GradeDec.NET

Reference Manual

Federal Railroad Administration

Office of Policy

March 2005

Contents

Introduction	1
Description and Objective About This Document	
Model Overview	5
Introduction	5
The Analysis Frame of GradeDec.NET	5
Benefits and Costs	5
Grade Crossing Investments	6
Base Case and Alternate Case	
Corridor or Region	7
The Time Horizon	
Costs and Prices	9
The GradeDec.NET Computational Model	9
The DOT Accident Prediction and Severity Model (APS) and the Resource	
Allocation Method	10
The VNTSC High Speed Rail Accident Severity Formulas	11
Data and Data Organization in GradeDec.NET	

The Model

Introduction	13
Accident Prediction and Severity	
Forecast Highway and Rail Traffic	14
Exposure and Correlation of Time-of-Day Distributions by Highway and Rail	15
Predicted Number of Accidents	17
Number of Accidents by Severity Category – DOT Formulas	19
Number of Accidents by Severity Category – HSR formulas	
Effectiveness Multipliers	22
Supplementary Safety Measures	22
Quiet Zone Risk Index	
Delay and Time-in-Queue	24
Highway Traffic Re-Assignment (Corridor Model Only)	28
Grade Closures	29
Grade Separation	29
Benefits and Costs	31
Safety Benefits	31
Travel Time Savings	32
Environmental Benefits	33
Vehicle Operating Cost Savings	34
Network Benefits (Corridor Model Only)	35
Local Benefits	38
Project Costs	38
Salvage Value	39

13

Consumer Surplus	
Total Benefits and Benefit-Cost Indicators	
Data and Data Organization	45
Introduction	
Corridor Data	
Region Data	
Grade Crossing Data	
Scenario Data	
Rail Operations	
Highway	
Social and Other Costs	
Model Parameters and Default Values	

Index

Introduction

Description and Objective

The Federal Railroad Administration (FRA) developed GradeDec.NET as an investment decision support tool for use by state and local authorities. The careful analysis and selection of highway-rail grade crossing investments serves to increase public returns for each dollar invested.

GradeDec.NET is a web-based application that enables the analysis of impacts from grade crossing improvements and supports resource allocation and investment decisions. It allows state and local decision makers to prioritize highway-rail grade crossing investments based upon an array of benefit-cost measures. GradeDec.NET evaluates the benefit-cost of grade crossing improvements while explicitly reporting the results for each grade crossing and each benefits category (safety, time savings, vehicle operating costs, reduced emissions, network and local benefits). Localities can use GradeDec.NET to focus on the benefit metric of greatest local interest. For instance, an area marked by high levels of highway congestion at grade crossings can identify the improvements that offer the prospects for congestion mitigation. For a rural area with acute safety issues, GradeDec.NET assists in identifying the investments that will promote accident reduction.

GradeDec.NET facilitates a structured analysis. The analysis process in *GradeDec.NET* is as important as the end result. *GradeDec.NET* can be useful as a tool for managing data and partial analyses and does not require that users take advantage all of its features. For instance, users can import data and conduct safety analyses without defining alternatives and running a full investment analysis.

A *GradeDec.NET* investment analysis finds the economic rate of return for a specified program of highway-rail grade crossing investments in a corridor or region. The economic rate of return is appropriate for measuring public returns because it captures a wide range of benefits that accrue to users of the transportation system and society as a whole, i.e., reductions in accidents and emissions, time and vehicle operating cost savings. *GradeDec.NET* calculates the economic rate of return by comparing the streams of expected economic benefits over time with the streams of investment, operating and maintenance and other life-cycle costs. The model discounts later year benefits and costs to reflect the opportunity cost of capital. This process of discounting converts all values to present value equivalents thus enabling the comparison of benefits and cost realized in different time periods.

GradeDec.NET's analysis of grade crossing improvements is both at the individual grade crossing and at the corridor or regional level. Outputs include result metrics

for the individual grade crossings and for the corridor or region as a whole. A series of up to 600 grade crossing improvements can be evaluated simultaneously. *GradeDec.NET* also reports an array of intermediate result metrics that are useful in interpreting the results.

GradeDec.NET's underlying methodology is consistent with the current benefit-cost methodologies employed by United States Department of Transportation Agencies (Federal Railroad Administration, Federal Highway Administration, Federal Transit Administration, and Federal Aviation Administration) and with Executive Order 12893, which governs the principles of federal infrastructure investment. *GradeDec.NET* can be used to comply with the Office of Management and Budget's *Guidelines for Benefit Cost Analysis* specified in Circular No. A-94. The model is transparent in all of its assumptions and model inputs are readily accessible to users who may wish to adjust them to more closely reflect local conditions.

GradeDec.NET integrates several modeling capabilities in a single package. It includes separate modeling modules for corridor and regional analysis. The corridor analysis module evaluates crossing improvements along a single rail alignment. The corridor analysis accounts for impacts on the adjacent highway network and shifts in highway to routes with improved crossings. The module for regional analysis evaluates crossing improvements in a region (county or several counties) regardless of the crossings being located on a single or multiple rail alignments.

Both the corridor and the regional analysis modules of *GradeDec.NET* include the US DOT Accident Prediction and Severity Model. The corridor analysis module includes as well the grade crossing risk mitigation model for high speed rail that was developed by the Volpe National Transportation Systems Center.

GradeDec.NET includes a risk analysis modeling capability. This capability enables the user to accommodate the numerous uncertainties that are inherent in any forecast. Rather than relying on "best guess" inputs whose actual values may vary widely, risk analysis incorporates input ranges. For a designated set of operational and policy variables in *GradeDec.NET*, users can set ranges describing probability distributions. These ranges reflect best available data and empirical evidence combined with any expert judgments that the user brings to bear in the analysis. *GradeDec.NET* includes a graphical interface that facilitates data entry and the visualization of probability distributions. GradeDec.NET presents its results, the outcomes of risk analysis simulations, as probability distributions. These results and their mode of presentation support informed decision-making by providing the full range of possible outcomes rather than relying upon a point estimate.

GradeDec.NET represents a major upgrade from *GradeDec 2000*, the previous release of GradeDec. It incorporates additional analytic algorithms and handles many more grade crossings simultaneously. *GradeDec.NET* strives to meet the needs of both experienced and novice users. Experienced analysts can take advantage of newer features and capabilities while less experienced analysts can rely upon pre-defined default values and should find *GradeDec.NET* easy to use for conducting an analysis.

GradeDec.NET has been available to the public since January 2003. In the two years since its initial release, the *GradeDec.NET* model has undergone refinements that reflect experience gained from hundreds of analyses and feedback from the community of over 500 registered users and training workshop participants.

The main refinements to the GradeDec.NET model since it was introduced include:

• Ability to develop a capital program of improvements with two-phased investment at each crossing (and not just assuming that all investment occurs prior to the period of analysis).

- Calculation of the Risk Index, as specified in the "Interim Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings", for use in determining Quiet Zone eligibility.
- Explicit segmentation of time-of-day distributions for passenger, freight and switch train movements (in the corridor model, and for through and switch train movements in the regional model).
- Increasing from one to three the number of placeholder "new technology" options for grade crossing devices.
- Creating three placeholder options for "other supplementary safety devices" at crossings.

In addition to these modifications, there are a number of refinements to the application interfaces and reporting features that should facilitate the development of analyses with *GradeDec.NET*. These refinements are covered in the revision the companion *GradeDec.NET User's Manual*.

About This Document

This document is the reference for the *GradeDec.NET* model. The remainder of this document presents the model components, the computation algorithms, and descriptions of the data inputs to the model.

In order to best utilize the *GradeDec.NET* application you should refer to the companion volume to this document called "User's Manual for GradeDec.NET".

This document is not a benefit-cost analysis manual. It assumes that readers are generally familiar with benefit-cost analysis, its application and some basic concepts like present value and rate of return. Useful references for using benefit-cost analysis can be found in NCHRP Report No. 342, the AASHTO Redbook and Transport Canada's Benefit-Cost Manual.

Model Overview

Introduction

GradeDec.NET is a grade crossing investment analysis tool that includes both a platform for organizing the data for your analysis and a computational risk analysis model. This Overview presents the frame of analysis, the computational model and the data and their organization.

The Analysis Frame of GradeDec.NET

The analysis frame of *GradeDec.NET* considers a proposed set of grade crossing investments on a rail corridor, or a region, over a specified time horizon. The analysis of benefits and costs compares the present value of costs and benefits in the "alternate case" (with major investment) to the costs and benefits in the "base case" (without major investment).

The following are the definitions and assumptions for the *GradeDec.NET* analysis frame:

Benefits and Costs

The benefits in a *GradeDec.NET* analysis are the public benefits that accrue from grade crossing improvements. These include:

- Safety the safety benefits are the reduction in predicted accidents and their severity.
- Other user cost savings other user cost savings result from less queuing at crossing due to grade crossing separations and closures. These benefits are travel time savings, reduced highway vehicle operating costs, reduced emissions and better highway network traffic flow. Closures, without other improvements in a corridor, will typically result in increased user costs and the analysis accounts for these offsetting impacts.

The costs in *GradeDec.NET* are the costs to operate and maintain crossings and the capital outlays for improvements (investment).

Grade Crossing Investments

A grade crossing investment is a one-time, capital outlay or set of measures that transforms grade crossings in a corridor or region in any of the following ways.

- Grade crossing device type change, where "types" are passive, lights, gates, "new technology"¹ and, as well, closure or grade separation.
- Additions of supplementary measures to gated crossings. These supplementary measures include: four quadrant gates without detection, four quadrant gates with detection, four quadrant gates with 60 feet medians, mountable curbs, barrier curbs, one-way streets, and photo enforcement.
- Changes to highway traffic flows in a corridor using traffic management measures like signage and signaling intended to re-assign traffic away from high-exposure/high-risk crossings during peak exposure periods of the day.

The device type, supplementary measures and traffic management measures at grade crossings determine in the analysis the predicted number of accidents and their severity. When proposed investments include grade crossing closures and separations, *GradeDec.NET* evaluates any additional re-allocation of traffic that is likely to occur.

The user has the option of a) allowing all investments at crossings to be implemented in the base year, or, b) developing a capital program by crossing in which one or two phases of improvements can be specified and a year of implementation for each phase (i.e., in year 3 upgrade crossing to gates and in year 15 grade separate the crossing).

This capital programming feature enables the use to develop and evaluate multi-year grade crossing improvement strategies that accommodate the anticipated growth in traffic and the availability of funding.

