Introduction

Singular spectrum analysis (SSA) is essentially a princi-
pal components analysis in the time domain that extracts
information from short and noisy time series without prior
knowledge of the dynamics affecting the time series [Vautard
and Ghil, 1989; Dettinger et al., 1995]. Geophysicists have
used SSA to analyze a wide variety of time series such as
solar oscillations [Varadi et al., 1999], precipitation [Prieto
et al., 1999; Wang et al., 1996], streamflow and sea-surface
temperature [Robertson and Mechoso, 1998], chemical con-
stituents of ice cores [Yiou et al., 1997], global tempera-
ture [Vautard et al., 1992; Allen and Smith, 1977], magne-
tosphere dynamics [Sharma et al., 1993], and suspended-
sediment concentration in an estuary [Schoellhamer, 1996].
One of the requirements of SSA is a continuous time series,
but geophysical time series often contain missing data. The
purpose of this paper is to present a modification to SSA
that permits analysis of time series with missing data.
My motivation for this work is to develop a tool to ana-

lyze time series of suspended-sediment concentration (SSC)
collected by automated optical instruments in San Fran-
cisco Bay every 15 minutes from 1991 to the present (2001)
[Buchanan and Schoellhamer, 1999; Buchanan and Ruhl,
2000]. Typically, one-half of the data are invalidated by
biological fouling, instrument malfunction, and vandalism.
SSA has been applied to continuous blocks of data 14-70
days long and several tidal signals were identified, and the
fortnightly spring/neap tidal cycle accounted for about one-
half of the variance of SSC [Schoellhamer, 1996]. Modifying
SSA to permit missing data eliminates the need to screen,
fill, and subdivide time series prior to applying SSA and al-
lows analysis of longer, but incomplete, time series. The SSC
time series typically have large tidal and seasonal signals, so
the problem of how to extract a signal from noisy data is
not as important as the problem of extracting a signal from
incomplete data.
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Singular Spectrum Analysis

Vautard, Yiou, and Ghil [1992] describe singular spec-
trum analysis (SSA). For a standardized time series xi,
where sample index i varies from 1 to N, and a maximum
lag (or window size) M, a Toeplitz lagged correlation matrix
(each diagonal has a uniform value), is formed by

cj =
1

N − j

N−j∑

i=1

xixi+j 0 ≤ j ≤M − 1 (1)

The eigenvalues, λk, and eigenvectors (or empirical-orthogonal
functions), Ekj , of this matrix are determined and sorted in
descending order of λk, where indices j and k vary from 1
to M. The kth principal component is

aki =

M∑

j=1

xi+jE
k
j 0 ≤ i ≤ N −M (2)

Each component of the original time series identified by SSA
can be reconstructed, with the kth reconstructed component
(RC) series given by

xki =
1

M

M∑

j=1

aki−jE
k
j M ≤ i ≤ N −M + 1 (3)

Expressions for xki for i < M and i > N −M + 1 are given
by Vautard, Yiou, and Ghil [1992]. The fraction of the total
variance of the original time series (equal to one for stan-
dardized time series) contained in the kth RC is λk, so that,
with the sorting used, the RCs are ordered by decreasing
information about the original time series. Most of the vari-
ance is contained in the first several RCs and most or all of
the remaining RCs contain noise. SSA typically decomposes
a time series into RCs that are nearly periodic with periods
less than M and one or two RCs contain variations in the
time series with periods greater than M. A pair of RCs with
similar λk typically represents each period less than M with
significant energy in the original time series [Vautard et al.,
1992].

Singular Spectrum Analysis For Time
Series with Missing Data

Singular spectrum analysis for time series with missing
data (SSAM) alters the SSA calculation of lagged autocorre-
lation and principal components. An overbar in the follow-
ing notation indicates that the series either contains miss-
ing data or is calculated from a series that contains missing
data. First, the lagged autocorrelation is computed by ig-
noring any pair of data points with a missing value
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Figure 1. Synthetic time series of suspended-sediment con-
centration. A) Seasonal component, B) Fortnightly spring/neap
component, C) Semidiurnal component, D) Synthetic signal cs(t),
and E) Synthetic time series c(t).

c̄j =
1

Nl

∑

l≤N−j

x̄lx̄l+j

0 ≤ j ≤M − 1, for Nl pairs with no missing data. (4)