Base Case and Alternate Case

The Base Case represents the "no major investment" scenario. In the Base Case, the analysis evaluates the operational impacts and associated benefits and costs over the time horizon of the analysis with the minor improvements. An analysis will typically include a program of modest investments in the Base Case where these investments are part of a minimal fall back position that are most likely to be undertaken in lieu of the more extensive investments.

In the Alternate Case, the analysis evaluates the benefits and costs under the assumption that the proposed investments (in the designated years for cases with capital programming) have been implemented.

¹ New technology is a placeholder type for any prospective new device or combination of devices. The user can specify up to three new technologies and set a parameter that determines the effectiveness of the new technology relative to a gated crossing.

In *GradeDec.NET* the following parameters are set for each of the two cases:

- Type of each grade crossing
- Supplementary measures at gated crossings
- AADT at crossings (which are the same for both cases unless the improvement program specifically includes traffic management measures for re-assigning traffic)
- Characteristics of rail operations at crossings
- O&M and other lifecycle costs
- Capital investment (alternate case only).

Corridor or Region

GradeDec.NET evaluates a collection of grade crossings in a single analysis. The user must select whether to include the crossings for evaluation in a corridor or in a region. *GradeDec.NET* has a separate analytic model for corridors and for regions. The corridor model provides greater analytic depth than the regional model. The following features are available in the corridor model, but not in the regional model:

- Choice of high speed rail model or DOT model for accident prediction and severity,
- Re-assignment of highway traffic at grade separated or closed crossings,
- Estimation of benefits from a reduction in delay on the adjacent highway network.

If the crossings for evaluation lie on a single rail alignment, then the user should use the corridor model. On the other hand, if the candidate crossings for improvement span several alignments and are grouped in a region, then the user should use the regional model. *GradeDec.NET* is able to extract data directly from the National Grade Crossing Inventory database, or other external source, and import the data directly into a corridor or region

The Corridor

The rail corridor is a single, continuous alignment of one or more railroad tracks. The corridor may include up to 600 grade crossings that are candidates for improvement. The *GradeDec.NET* model characterizes the rail corridor by several parameters:

- The average daily number of trains by type (passenger, freight and switch) in the base year (see definition below).
- The time-of-day distribution of rail traffic (there are five pre-defined, time-of-day traffic distributions)
- A Boolean (yes/no) flag that specifies whether grade crossing closings are synchronized with the highway traffic signaling system in the corridor.

• Factors for up to three technology improvements. New technologies include non-conventional barriers and systems that provide timely notification to approaching trains of vehicle intrusion. Due to the absence of historical data on the performance of devices of these types, GradeDec.NET does not provide historically based estimates of new technology impacts. Values supplied for this factor represent the analyst's best judgment regarding the likely impact of new technology relative to conventional flashing lights and gates closure. For instance, a value of 0.5 for this factor will reduce by half the accident risk relative to flashing lights and gates.

The corridor model analysis evaluates the impacts of closures and separations along the rail corridor. For closed crossings in the alternate case, the highway traffic from the crossing is re-allocated to adjacent crossings in the corridor. For grade separation improvements, the model estimates the attracted traffic to the grade separated crossing from adjacent crossings (see sections below on traffic re-assignment).

In addition to time savings benefits for highway vehicles at the crossing, the corridor model calculates the impact of reduced queuing at the crossings on highway network delays

The Region

The regional analysis considers crossings in a geographic region: a county, several counties or any collection of crossings that may or may not be part of a common alignment. The regional analysis does not account for any re-assignment of highway traffic in the event of closure or separation. Because there is no accounting for re-allocated traffic if a crossing is closed, the analyst needs to specify a parameter in the crossing data entry that indicates the percent reduction in user costs for the closed crossing. See the discussion on this parameter ("percent benefits at closed crossing") in the data entry section.

Like a corridor, a region can include for analysis up to 600 grade crossings.

While a regional analysis provides less depth, the analyst can import most of the required data directly for a designated region from the National Grade Crossing Inventory Database (which is accessible from within *GradeDec.NET*).

The Time Horizon

The time horizon of a *GradeDec.NET* analysis is determined by the "start year" and "end year" values of the input scenario. The analysis assumes that all investments in the corridor are executed in "year 0" (the base year) and that benefits accrue beginning in "year 1" (start year). For instance, if a scenario has start year 2004 and end year 2026 then the model assumes investments in the corridor have been completed by the end of 2003 (the base year) and are fully operational from the beginning of 2004. Benefits from the investment will accrue in the alternate case beginning in year 2004. The analysis assumes that benefits and costs are realized at year end. The "present value" calculation converts dollar values over the time horizon of the proposed

investments to their equivalent dollar value at the beginning of the start year (i.e., benefits in the start year are discounted).

There are separate growth rate parameters in the model for the "near term" and the "far term". In many cases, planners face differing near-term and far-term growth outlooks. For instance, a region may have sound forecasts for near-term rapid growth yet may view these as unsustainable in the far-term. By allowing the user to split the time horizon into a near- and far-term while determining the duration of the near-term, *GradeDec.NET* accommodates a wide range of likely growth paths.

The user determines the near- and far-terms by specifying in the input scenario definition a year called "the last year of near term". The last year of near term is a year between the start year and end year. For instance, if the start year is 2004 and the last year is 2026, the last year of near term could be 2007. From the start year until and including the last year of near term, the model applies the near term growth rates for highway and rail traffic. From the year following the last year of near term and until the last year of the analysis, the model applies the far term growth rates.

Costs and Prices

The calculations of *GradeDec.NET* assume constant dollar values, and that relative prices - with the exception of fuel and oil - remain fixed over the time horizon of the investment. If all relative prices were fixed (i.e., if the ratio of the prices of any two goods or services did not change) then there would be no need to track prices in the model at all. Because the price of fuel and oil relative to other prices is allowed to vary, there is a need to track the general price level (inflation) and the level of the price of fuel and oil in order to calculate the constant dollar price of fuel and oil. Fuel (and oil) is singled out due to the volatility of fuel prices, and will likely fluctuate in comparison to other prices. In *GradeDec.NET*, if the price of fuel and oil increases faster than inflation, then the share of vehicle operating costs in total benefits will increase.

The "discount rate" is a constant dollar rate, that is, it is net of general price inflation.

The GradeDec.NET Computational Model

GradeDec.NET includes the following analytic components:

- Re-assignment of highway traffic due to closures and grade separation (corridor model only)
- Calculation of safety benefits through predicted accidents and severity in the base and alternate cases
- Calculation of other benefits from crossing improvements
- Present value and benefit-cost summary including consumer surplus calculation for the corridor or region

For the estimation of safety benefits *GradeDec.NET* employs one of two different computational models depending upon the user's selections. These are:

- U.S. Department of Transportation (DOT) Accident Prediction and Severity Model (APS) and Resource Allocation Method
- Volpe National Transportation System Center (VNTSC) High-Speed Rail (HSR) Accident Severity Model

When using the corridor model, the user can choose which of the two models to use. For the regional model, only the DOT APS model is available. Both models estimate predicted accidents by severity category for the base case and alternate case. The difference between the quantities of incidents is then monetized (i.e., multiplied by a unit cost per incident) and summed by grade crossing and year to arrive at annual safety benefits.

In the DOT APS the incident metrics are "fatal accidents" (accidents with at least one fatality), "injury accidents" (accidents with no fatalities and at least one injury), and "property damage only" accidents. The HSR model estimates fatalities and injuries for both the highway and rail modes while examining casualties for different types of accidents and their probabilities of occurrence.

The following sections describe how the two safety models are integrated with the modes of usage of *GradeDec.NET*.

The DOT Accident Prediction and Severity Model (APS) and the Resource Allocation Method

This model is described in the document *Summary of the DOT Rail-Highway Crossing Resource Allocation Procedure-Revisited*, Office of Safety, Federal Railroad Administration, June 1987, Report No. DOT/FRA/OS-87/05. The model includes three components: a formula for accident prediction, a formula for severity prediction and a model for resource allocation. The formulas for accident prediction and severity are based upon regression analyses of accidents and grade crossing characteristics. APS is applied in GradeDec.NET as described in the above document with one modification: GradeDec.NET corrects for the correlation between time-of-day distribution between rail and highway traffic.

The DOT method for resource allocation estimates the safety at crossings after improvement by applying "effectiveness multipliers" to the base case APS model results. These multipliers were derived from separate analyses of grade crossings and improvements. GradeDec.NET uses the resource allocation method in the corridor model (when the DOT APS model is chosen and not the HSR model) only in cases where there is no re-assignment of highway traffic at a crossing due to closures or separation. When average annual daily traffic changes at a crossing from the base to alternate case due to reassignment, then the DOT APS is reapplied to the improved crossing characteristics and the new level of highway traffic. The DOT APS formulas and the resource allocation method are always used in the regional model, using the same correction as the corridor model for correlation of time-of-day traffic distribution on the rail and highway modes.

The VNTSC High Speed Rail Accident Severity Formulas

The HSR model is an optional feature of the corridor model in *GradeDec.NET*. The model used follows procedure described in *Assessment of Risks for High Speed Rail Grade Crossings on the Empire Corridor*, Mark Mironer and Michael Coltman, High Speed Ground Transportation Division, VNTSC, April 1998. This model uses the same accident prediction methodology as the DOT model, but has distinct accident severity formulas. The model is based on an analysis of grade crossing accidents while focusing on the accident types (train strikes vehicle, vehicle strikes train), the impact of severe derailment and fatalities among train as well as highway vehicle occupants.

Data and Data Organization in GradeDec.NET

This section provides a brief overview of data and their organization in *GradeDec.NET*. Data are organized into elements that correspond to their function in the model.

The four principal data elements are:

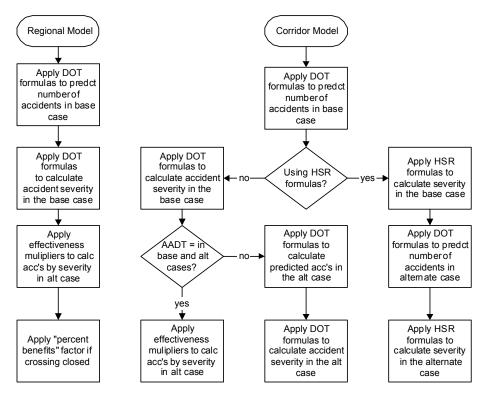
- Corridor or region data
- Grade crossing data
- Scenario (risk analysis) data
- Model parameter and default data

The corridor data include the corridor-level data covering base year rail operations, rail time-of-day traffic distribution, and a toggle designating whether there is grade crossing signal integration with the neighboring highway network. Corridor data also includes three technology parameters that represent the effectiveness of new technology at a crossing relative to a conventional gated crossing. The data for a region includes its description and technology parameter, while the rail characteristics are included in the crossing data.

The grade crossing data include the physical characteristics of the grade crossing, crossing type for base and alternate case, accident rates and cost data. Accident rates are stored with the crossing data for exposition purposes only. Predicted accidents are recalculated for each year of the evaluation when a simulation is run.

The scenario data include the policy variables and forecast values that are necessary for generating the forecast streams of benefits and costs. These data are organized into four data sets: rail operations, highway, social costs and price indexes. The model parameter and default include technical coefficients for fuel burn and emission rates. They also contain the default data for capital costs, time-of-day traffic distributions and the model parameters for the high speed rail accident severity model. The user can edit and modify all of the data and parameters described in this section.

The Model


Introduction

This section presents the computational model that was discussed in the "Model Overview". For each model component, explanations and formulas are provided. The following section covers the data and data organization of *GradeDec.NET*.

Accident Prediction and Severity

The accident prediction and severity formulas in GradeDec.NET are based upon the two sources cited in the introduction. These equations are applied in accordance with the mode of usage (corridor or regional model). In the corridor model, the user can specify whether to use the HSR formulas or the DOT formulas. Moreover, in the corridor model the alternate case calculation of accident prediction and severity will depend upon whether grade crossing improvements in the corridor, through closures and/or separation, result in re-allocation of highway traffic among crossings. The procedure by which *GradeDec.NET* applies the different formulas is shown in the following figure.

Figure 1 Application of Accident Prediction and Severity Formulas

The following sections describe the accident prediction and severity equations in GradeDec.NET.

Forecast Highway and Rail Traffic

GradeDec.NET forecasts average daily highway traffic, by vehicle type, and number of trains, by train type, at each crossing based on base year traffic and traffic rates of growth for the near and the far term.

The formula for the highway traffic forecast at a crossing is: Equation 1 Average Annual Daily Traffic (Highway) at Crossing

$$AADT_{year} = AADT_{year-1} \cdot \left(1 + \frac{AADTgr}{100}\right)$$
$$AADTgr = \begin{cases} AADTntgr, if \ year \le lynt \\ AADTftgr, if \ year > lynt \\ AADT_{year,vtype} = \beta_{vtype} \cdot AADT_{year} \end{cases}$$

where:

the current year of the analysis year

AADT _{year} vehicle types)	average annual daily traffic in current year (all
AADT _{year-1} vehicle types)	average annual daily traffic in previous year (all
AADTgr	annual growth rate of AADT, percent
AADTntgr	annual growth rate of AADT in near term, percent

AADTftgr annual growth rate of AADT in far term, percent

lynt last year of near term

vtype vehicle type (i.e., auto, truck or bus)

 β_{vtype} share vehicle type of total highway traffic

 $\label{eq:AADT} \begin{array}{l} AADT_{year,vtype} & \mbox{average annual daily traffic in current year by vehicle type} \end{array}$

Equation 2 Average Daily Trains at Crossing

$$TV_{year} = TV_{year-1} \cdot \left(1 + \frac{TVgr}{100}\right)$$
$$TVgr = \begin{cases} TVntgr, if \ year \le lynt \\ TVftgr, if \ year > lynt \end{cases}$$
$$TV_{year,ttype} = TV_{year} \cdot \frac{tvb_{ttype}}{\sum_{ttype} tvb_{ttype}}$$

where:

year the current year of the analysis

TV_{year} average daily trains in current year (all train types)

TV _{year-1}	average daily trains	in previous	year (all highv	vay vehicle
types)				

TVgr annual growth rate of average daily trains

- TVntgr annual growth rate of average annual daily trains in near term
- TVftgr annual growth rate of average annual daily trains in far term
- lynt last year of near term
- ttype train type (i.e., passenger, freight, switch)
- tvb_{ttype} trains in base year by type

TV_{year, ttype} average daily trains in current year by type

Exposure and Correlation of Time-of-Day Distributions by Highway and Rail

The principal explanatory factor for predicting accidents at grade crossings is exposure. Exposure is the probability that a train and a highway vehicle will both arrive at a grade crossing at the same time, thus allowing for the possibility of an accident. Exposure, and the effects of grade crossings improvements, will vary significantly depending upon whether the time-of-day distributions of rail and highway traffic are highly correlated (temporal match), or, are highly uncorrelated (temporal mismatch). As an extreme example, if all rail traffic was at night while all highway traffic was by day there would be no risk of accidents and no vehicles would ever stand waiting at a closed crossing.

The two safety models used in *GradeDec.NET* do not account for the correlation between the time-of-day distributions of rail and highway traffic. *GradeDec.NET* incorporates a modification to correct for this

and requires that the user specify the time-of-day traffic distribution for the rail corridor, or in the case of the regional model, the user specifies the rail traffic time-of-day distribution for each crossing. The user also specifies the time-of-day distribution of highway traffic at each crossing for each of three traffic segments: car, truck and bus.

The distributions in GradeDec.NET divide the daily traffic into four six-hour periods. The user interface of GradeDec.NET lets the user select from among five pre-set traffic distributions. These are labeled: uniform, peak AM, peak PM, day flat and night flat.

Figure 2 Traffic Distribution Profiles

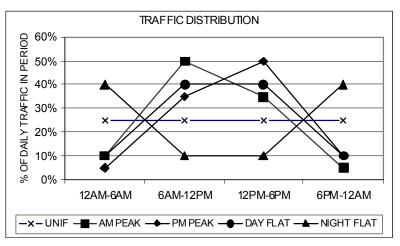


Table 1 Traffic Distribution Profiles (Share of Daily Traffic in Period)

		AM Peak	PM Peak		Night Flat
12AM-6AM	0.25	0.10	0.05	0.10	0.40
6AM-12PM	0.25	0.50	0.35	0.40	0.10
12PM-6PM	0.25	0.35	0.50	0.40	0.10
6PM-12AM	0.25	0.05	0.10	0.10	0.40

The above time-of-day distributions are sample values. The analyst can modify these values or create new distributions so as to more accurately correspond to time-of-day travel patterns in the corridor or region under consideration.

The degree of exposure is captured in the benefits evaluation by the exposure correlation factor that is given by the following equation: *Equation 3 Time-of-Day Exposure Correlation Factor*

$$EF = \frac{\sum_{i} \left(\sum_{k} \alpha_{k} a_{ik} \sum_{j} \beta_{j} b_{ij} \right)}{Max \left(\sum_{i} \sum_{k} (\alpha_{k} a_{ik})^{2}, \sum_{i} \sum_{j} (\beta_{j} b_{ij})^{2} \right)}$$

where:

i an index designating the time-of-day periods (early AM, late AM, early PM, late PM)

j an index of highway vehicle type (auto, truck, bus)

k an index of train types (passenger, freight, switch in the corridor model or through and switch in the regional model)

 $a_{ik} \qquad \mbox{the share of daily trains of train type k at the crossing in the ith time-of-day period}$

 b_{ij} the share of daily traffic of vehicle type j in the ith

time-of-day period

 α_k the share of train type k of total trains

 β_i the share of vehicle type j in daily highway traffic

Note: $\sum_{i} a_{ik} = 1$, $\sum_{i} b_{ij} = 1$, $\sum_{k} \alpha_{k} = 1$, $\sum_{j} \beta_{j} = 1$

GradeDec.NET calculates the exposure correlation factor for each crossing and year of the evaluation.

GradeDec.NET integrates with the DOT Accident Prediction formula by calculating the daily exposure equivalent that would be realized if the time-of-day correlation of traffic at the grade crossing equaled the national average. That "national average" is the average correlation that is reflected in the sample that served as the basis for the estimation of parameters in the DOT model. GradeDec.NET calculates the exposure correlation factor for each crossing and year of the evaluation. *Equation 4 Daily Exposure with Time-of-Day Correlation*

 $Expose = 1.35 \cdot EF \cdot AADT_{vear} \cdot TV_{vear}$

where:

Expose base year daily exposure with time-of-day correlation, effective daily exposures

- EF time-of-day exposure correlation factor (see equation 3 above)
- AADT average annual daily traffic on the highway at the crossing
- TV average daily trains at the crossing

The value 1.35 in the above equation means that if there was full timeof-day correlation between the rail and highway modes at the crossing, then there would 35 percent more exposure than if the correlation were equal to the national average². GradeDec.NET calculates the daily exposure with time-of-day correlation for each crossing and year of the evaluation.

Predicted Number of Accidents

The predicted number of accidents at a crossing is based upon the DOT Accident Prediction and Severity formulas. The predicted number of accidents is calculated for each crossing in each year (for the base case and sometimes for both base and alternate cases – see Figure 1 above).

² 35% is the opinion of a surveyed expert regarding this factor's likely value.