Eigenvalues and eigenvectors are computed for the lagged
autocorrelation matrix as with SSA. The eigenvectors con-
tain no missing data. Computation of the kth principal
component ignores missing data points

āki =
M

Nl

∑

l≤M

x̄i+lĒ
k
l

0 ≤ i ≤ N −M, for Nl xi+1 with no missing data. (5)

If Nl < fM , where 0 ≤ f ≤ 1 is a specified fraction of
allowable missing data points within window sizeM, then āki
is assigned a missing value. Reconstructed components are
calculated as with SSA. If any principal component value in
the sum is missing, then the RC value will be missing.

Table 1. Percent Variance of Synthetic Time Series in Subtidal,
Semidiurnal, and Noise Components

Actual SSA SSAM- SSAM- SSAM-one-
first missing half randomly
half values from missing
missing Bay example

Subtidal 50.3 51.3 51.6 51.8 51.6
Semidiurnal 21.0 21.0 20.8 20.9 21.2
Noise 28.7 27.7 27.6 27.3 27.2

Table 2. Median Percent Error of Reconstructed Synthetic Time
Series Relative to cs(t)

SSA SSAM-first SSAM-missing SSAM
half missing values from Bay one-half

example randomly
missing

2.1 2.5 5.5 4.2

Application of SSAM to a Synthetic
Time Series

To test the ability of SSAM to properly process missing
data, a synthetic SSC time series was analyzed with SSA
and variants containing missing data were analyzed with
SSAM. The synthetic SSC time series has the following char-
acteristics intended to be similar to SSC time series in San
Francisco Bay: one water year in length, starts at the be-
ginning of a water year (0000 hours October 1), 15-minute
time step, periodic components oscillating about a mean
value of 100 mg/L, and a random noise component. A sea-
sonal component simulates the effect of seasonal winds on
sediment resuspension in the Bay, which is least during au-
tumn and greatest during spring [Schoellhamer, 1996]. The
fortnightly spring/neap cycle affects the magnitude of tidal
currents, sediment resuspension, and advection, and varies
seasonally with the greatest amplitude in winter and sum-
mer. Advection of suspended sediment, which typically is
between relatively deep channels and more turbid shallow
water, produces a semidiurnal component of SSC that is
modified by the spring/neap and seasonal cycles. Thus, the
‘true’ SSC signal was generated with the mean and periodic
terms

cs(t) = 100− 25 cosωst+ 25(1− cos 2ωst) sinωsnt (6)

+25(1 + 0.25(1 − cos 2ωst) sinωsnt) sinωat

in which the seasonal angular frequency ωs = 2π/365 day
−1,

the spring/neap angular frequency ωsn = 2π/14 day
−1, and

the advection angular frequency ωa = 2π/ (12.5/24) day
−1.

Noise tends to increase with SSC so the synthetic time series

c(t) = 0.2Rcs(t) + cs(t) (7)

in which R is a time series of normally distributed random
numbers with zero mean and standard deviation of one. The
three periodic components, synthetic signal cs(t), and syn-
thetic time series c(t) are shown in Figure 1.
SSA was applied with a 30-hour (M=120) window in-

tended to separate the semidiurnal component from the sea-
sonal and fortnightly components. This window size was
used by Schoellhamer [1996] to analyze SSC data in San
Francisco Bay. The first four modes from SSA contained
the periodic components and 72.3% of the total variance,
51.6% in two modes containing the subtidal (seasonal and
fortnightly) components and 21.0% in two modes contain-
ing the semidiurnal component (Table 1). The remaining
modes contained noise. The reconstructed time series from
the first four modes is virtually identical to that shown in
Figure 1d and has a median error of 2.1% (Table 2). SSAM
produced the same result with this complete time series.
SSAM was successfully applied to several versions of the

time series with differing distributions of missing data. The
fraction of allowable missing data points for computation of
a principal component (f) was set equal to 0.5. Analysis
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Figure 2. Comparison of subtidal components from the syn-
thetic time series and from SSAM analysis of the synthetic SSC
time series with missing values distributed the same as for the
real SSC time series in Figure 3.