Note that when using the DOT Accident Prediction and Severity model, the predicted number of accidents is normalized to account for the accident history at the crossing (N is the number of accidents at the crossing in the previous five years). However, when using the HSR model, the accident history is not included as part of the formula. *Equation 5 Predicted Number of Accidents at the Crossing*

$$\begin{split} a &= k \cdot EI \cdot DT \cdot MS \cdot MT \cdot HL \cdot HP \\ T_0 &= \frac{1}{0.05 + a} \\ NA &= \begin{cases} \frac{(a \cdot T_0) + N}{T_0 + 5} \cdot Adj &, \text{ for DOT formulas} \\ a \cdot Adj &, \text{ for HSR formulas} \end{cases} \end{split}$$

when	re:			
		Type of Grac	le Crossing	
	Passive	Flashing Lights	Lights and Gates	New Technology
K	.0006938	.0003351	.0005745	.0001915
EI	$\left[\frac{Expose + 0.2}{0.2}\right]^{0.37}$	$\left[\frac{Expose + 0.2}{0.2}\right]^{0.2}$	$\left[\frac{Expose + 0.2}{0.2}\right]^{0.2}$	$\left[\frac{Expose + 0.2}{0.2}\right]^{0.2942}$
DT	$\left[\frac{dthru+0.2}{0.2}\right]^{0.1781}$	$\left[\frac{dthru+0.2}{0.2}\right]^{0.11}$	$\left[\frac{dthru+0.2}{0.2}\right]^{0.175}$	$\left[\frac{dthru+0.2}{0.2}\right]^{0.1781}$
MS	$e^{0.0077 \cdot ms}$	1	1	1
MT	1	e ^{0.1917} ·tracks	$e^{0.1512 \cdot tracks}$	$e^{0.1512 \cdot tracks}$
HL	1	$e^{0.1826 \cdot (lanes - $	$e^{0.142 \cdot (lanes - 1)}$	$e^{0.142 \cdot (lanes - 1)}$
HP	$e^{-0.5966 \cdot (paved - 1)}$	1	1	1
Adj	0.6500	0.5001	0.5725	0.5725*Tech Factor

where:

and,

N number of accidents in previous five years at grade crossing
 Expose daily exposure with time of day correlation, see equation 4 above
 dthru number of day through trains per day
 ms maximum timetable speed at crossing, miles per hour
 tracks number of main tracks
 lanes number of highway lanes

- paved If highway is paved, Paved =1, if unpaved then Paved=2
- k, Adj regression coefficients
- NA predicted number of accidents per year at the grade crossing

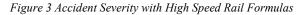
Number of Accidents by Severity Category – DOT Formulas

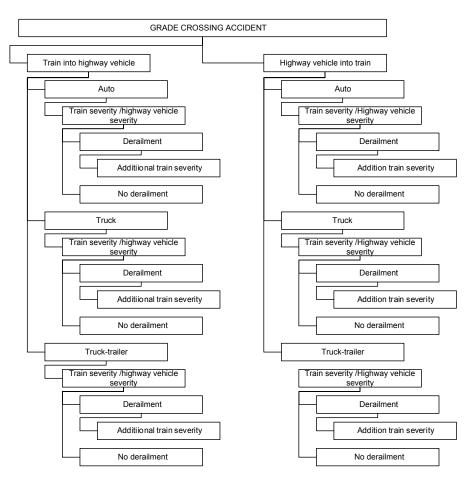
The DOT Accident Severity formulas predict the number of fatal accidents (accidents with at least one fatality) and the number of casualty accidents (accidents with at least one fatality or injury). GradeDec.NET calculates the number of injury accidents (accidents with at least one injury, but no fatality) as the number of casualty accidents less the number of fatal accidents. Property damage only accidents are calculated as predicted accidents less casualty accidents.

The numbers of accidents by severity category are calculated from the following equation:

Equation 6 Predicted Number of Accidents at GCX by Severity Category (DOT Formulas)

KF = 440).9
$MS = ms^2$	-0.9981
TT = (thr	$(u+1)^{-0.0872}$
TS = (swi	$(tch+1)^{0.0872}$
$UR = e^{0.3}$	3571·urban
KC = 4.4	81
$MS_{CA} = n$	$ns^{-0.343}$
$TK = e^{0.1}$	1153- <i>tracks</i>
$UR_{CA} = e$	0.2960·urban
FA =	$\frac{NA}{KF \cdot MS \cdot TT \cdot TS \cdot UR}$
$CA = \frac{1}{1+A}$	$\frac{NA}{KC \cdot MS_{CA} \cdot TT \cdot TS \cdot UR_{CA}}$
IA = CA -	
PA = NA	- FA - IA
where:	
ms	maximum timetable train speed, miles per hour
thru	through trains per day
switch	switch trains per day
urban	if crossing is urban, Urban=1, else Urban=0
tracks	number of railroad tracks
NA	predicted number of accidents per year at the grade crossing
FA crossing	predicted number of fatal accidents per year at the grade
CA crossing	predicted number of casualty accidents per year at the grade


IA predicted number of injury accidents per year at the grade crossing


PA predicted number of PDO accidents per year at the grade crossing

Number of Accidents by Severity Category – HSR formulas

While the DOT formulas calculate the predicted accidents by severity, the high speed rail model calculates the predicted number of fatalities among highway vehicle and train occupants. GradeDec.NET calculates the number of injuries as a fixed ratio to the number of fatalities.

The following figure shows the calculation flow for the high-speed rail accident severity formulas. The following equations show the calculation of fatalities at grade crossing accidents based upon: accident type (train strikes vehicle or vehicle strikes train), vehicle type (auto, truck or truck trailer), and occupants by mode (rail or highway).

Equation 7 Predicted fatalities by mode of occupancy for accident given train strikes highway vehicle (HSR)

$$Ftsv_{occ} = \sum_{ttype} \left[\alpha_{ttype} \cdot \overline{sp}_{ttype}^2 \cdot \sum_{vtype} \beta_{vtype} \cdot \left(\gamma_{atype,vtype,occ} + P(sd)_{vtype} \cdot s_{vtype,occ} \right) \right]$$

and,

$$\frac{1}{sp} = \begin{cases} sp_{ttype} , sp_{ttype} \le sp^{\max} \\ sp^{\max} , sp_{ttype} > sp^{\max} \end{cases}, for \ occ = Highway \ vehicle \ occupants \end{cases}$$

 $sp_{ttype} = sp_{ttype}$, for occ = Train occupants

Equation 8 Predicted fatalities for accident given highway vehicle strikes train (HSR)

$$Fvst_{occ} = \sum_{ttype} \alpha_{ttype} \cdot \sum_{vtype} \beta_{vtype} \cdot \gamma_{atype,vtype,occ}$$

where:

 $\mathsf{Ftsv}_{\mathsf{occ}}$ $\ \ \, \mathsf{predicted}$ fatalities when train strikes vehicle, by occupancy mode

 $Fvst_{occ} \quad predicted fatalities when vehicle strikes train, by occupancy mode$

occ occupancy mode of fatality (e.g., train occupants, highway vehicle occupants)

atype accident type (e.g., train strikes vehicle, vehicle strikes train)

vtype vehicle type (e.g., auto, truck, truck trailer)

ttype train type (passenger, freight, switch)

 $\gamma_{atype,vtype,occ}$ model coefficient by accident type, highway vehicle type and occupancy mode of casualties

 β_{vtype} share of vehicle type in highway traffic

- α_{ttype} share of train type in total rail traffic
- sp_{ttype} average train speed, for train type

sp^{max} train speed of maximum impact on highway fatalities

P(sd)_{vtype}probability of severe derailment

sd added severity with severe derailment (model coefficient) Equation 9 Total Predicted Fatalities (HSR)

$$F = Ptsv \cdot \sum_{occ} Ftsv_{occ} + (1 - Ptsv) \cdot \sum_{occ} Fvst_{occ}$$

where:

F total predicted fatalities

 $\mathsf{Ftsv}_\mathsf{occ}$ $\ \ \mathsf{predicted}$ fatalities when train strikes vehicle, by occupancy mode

 $Fvst_{occ}$ predicted fatalities when vehicle strikes train, by occupancy mode

Ptsv probability that accident is of type train strikes highway vehicle

Equation 10 Total Predicted Injuries (HSR)

$I = u \cdot F$

where:

- I total predicted injuries
- F total predicted fatalities
- u ratio of predicted injuries to fatalities

Effectiveness Multipliers

The DOT resource allocation method recommends that the following effectiveness multipliers be applied to predicted accidents in the base case in order to arrive at the estimate for safety risk at the grade crossing with the proposed improvements.

Note that in using the effectiveness multipliers, predicted accidents in the alternate case equal the base case predicted accidents times one minus the effectiveness multiplier.

If a device is upgraded to one of the new technology types, then the upgrade effectiveness factor is equal to 1 minus the "upgrade to gates" effectiveness factor, times 1 minus the corresponding technology effectiveness factor.

	Total trains per day				
	10 or	r less	More than 10		
Improvement Action	Single Track	Multiple Track	Single Track	Multiple Track	
Passive to Flashing Lights	0.75	0.65	0.61	0.57	
Passive to Lights and Gates	0.9	0.86	0.8	0.78	
Flashing Lights to Gates	0.89	0.65	0.69	0.63	

Table 2 Effectiveness Values for Crossing Warning Devices

Supplementary Safety Measures

The "Interim Final Rule for the Use of Locomotive Horns at Highway-Rail Crossings" seeks to require the sounding of a horn at every crossing and provides detailed provisions for the establishment of "quiet zones" that are exempt from the requirement. As part of its provisions, the proposed rule allows for jurisdictions to add supplementary measures to crossings that have the equivalent effect on predicted accidents as the use of a locomotive horn. The rule incorporates a number of research findings that allow for the evaluation of estimated impacts from a range of improvements at grade crossings. The table below shows the estimated effectiveness of supplementary measures at gated crossings (where the effectiveness rate is the rate of reduction in the number of predicted accidents with the supplementary device as opposed to a gated crossing).

Supplementary measures are applied to gated crossings only. In the alternate case, if a crossing is upgraded from a non-gated crossing to a gated crossing with supplementary measures, then the two effectiveness multipliers are applied serially.

Supplemental Safety Measures	Effectiveness Rate
4 quadrant - no detection	0.82
4 quadrant – with detection	0.77
4 quadrant – with 60' medians	0.92
Mountable curbs-with channelized devices	0.75
Barrier curbs-with or without channelized devices	0.8
One-way street with gate	0.82
Photo enforcement	0.78

Table 3 Effectiveness Multipliers for Supplementary Safety Measures

Source: Federal Register, January 13, 2000, 49 CFR Parts 222 and 229, Use of Locomotive Horns at Highway-Rail Grade Crossings; Proposed Rule. Appendix A, pp. 2251-2255.

GradeDec.NET allows for the re-routing of highway traffic in the corridor via changes in signage and signals, which can be effective in directing traffic away from high-risk/high-exposure crossings in the corridor. If the user has entered data indicating changes in AADT by traffic segment or changes in the time-of-day distribution of traffic segments, these changes will be reflected in the calculations of exposure.

Quiet Zone Risk Index

The "Use of Locomotive Horns at Highway-Rail Grade Crossings; Interim Final Rule" of December 18, 2003 specifies several ways in which a local jurisdiction can establish a "quiet zone".

"A quiet zone may be designated if (a) supplementary safety measures are applied to every public grade crossing within the quiet zone; (b) the Quiet Zone Risk Index is at, or below, the Nationwide Significant Risk Threshold; or (c) supplementary safety measurers are instituted which reduce the Quiet Zone Risk Index to a level at, or below, the Nationwide Significant Risk Threshold, or to the risk level which would exist if locomotive horns sounded at all crossings within the quiet zone." *GradeDec.NET* performs the calculation of the Quiet Zone Risk Index as follows:

Equation 11 Quiet Zone Risk Index

 $RI = FAT \cdot PFAT + PINJ \cdot PINJ$

RI = FAT*PFAT+INJ*PINJ

Where:

RI the Quiet Zone risk Index

FAT predicted fatal accidents (according to the Accident and Prediction and Severity formula)

INJ predicted injury accidents (according to the Accident and Prediction and Severity formula)

PFAT value of a predicted fatal accident in 2003 dollars (determined by the U.S. Department of Transportation to be \$3.0 million.)

PINJ value of a predicted fatal injury in 2003 dollars (determined by the U.S. Department of Transportation to be \$1.167 million.)

The Risk Index can be applied to the individual crossing or to the corridor as a whole (when applying to a corridor, divide the total Risk Index by the number of crossings in the corridor to arrive at the Risk Index for the corridor). The Risk Index is compared with the National Significant Risk Threshold, which is set at 15,424.

Refer to the rule and any subsequent, relevant documentation from the Office of Safety to ensure that your analysis conforms to the guidelines.

Delay and Time-in-Queue

Accurate estimates of the non-safety benefits due to grade crossing investments depend upon properly quantifying the time that highway vehicles spend queued behind closed gates (or, waiting for a train to pass at ungated crossings). While the time-in-queue measure is the basis for the non-safety benefits (incremental emissions and vehicle operating costs while idling), the measure of time savings benefit is best measured as a function of highway vehicle delay. Delay differs from time-in-queue because it captures the total time impact of a closure, including the time it takes for vehicles to return to regular traffic flow.

GradeDec.NET employs techniques from recent research³ that have remapped the conventional time-space queuing model into a graphical construct plotting the cumulative vehicles in queue against time. With some relatively unrestrictive simplifying assumptions, time-in-queue is derived as a multiple of delay. Both highway delay and time in queue are readily calculated using easy-to-obtain data. The analysis framework is shown in the figure below.

The figure shows the blockage of highway traffic flow that occurs at a blocked grade crossing. Referring to the figure, at point L the blockage

³ Using Input-Output Diagram to Determine Spatial and Temporal Extents of Queue Upstream of a Bottleneck, Tim Lawson, David J. Lovell, and Carlos F. Daganza, Transportation Research Record 1572. pp. 140-147.

begins, it ends at point J and the queue begins to disperse, at point K the last vehicle joins the queue and at point M all the queued vehicles have resumed free flow speed.

Time is plotted on the x-axis and the y-axis shows the cumulative number of affected vehicles. Curve V(t) is the "virtual" graph of traffic in free flow. The curves $B_1(t)$ and $B_2(t)$ show the number of queued vehicles. $D_2(t)$ shows the number of dispersed vehicles that have returned to free flow speed.

The following set of equations describes the calculation of delay and time-in-queue in GradeDec.NET.

The crossing blockage time is calculated from the train speed and the train length. The model calculates the average crossing closure time as follows:

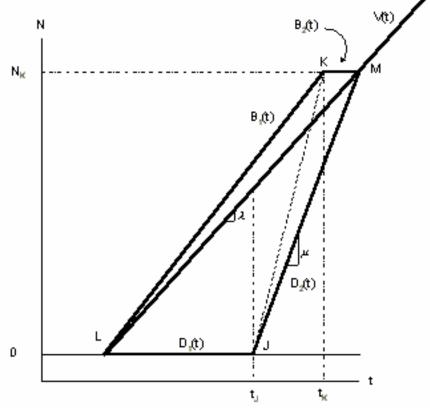


Figure 4 Analysis of Delay and Time-in-Queue

Equation 11 Average Crossing Closure Time (minutes)

$$CCT_{i} = \frac{cl_{i} \cdot nc_{i} + el}{spd_{i} \cdot cf} + \frac{36}{60}$$
$$ACCT = \frac{\sum_{i} \delta_{i} \cdot CCT_{i}}{\sum_{i} \delta_{i}}$$

where:

i

index indicating the type of train: passenger, freight or switch

- CCT_i crossing closure time for train of type i, minutes
- cl_i average car length for train of type i, feet
- nc average number of cars for train of type i
- el engine length (set at 50 feet)
- cf factor for converting mph to feet per minute, equal to 5280/60
- spd_i average speed at the crossing of train of type i, mph
- δ_i trains per day of type i
- ACCT average crossing closure time, minutes

Time per train is calculated in minutes. 36 seconds are added to the time per train to account for the lead time of warning or closure prior to the arrival of a train (the model assumes that the lead time applies to passive crossings also, i.e., 36 seconds prior to the arrival of a train, highway motorists will not venture a crossing).

The arrival rate of vehicles is given by the following equation: Equation 12 Arrival Rate of Vehicles (vehicles per second per lane)

$$\lambda = \frac{\sum_{\alpha} (veh_{\alpha, per} \cdot PCE_{\alpha})}{6 \cdot 3600 \cdot lanes}$$

where:

 $veh_{\alpha, per}$ number of vehicles in traffic segment α in period

 PCE_{α} Passenger car equivalent by traffic segment (1 for autos, 1.8 for trucks and 2.73 for busses)

- lanes number of highway lanes at the crossing
- 6 the number of hours in the period

3600 the number of seconds per hour

The number of vehicles that are affected by a closure is given by: *Equation 13 The Number of Affected Highway Vehicles at Closure*

$$N_K = \frac{\lambda \cdot \mu \cdot ACCT}{60 \cdot (\mu - \lambda)}$$

where:

 λ arrival rate of vehicles, vehicles per second

 μ dispersal rate of vehicles, vehicles per second (constant value of 0.5)

ACCT average crossing closure time in minutes

The total vehicle delay in the time-of-day period is given by: Equation 14 Total Vehicle Delay per Closure (vehicle-seconds)

$$w = N_K \cdot \left[\frac{ACCT}{60} + \left(\frac{1}{\mu} - \frac{1}{\lambda} \right) \cdot \left(\frac{N_k + 1}{2} \right) \right]$$

where:

2	• 1		1 * 1	1 * 1	1
λ	arrival	rate of	vehicles,	vehicles	per second

 μ dispersal rate of vehicles, vehicles per second (constant value of 0.5)

ACCT average crossing closure time in minutes

 N_K the number of affected vehicles at closure

The line $B_1(t)$ in the above figure represents the back of the queue. Its slope is given by:

Equation 15 Slope of the Back-of-Queue Equation

$$z = \frac{\lambda \cdot v_f \cdot k_j}{v_f \cdot k_j - \lambda}$$

where:

 λ arrival rate of vehicles, vehicles per second

 $v_{\rm f}$ freeflow speed of highway vehicles (constant value of 45 mph converted to feet per second)

 k_j traffic density in vehicles per feet at speed 0 (set to constant 0.05)

The above equation was derived from the flow-density relationship.

The time-in-queue per closure is given by:

Equation 16 Time-in-queue per Closure (vehicle-seconds)

$$t_q = N_K \cdot \left[\frac{ACCT}{60} + \left(\frac{1}{\mu} - \frac{1}{z} \right) \cdot \left(\frac{N_k + 1}{2} \right) \right]$$

where:

z slope of the back-of-queue equation

 μ dispersal rate of vehicles, vehicles per second (constant value of 0.5)

ACCT average crossing closure time in minutes

N_K the number of affected vehicles at closure

GradeDec.NET allocates delay and time-in-queue to each of the three traffic segments (auto, truck, bus) according to the shares of each traffic segment in total traffic for the time-of-day period. Delay and time-in-queue are summed for each traffic segment over the four daily periods to arrive at average daily delay and time-in-queue (for each segment). These metrics are used in the calculation of non-safety benefits.

Delay and time-in-queue per traffic segment per period is given by: Equation 17 Delay for Traffic Segment in Time-of-Day Period (vehicleminutes)

$$w_{\alpha,per} = w_{per} \cdot \frac{veh_{\alpha,per}}{\sum_{\alpha} veh_{\alpha,per}} \cdot 60$$

where:

w_{per} total delay in time-of-day period

 $veh_{\alpha,per}$ number of vehicles of type α (auto, truck, bus) in period *Equation 18 Time-in-Queue for Traffic Segment in Time-of-Day Period* (vehicle-minutes)

$$t_{q \ \alpha, per} = t_{q \ per} \cdot \frac{veh_{\alpha, per}}{\sum_{\alpha} veh_{\alpha, per}} \cdot 60$$

where:

 $t_{q per}$ total time-in-queue in time-of-day period (vehicle-seconds) veh_{$\alpha,per}$ number of vehicles of type α (auto, bus, truck) in period</sub>

Average daily delay and time-in-queue for each traffic segment is given by:

Equation 19 Average Daily Delay per Traffic Segment (vehicle-minutes)

$$w_{\alpha} = \sum_{per} w_{\alpha, per}$$

where:

 $w_{\alpha,per}$ total delay in time-of-day period

Average time-in-queue for each traffic segment is given by: Equation 20 Average Daily Delay per Traffic Segment (vehicle-minutes)

$$w_{\alpha} = \sum_{per} w_{\alpha, per}$$

where:

 $w_{\alpha,per}$ total delay in time-of-day period

Highway Traffic Re-Assignment (Corridor Model Only)

With the corridor model, GradeDec.NET re-assigns highway traffic at the grade crossing in two instances: 1) a grade crossing closure and, 2) a grade separation. The rationale for the re-assignment is that with closure forecast traffic will take alternate routes and will cross the rail lines at other points of crossing in the corridor in order to reach their destination. With grade separation, the grade-separated route will have less traffic impedance than it would have had without the improvement. Travelers will have a greater propensity to choose the route with less impedance and, therefore, some diversion of traffic to the gradeseparated route is anticipated. Re-assignment of traffic at grade separated crossings is a feature that the user can turn on or off when running a simulation. Highway traffic is re-assigned in GradeDec.NET model prior to the calculation of all benefit categories.