of the time series with a single missing value imbedded in
the middle of the time series produced virtually the same
result as with the complete time series. A 6-month gap
was placed at the beginning of the synthetic time series c(t)
and the error of the time series reconstructed by SSAM was
identical to SSA (Table 2). Similar results were obtained
when a 6-month data gap was placed in the center and at
the end of the synthetic time series. The partitioning of
variance between the components for these tests was nearly
identical to that for the actual time series and SSA (Table
1).
Another test assigned 61% of the data missing values

which were distributed the same as for the real SSC time
series presented in the next section. The median error of
the reconstructed time series (5.5%, Table 2) was greater
than that found for SSA or the previous examples, but the
standard deviation of c(t) was 39.5% of the mean.
This example demonstrates that SSAM can be used as a

low-pass filter for time series with missing data. SSAM sub-
tidal components account for 51.8% of the variance and pri-
marily contain signals with periods greater than the 30-hour
window size, in this case the seasonal and spring/neap com-
ponents. The sum of the actual seasonal and spring/neap
components contains 50.3% of the variance and is nearly
identical to the SSAM subtidal components when data are
available (Fig. 2).
SSAM also was successfully applied to the synthetic time

series with one-half of the values randomly assigned a miss-
ing value. The fraction of allowable missing data points for
computation of a principal component (f) was set equal to
1. The resulting modes and variances were virtually iden-
tical to the actual values and those found by SSA for the
complete time series (Table 1) and the median error of the
reconstructed time series was 4.2% (Table 2).

Application of SSAM to SSC in San
Francisco Bay

SSAM was applied to an SSC data set from San Fran-
cisco Bay for which the general outcome has been indepen-

dently determined and the fraction of missing data is large.
Buchanan and Schoellhamer [1999] collected SSC time series
at mid-depth at the San Mateo Bridge in water year 1997
(Fig. 3). This time series was chosen because it was from a
site at which SSA had been previously applied to continu-
ous blocks of SSC data [Schoellhamer, 1996], the water year
1997 data were not used in the previous analysis, and the
amount of valid data (39%) was the smallest of all of the
Bay sites during water year 1997. The fraction of allowable
missing data points for computation of a principal compo-
nent (f) was set equal to 0.5 and a 30-hour window (M=120)
was used.
The individual modes resulting from SSAM are in good

agreement with previous SSA analysis of other SSC data
from San Francisco Bay. The first 10 modes of the SSAM
analysis contain 89.1% of the variance. Mode 1 contains
53.7% of the variance and is associated with subtidal fre-
quencies due to the spring/neap and seasonal cycles. Previ-
ous SSA found that about one-half of the variance of SSC
was subtidal and primarily due to the spring neap/cycle.
Modes 2 and 3 account for 14.2% of the variance and rep-
resent semidiurnal tides, modes 4 and 5 account for 10.6%
of the variance and represent diurnal tides, modes 6 and 7
account for 5.8% of the variance and fluctuate at a quarter
diurnal period, mode 8 accounts for 2.0% of the variance
and contains a mix of tidal frequencies, and modes 9 and
10 account for 2.8% of the variance and represent terdiurnal
(8-hour) tidal fluctuations. Previous application of SSA also
found several tidal modes that contained periods of about
n/24, where n is an integer. Diurnal and semidiurnal fluctu-
ations were greatest (n=1 and 2) and terdiurnal and quarter
diurnal fluctuations (n=3 and 4) were present, but smaller.
Thus, application of SSAM to time series with missing data
produces similar results to application of SSA to complete
time series.
The SSC time series reconstructed by the first 10 RCs is

in good agreement with the original time series (Fig. 4). The
reconstructed time series contains some negative concentra-
tions when the measured concentration was nearly zero.
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Figure 3. Time series of mid-depth suspended-sediment con-
centration at San Mateo Bridge during water year 1997.
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Figure 4. Comparison of measured and SSAM recon-
structed mid-depth suspended-sediment concentration at San
Mateo Bridge during water year 1997. These 11536 data points
have a squared correlation coefficient of 0.905 and the regression
is significant at <0.001 level.

Conclusions

Singular spectrum analysis has been modified to allow
missing data and SSAM can successfully analyze and recon-
struct synthetic and actual incomplete time series. SSAM
also can be used to low pass filter incomplete time se-
ries. An example of source code for SSAM is available at
http://ca.water.usgs.gov/ja/grl/.
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