Grade Closures

The re-assigned AADT for the GCX adjacent below (i.e., lower milepost number) to the closed GCX is given by: *Equation 21 Diversion from Closure to Lower Adjacent GCX*

$$aadt_{i-1} = aadtb_{i-1} + aadt_i \cdot \left[1 - \frac{mp_i - mp_{i-1}}{mp_{i+1} - mp_{i-1}}\right]$$

where:

 $aadt_{i-1}$ average annual daily traffic at the GCX adjacent and below the closure, after re-assignment

aadt_i average annual daily traffic at the closed GCX before reassignment

 $aadtb_{i-1}$ average annual daily traffic at the GCX adjacent and below the closure, before re-assignment

 $mp_{\rm i}$ $\ \ \, the$ milepost value of the ith GCX, the closed crossing from which traffic is diverted

The re-assigned AADT for the GCX adjacent above (i.e., higher milepost number) to the closed GCX is given by: *Equation 22 Diversion from Closure to Upper Adjacent GCX*

$$aadt_{i+1} = aadtb_{i+1} + aadt_i \cdot \left[1 - \frac{mp_{i+1} - mp_i}{mp_{i+1} - mp_{i-1}} \right]$$

where:

 $aadt_{i+1}$ AADT at the GCX adjacent and above the closure, after reassignment

 $aadt_i$ AADT at the closed GCX before re-assignment

 $aadtb_{i\!+\!1}~AADT$ at the GCX adjacent and above the closure, before reassignment

mp_i the milepost value of the ith grade crossing

Grade Separation

After re-assigning traffic due to closures GradeDec.NET looks for grade separations and re-assigns traffic to account for the reduced traffic impedance at separated crossings. The model can be run without re-assigning traffic due to grade separations. On the simulation screen of the model, uncheck the box that says "Re-assign traffic if grade separated".

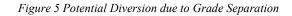
The potential AADT diverting from an adjacent crossing to a grade separated crossing is given by:

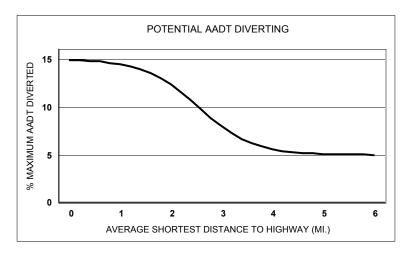
Equation 23 Potential AADT Diverted from Adjacent Crossing to Grade Separated Crossing

$$pAADTd = \min PD + (\max PD - \min PD) \cdot \frac{1}{1 + e^{-(\alpha + \beta \cdot D)}}$$

where:

pAADTd percent of potential AADT diverting from the GCX due to a grade separation at an adjacent GCX (a function of the distance to the nearest major highway intersection)


min PD minimum percent of potential AADT diverting from the GCX due to a grade separation at an adjacent GCX (independent of the distance to the nearest highway intersection). This value is set to 5.


max PD maximum percent of potential AADT diverting from the GCX due to a grade separation at an adjacent GCX (independent of the distance to the nearest highway intersection). This value is set to 15.

 α equation parameter set to 4.783. This parameter and the following one are set to meet two conditions: 1) if distance of GCX is .1 miles from closest major highway intersection then the value of F in the above equation is 0.99, and 2) if distance of GCX is 5 miles from closest major highway intersection then the value of F in the above equation is 0.01.

 β equation parameter set to -1.876 and meeting the conditions described above.

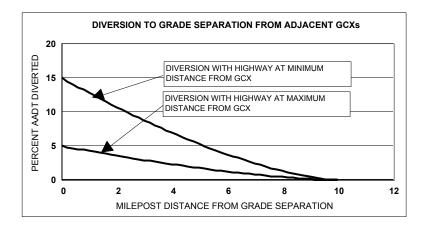
D percent of potential AADT diverting from the GCX due to a grade separation at an adjacent crossing

Equation 24 Percent AADT Diverted from Crossing to adjacent Grade Separated Crossing

$$pcAADTdivert = pAADTd \cdot \left(1 - \frac{\Delta MP}{\max MP}\right)^{\gamma}$$

where:

pcAADTdivert percent of diversion of AADT from the traffic at the GCX to the adjacent, grade separated GCX


pAADTd percent of potential AADT diverting from the GCX due to a grade separation at an adjacent GCX (see above equation)

 ΔMP distance between the adjacent GCX and the grade separated GCX

max MP the maximum distance between adjacent GCXs, beyond which there is no diversion due to grade separation. This value is set to 10 miles in the model.

 γ an equation parameter reflecting the diminishing impact of grade separation on the route choice as the position of the adjacent GCX is further from the grade separated crossing. The parameter determines the concavity and the pace at which the impact diminishes with distance from grade separation. In the model and in below the parameter is set at 1.5.

Benefits and Costs

The following sections describe the calculation of benefits and costs in GradeDec.NET.

Safety Benefits

The accident prediction and severity sections above describe the procedures for calculating predictions by severity type, with the DOT formulas, and fatalities and injuries, with the HSR formulas. GradeDec.NET calculates the safety benefits as:

Equation 25 Safety Benefits (for each year and crossing – with DOT formulas)

$$SB = \sum_{i} (AccB_i - AccA_i) \cdot CPAcc_i$$

where:

SB safety benefit, constant dollars

i accident severity type (fatal, injury, PDO)
 AccB_i number of accidents in base case, type i
 AccA_i number of accidents in alternate case, type i
 CPAcc_i cost per accident, type I

Equation 26 Safety Benefits (for each year and crossing – with HSR formulas)

$$SB = \sum_{i} [(CasB_{i} - CasA_{i}) \cdot CPCas_{i}] + (NAB - NAA) \cdot OPCAcc$$

where:

SB	safety benefit, constant dollars
i	casualty severity type (fatal, injury)
$CasB_i$	number of accidents in base case, type i
$CasA_i$	number of accidents in alternate case, type i
$CPCas_i$	cost per casualty, type I
NAB	predicted number of accident, base case
NAA	predicted number accidents, alternate case
OPCAce	caverage out-of-pocket cost, dollars

Travel Time Savings

GradeDec.NET computes travel time benefits based on the delay experienced by the highway vehicles at the highway-rail grade crossings. See the section on delay for a complete discussion.

The model calculates the probability that an individual highway vehicle will be blocked at a highway-rail grade crossing and the minutes of delay per vehicle. The product of these two quantities provides the average delay that each highway vehicle endures. This quantity is then multiplied by the total number of highway vehicles that arrive at the blocked grade crossing to obtain the total vehicle hours of delay. The highway vehicle delay hours are divided into passenger vehicles and trucks based upon the percentage of trucks data entry for the crossing.

The delay per blocked vehicle is equal to the time per train converted to hours. The probability that a vehicle is blocked equals the total daily block time (time per train times number of trains per day) times the exposure correlation factor (a number between 0 and 1 representing the correlation between the time-of-day distributions of rail and highway traffic).

The vehicle hours of delay are calculated at each crossing and for each year of the evaluation.

Equation 27 Time Savings Benefits (for each year and crossing)

$$PVDC = \frac{w_{auto}}{60} \cdot avgocc \cdot votpx$$
$$TDC = \frac{w_{truck}}{60} \cdot vottr$$
$$BDC = \frac{w_{bus}}{60} \cdot (vottr + avgoccbus \cdot votpx)$$
$$DCA = (PVDC + TDC + BDC) \cdot AF$$
$$TTSB = DCA_{base} - DCA_{alt}$$

where:

w_{auto} average daily passenger vehicle delay, vehicle-minutes

avgocc average passenger vehicle occupancy, passengers per vehicle

- votpx value of passenger time, dollars per hour
- BDC average daily bus delay time cost, dollars
- $w_{bus} \qquad \text{average daily bus delay, vehicle-minutes} \\$
- vottr value of truck time (driver time), dollars per hour
- TDC average daily truck delay time cost, dollars
- w_{truck} average daily truck delay, vehicle-minutes
- DCA annual delay costs, dollars
- AF annualization factor
- TTSB annual travel time savings benefit, dollars

Environmental Benefits

GradeDec.NET calculates the reduction in highway vehicle emissions due to reduced idle time at the grade crossings. There will be reduced emissions with grade separations and closures. However, the reductions in emissions at the closed GCX will typically be offset by increases in emissions at the crossings that absorb traffic diverted from the closed crossings.

There are emission rate tables for automobiles, transit vehicles, and trucks for three emission types: carbon monoxide, hydrocarbons, and nitrous oxide. The model uses these values to calculate emissions from idling vehicles at grade crossings. Emission costs for highway vehicles are calculated by multiplying the appropriate emission rate (by vehicle type) by the time spent by each vehicle type at the grade crossing. This calculation is performed for the base and alternate cases, the net difference being the change in vehicle emission.

Equation 28 Average Daily Emissions at Crossing by Vehicle Type

$$EM_{Etype} = \sum_{Vtype} ER_{Vtype,Etype} \cdot t_{q \ Vtype} \cdot \frac{60}{907185}$$

where:

Etype emission type: HC, CO, NOx

Vtype type of vehicle: car, truck or bus

 $ER_{Vtype, Etype}$ emission rate (grams per minute)

t_{q Vtype} time-in-queue by vehicle type, vehicle-hours

EM_{Etype} emissions by type (tons per day)

The value 907185 is the number of grams per ton *Equation 29 Environmental Benefits (for each year and GCX)*

$$EB = \sum_{Etype} \left[\left(EM_{Base,Etype} - EM_{Alt,Etype} \right) \cdot VOE_{Etype} \right] \cdot AF$$

where:

Etype emission type: HC, CO, NOx

EM _{Base, 1}	Etype emissions by type in base case, tons
EM _{Alt, Et}	^{ype} emissions by type in alternate case, tons
VOE _{Etyp}	eemissions cost, dollars per ton
AF	annualization factor
EB	environmental benefit, dollars

Vehicle Operating Cost Savings

GradeDec.NET computes the vehicle operating cost savings as a result of the improvements at the highway-rail grade crossing. Savings are generated from the reduction in delay at the grade crossing following the grade crossing upgrade. Between the base and alternate cases, a reduction in delay will lead to decreased consumption of fuel and oil by the vehicles operating on the highways. Vehicle consumption of fuel and oil is calculated for each vehicle type using the rates of idling consumption of fuel and oil. The time delay for each vehicle type is multiplied by the consumption rate to derive the fuel or oil consumed by the vehicles at the grade crossing.

Vehicle operating cost savings are then calculated by aggregating the change in gasoline, diesel and oil consumption for the different vehicle types and multiplying by their respective costs.

Equation 30 Average Daily VOC at Crossing by Vehicle Type

$$FCI_{Ftype} = \sum_{Vtype} BR_{Vtype,Ftype} \cdot t_{q \ Vtype} \cdot 60$$

where:

Ftype fuel or oil type: gasoline, diesel, oil

Vtype passenger vehicles, buses, trucks

BR_{Vtype, Ftype} fuel burn rate rate - gallons (gas and diesel) or quarts (oil) per minute

 $t_{q Vtype}$ time-in-queue by vehicle type, vehicle-hours

 ${\rm FCI}_{\rm Ftype}~$ fuel/oil consumed idling during delays , gallons (gas and diesel) or quarts (oil)

Equation 31 Vehicle Operating Cost Benefits (for each year and GCX)

$$\begin{aligned} FCOST_{Ftype, year} &= FCOST_{Ftype, year-1} \cdot \frac{(1 + fpirg_{year})}{(1 + cpirg_{year})} \\ FCIC_{Ftype} &= FCI_{Ftype} \cdot FCOST_{Ftype} \\ FCIC &= \sum_{Ftype} FCIC_{Ftype} \cdot AF \\ VOCB &= FCIC_{Base} - FCIC_{Alt} \\ \end{aligned}$$
where:

 $FCOST_{Ftype, \ year} \quad \ the \ constant \ dollar \ price \ of \ fuel \ in \ forecast \ year$

 $\ensuremath{\mathsf{fpirg}_{\mathsf{year}}}$ the fuel price index rate of growth

cpirg_{year} the general price rate of growth

FCIC_{Ftype} fuel cost by fuel type

 $\mathrm{FCI}_{\mathrm{Ftype}}$ average quantity of fuel consumed per day idling at GCX

AF annualization factor

VOCB vehicle operating cost benefit

Network Benefits (Corridor Model Only)

GradeDec.NET computes the estimated impacts of crossing investments on delay reduction on the neighboring highway network. The calculation relies on the average queue length on the approaching highway segments and the distance to the nearest major highway intersection.

The model assumes that network delay is negligible when the queue does not extend to within one-half the distance to the nearest highway. As the queue lengthens beyond the half-way, the network delay increases until it reaches a value of 10 vehicle-minutes at the point where the queue extends to the nearest highway crossing. The network delay will continue to increase at a declining rate as the queue length reaches and extends beyond the intersection. If the grade crossing signal is synchronized with the highway traffic signals, then network delay from the grade crossing is reduced by 50%. The calculation of network delay for each GCX in each year is as follows:

Equation 32 Network Delay (for crossing, year)

$$\begin{split} AADT \cdot \sum \beta_{j} b_{per} \\ VAPH &= \frac{j}{6} \\ VAPB &= VAPH \cdot \frac{ACCT}{60} \\ QL &= \frac{vl \cdot VAPB}{5280 \cdot Lanes} \\ BPP &= TV \cdot a_{per} \\ DQL &= \begin{cases} QL - (dth - th), \ if \ QL > (dth - th) \\ 0, \ if \ QL \leq (dth - th) \end{cases} \\ ND_{per} &= \begin{cases} \frac{A \cdot DQL^{\beta} \cdot BPP \cdot ndpfq}{60}, \ if \ sp \ false \\ \frac{A \cdot DQL^{\beta} \cdot BPP \cdot ndpfq \cdot 0.5}{60}, \ if \ sp \ true \end{cases} \\ ND &= \sum_{per} ND_{per} \end{split}$$

where:

ACCT average crossing closure time, minutes (see equation 17)

AADT average annual daily traffic at crossing

VAPH average number of vehicles arriving at crossing per hour in time-of-day period

 $b_{j,\text{per}}$ share of daily highway traffic of vehicle type j in time-of-day period

- β_i share of vehicle type j in daily traffic
- VAPB average number of vehicles arriving at crossing during block
- QL queue length at blocked crossing, miles
- vl average length of vehicle (set at 22 feet)
- TV average number of trains per day
- BPP average number of blocks per period
- a_{per} share of daily trains in time-of-day period

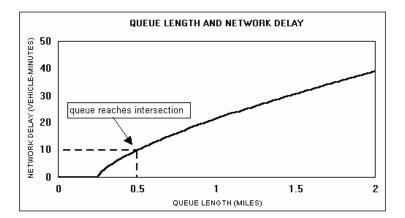
DQL the portion of the queue length that contributes to network delay, miles

dth distance of crossing to nearest highway intersection, miles

th the distance from major intersection such that if queue extends beyond this point network delay begins to accrue. Set at half of dth.

ND_{Per} network delay in time-of-day period, vehicle-hours

A a value calibrated so that network delay equals 10 vehicleminutes when queue reaches the intersection


 β elasticity of network delay with respect to queue length, set to 0.7

sp true/false flag designating whether grade crossings are synchronized with signal progression on the highway network

ndpfq the number of vehicle-hours of network delay caused by a queue extending to the nearest major intersection. Set at one-sixth vehicle-hours (equal to 10 vehicle-minutes)

ND daily network delay in vehicle-hours

Figure 7 Network Delay as a Function of Queue Length (when intersection is 0.5 miles from crossing)

As with the other benefits categories, network delay is calculated in the base and the alternate cases. The savings times the appropriate cost value is the network delay benefit.

Equation 33 Network Benefits (for each GCX and year)

$$\begin{split} NDPC &= ND \cdot (1 - strucks - sbus) \cdot avgocc \cdot votpx \\ NDBC &= ND \cdot sbus \cdot (vottr + avgoccbus \cdot votpx) \\ NDTC &= ND \cdot strucks \cdot vottr \\ NDCA &= (NDPC + NDBC + NDTC) \cdot AF \\ NDSB &= NDCA_{base} - NDCA_{alt} \end{split}$$

where:

NDPC average daily cost of network delay, passenger vehicles, dollars

- ND average daily network delay, vehicle-hours
- avgocc average passenger vehicle occupancy, passengers per vehicle
- votpx value of passenger time, dollars per hour
- strucks share of highway traffic that is trucks
- sbus share of highway traffic that is buses
- NDBC average daily cost of network delay, buses, dollars
- avgoccbus average bus occupancy, passengers per bus
- NDTC average daily cost of network delay, trucks, dollars
- vottr value of truck time, dollars per hour
- NDCA annual network delay costs, dollars
- AF annualization factor
- NDSB annual network delay savings benefit, dollars

Local Benefits

Local benefits in the corridor are calculated as a percentage of the benefits from all the preceding benefits categories summed over all the grade crossings. These benefits represent the value of the grade crossing improvements to the local community or communities. These include benefits not conventionally counted like: improved mobility for residents (due to easier, safer crossings), reduced noise, economic benefits from improved access, etc. The local benefits are equal to the sum of all the previously discussed benefits times the local benefits factor.

Equation 34 Local benefits (for each year)

$$LB = \left(\sum_{GCX} SB + \sum_{GCX} TTSB + \sum_{GCX} VOCB + \sum_{GCX} EB + \sum_{GCX} NDB\right) \cdot lbf$$

where:

- LB Annual local benefits in the corridor, dollars
- SB Annual safety benefits, dollars
- TTSB Travel time savings benefits, dollars
- VOCB Vehicle operating cost savings benefits, dollars
- EB Environmental benefits, dollars
- NDB Network delay savings benefits, dollars
- lbf Local benefits factor (exogenously determined factor)

Project Costs

There are three components of project costs. First, there are capital outlays that are incurred in the alternative case. Second, annual operating and maintenance costs for each crossing. Third, other lifecycle costs for each of the grade crossings in the corridor. The following is the formula for costs:

Equation 35 Total and Net Project Costs (for each year)

$$TC_{Base} = OM_{Base} + LC_{Base} + OMss_{Base} + LCss_{Base}$$

$$TC_{Alt} = \begin{cases} OM_{Alt} + LC_{Alt} + OMss_{Alt} + LCss_{Alt} &, if year > 1 \\ OM_{Alt} + LC_{Alt} + CC_{Alt} \cdot (1 + dr) \\ + OMss_{Alt} + LCss_{Alt} + CCss_{Alt} \cdot (1 + dr) &, if year = 1 \end{cases}$$

$$NC = TC_{Alt} - TC_{Base}$$

where:

TC total project costs in year (for each case, base and alternate), dollars

OM operating and maintenance costs (for each case, base and alternate), dollars

LC other life-cycle costs (for each case, base and alternate), dollars

CC capital costs (alternate case only, presumed executed in year 0 - the base year), dollars

OMss operating and maintenance costs (for each case, base and alternate) for supplementary safety measure (for gated crossings only), dollars

LCss other life-cycle costs (for each case, base and alternate) for supplementary safety measure (for gated crossings only), dollars

CCss capital costs (alternate case only, presumed executed in year 0 - the base year), for supplementary safety measure (for gated crossings only) dollars

dr discount rate

NC net project costs, dollars

Salvage Value

In an analysis of the benefits and costs of infrastructure investments, it is customary to "add back" the residual or salvage value of the investments at the end of the time horizon of the analysis. In principle, this represents the value of the remaining useful life of the capital improvements.

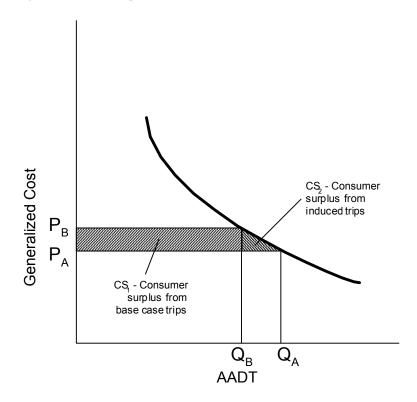
In *GradeDec.NET* the analysis assumes that the value of the invested capital declines by 5% per year. The salvage value is calculated at the end of the analysis period. In the benefit-cost summary it is discounted to present value terms.

$$IVal_{InvYr} = CapCost$$
$$IVal_{t} = IVal_{t-1} \cdot (1 - \delta)$$
$$Salvage = \sum_{cr} IVal_{lyr+1}$$

where:

IVal_{Invvr} Value of the improvement in the year of its implementation

CapCost capital cost of the improvement


- IVal_t Value of the improvement in year t
- IVal_{t-1} Value of the improvement in year t-1
- δ rate of depreciation, set at 5 percent per year

Consumer Surplus

The benefit components described above include only the benefits accruing to current users of the roadway network. With grade crossing improvements, the generalized cost of travel by car in the corridor or region will decline. As a result, we expect that grade crossing improvements will induce some additional highway traffic. The consumer surplus includes both the consumer surplus from the base case auto trips as well as from the induced trips (see Figure 7 below). The model assumes that bus and truck traffic in the corridor or region

are not sensitive to the changes in generalized cost from grade crossing improvements.

Figure 8 Consumer Surplus

In addition to incremental consumer surplus, induced trips will also generate external costs. GradeDec.NET calculates these external costs and deducts them from the total benefits. The following are the model equations for the calculation of consumer surplus and the external costs from induced trips.

Equation 36 Base Case Auto Travel Demand in the Corridor or Region

$$Q_B = \sum_i \alpha_i \cdot AADT_i$$

where:

i index of the crossing (i.e., each of n crossings in the corridor or region is indexed from 1 to n)

 α_i auto share of traffic at the crossing

AADT_i average annual daily traffic at crossing i

The costs that influence the traveler's decision to make additional trips are the internal costs, namely: safety risk, travel time and vehicle operating cost.

Equation 37 Base case Generalized Cost of Auto Trips

$$P_B = \frac{\sum (\alpha_i \cdot sr_{Bi} + tt_{Bi} + voc_{Bi})}{(pTC/100) \cdot Q_B}$$

where:

D	• • • •		1. 1			.1	• 1
P_	imnuted	average	apperglized	trin	cost in	the	corridor
PR	minuted	average	generalized	ւստ	COSt III	unc	COLLIGOT

- α_i auto share of traffic at the crossing
- sr_{Bi} auto cost of accidents at crossing i, dollars
- tt_{Bi} auto travel time delay costs at crossing i, dollars
- voc_{Bi} auto vehicle operating cost at crossing i, dollars
- pTC percent share of trip costs at the crossing
- Q_B auto AADT at crossings in the corridor or region

GradeDec.NET represents highway auto travel demand with a standard, Cobb-Douglas functional form, which has a fixed elasticity of demand with respect to generalized cost.

Equation 38 Auto Highway Travel Demand as a Function of Generalized Cost

$$Q = A \cdot P^{\beta}$$

where:

Q daily trips that traverse the crossings in the corridor or region as measured by AADT at the grade crossings

P the generalized average cost of auto trips traversing crossings in the region or corridor

 β elasticity of demand for auto trips with respect to generalized cost

A a constant, derived by substituting Q_B , P_B and solving

The alternate case generalized cost is based on the imputed cost in the base case and the change in cost at the crossing.

Equation 39 Alternate Case Generalized Cost of Auto Trips

$$P_{A} = P_{B} + \left[\frac{\sum_{i} (\alpha_{i} \cdot sr_{Ai} + tt_{Ai} + voc_{Ai}) - \sum_{i} (\alpha_{i} \cdot sr_{Bi} + tt_{Bi} + voc_{Bi})}{Q_{B}}\right]$$

where:

 $P_{\rm B}$ \$ the imputed average generalized trip cost in the corridor in the base case

- α_i auto share of traffic at the crossing
- sr_{Ai} cost of accidents at crossing, alternate case, dollars
- tt_{Ai} travel time delay at crossing i, alternate case, dollars

 $\mathsf{voc}_{\mathsf{A}i}$ $% \mathsf{A}_{\mathsf{A}}$ the auto vehicle operating cost at crossing i, alternate case, dollars

- sr_{Bi} the cost of accidents at crossing i, base case, dollars
- tt_{Bi} travel time delay at crossing i, base case, dollars
- voc_{Bi} the auto vehicle operating cost at crossing i, base case, dollars

Q_B auto AADT at crossings in the base case

The travel demand in the alternate case is derived by applying the auto travel demand function from equation 30.

Equation 40 Alternate case auto travel demand

$$Q_A = A P_A^\beta$$

where:

P_A alternate case average generalized cost of travel in the corridor or region elasticity of auto travel demand with respect to generalized cost

A constant of demand equation

Consumer surplus is estimated in the conventional way as the area beneath the demand curve. Since the demand curve is based on daily traffic, the result is annualized.

Equation 41 Total Consumer Surplus (in each year)

$$CS = A \int_{P_A}^{P_B} P^\beta dP \cdot AF = \frac{A}{1+\beta} \left[P_B^{\beta+1} - P_A^{\beta+1} \right] \cdot AF$$

where:

 P_A alternate case average generalized cost of travel in the corridor or region

 $P_{\rm A}$ base case average generalized cost of travel in the corridor or region

- A demand equation constant
- β elasticity of demand with respect to generalized cost

AF annualization factor

The consumer surplus from base case trips, and which is already included in the calculation of the benefit components, is given by: *Equation 42 Consumer Surplus from Base Case Trips (in each year)*

$$CS_1 = Q_B \cdot (P_B - P_A) \cdot AF$$

where:

Q_B auto AADT at crossings in the base case

 $P_{\rm B}$ \$ imputed average generalized trip cost in the corridor in the base case

 P_A imputed average generalized trip cost in the corridor in the alternate case

AF annualization factor

The consumer surplus from the induced trips is the difference between the total consumer surplus and the consumer surplus from base case trips.

Equation 43 Consumer Surplus from Induced Trips

 $CS_2 = CS - CS_1$

The disbenefit that is generated by induced trips is equal to the external costs (congestion and emissions) that each induced trip generates. This disbenefit is estimated by the following equation.

Equation 44 Disbenefit from Induced Trips

$$DisBen = \left[\sum_{i} (ec_{Ai} + ndc_{Ai})\right] \cdot \left[\frac{AF}{pTC/100}\right] \cdot \left[\frac{Q_A - Q_B}{Q_A}\right]$$

where:

ec_i emission costs at crossing i, alternate case, dollars

 $ndc_i \qquad network \ delay \ costs \ due \ to \ queuing \ at \ crossing \ i, \ alternate \ case \ dollars$

- pTC percent share of trip costs at the crossing
- Q_B auto AADT at crossings in the base case
- Q_A auto AADT at crossings in the alternate case
- AF annualization factor

Total Benefits and Benefit-Cost Indicators

GradeDec computes the corridor (or regional) level benefits from grade crossing improvements by aggregating the benefits estimated for each individual crossing and then adding the consumer surplus from induced trips and subtracting the disbenefit (in the form of external costs) from these trips. A simple sum is used to aggregate the safety benefits, travel time benefits, vehicle operating cost benefits, environmental benefits and network delay benefits.

Equation 45 Total benefits (excluding local) in corridor (for each year)

$$TB = \sum_{GCX} SB + \sum_{GCX} TTSB + \sum_{GCX} VOCB + \sum_{GCX} EB + \sum_{GCX} NDB + CS_2$$

- DisBen + Salvage

where:

- TB total annual local benefits in the corridor, dollars
- SB annual safety benefits, dollars
- TTSB travel time savings benefits, dollars
- VOCB vehicle operating cost savings benefits, dollars
- EB environmental benefits, dollars
- NDB network delay savings benefits, dollars
- CS2 consumer surplus from induced trips
- DisBen disbenefit from induced trips

Salvage Salvage value of investments (last year only)

The net benefits for the corridor or region are calculated as follows: *Equation 46 Net benefits (excluding local) in corridor (for each year)*

$$NB = TB - NC$$

where:

- NB net benefits, dollars
- TB total benefits, dollars
- NC net project costs, dollars

The following formulas give the present value calculations of benefits, costs and net benefits.

Equation 47 Present value benefits

$$PVB = \sum_{year} \frac{TB_{year}}{(1+dr)^{year}}$$

where:

PVB present value of benefits, dollars

TB	total	benefits,	dollars
----	-------	-----------	---------

dr discount rate

Equation 48 Present Value Costs

$$PVC = \sum_{year} \frac{NC_{year}}{(1+dr)^{year}}$$

where:

PVC present value of project costs, dollars

- NC net costs, dollars
- dr discount rate

Equation 49 Net Present Value

$$NPV = PVB - PVC$$

where:

- NB net present value, dollars
- PVB present value benefits, dollars
- PVC present value costs, dollars

The following is the benefit-cost ratio calculation. *Equation 50 Benefit-Cost Ratio*

$$BCR = \frac{PVB}{PVC}$$

where:

- BCR benefit-cost ratio
- PVB present value benefits, dollars

PVC present value costs, dollars

The following is the project rate of return calculation. *Equation 51 Project Rate of Return*

$$PRR = IRR(TB_{year} - NC_{year})$$

where:

PRR project rate of return

IRR designates a function that returns the discount rate for which the present value of the net benefit stream is equal to zero.

TB_{year} Total benefits, dollars

NCyear Net project costs, dollars

Data and Data Organization

Introduction	
	There are four principal data elements in <i>GradeDec.NET</i> and these were described in the Model Overview section above. The following sections include detailed descriptions of the data in each of the data elements.
Corridor Data	
	The following are the corridor data variables. Except where noted, the variable descriptions are self-explanatory.
	Number of Passenger Trains per Day
	Number of Freight Trains per Day
	Number of Switch Trains per Day
	Rail Traffic Daily Distribution
	The user can choose from one of five daily traffic distributions: uniform, AM peak, PM peak, day flat, night flat. These distributions of traffic divide the daily traffic into four six-hour periods. These are early AM (12AM-6AM), late AM (6AM-12PM), early PM, (12PM-6PM), and late PM (6PM-12AM). The traffic distributions are each represented as a vector of four values that sum to 1. For example, the uniform distribution is given by (.25,.25,.25,.25). The <i>GradeDec.NET</i> default distributions are given in the "Time-of-Day Distributions" section of "Model"

Components". The user can modify these distributions to reflect conditions in the corridor under evaluation.

Signal Synchronization with the Highway Network (yes/no)

This yes/no variable indicates whether the grade crossing signaling is synchronized with the signaling system of the adjacent highway network.

Technology Impact Factor

The accident incidence of the "new technology" crossing type will be determined by the Technology Impact Factor. This factor determines the safety risk of new technology relative to conventional lights and gates crossing barriers, i.e., a value of 0.5 for this factor will yield safety risk half that of a lights and gates crossing.

Region Data

Besides its description, the following are the two parameters associated with a region:

Technology Impact Factor

See the description above under Corridor Data.

Percent Benefit from Closure

The regional model, unlike the corridor model, does not reassign traffic at the crossing when the crossing is closed. When a crossing is closed, there are no longer highway user costs at the crossing. However, the trips of highway users who used the route with the crossing in the base case did not simply disappear. Most likely, the highway trips at the crossing. This "percent benefits" parameter determines the percent of base case user costs that will be realized as a benefit. For instance, if the parameter is set to 0 this is equivalent to all highway users finding alternate routes that have exactly the same user costs as the base case. If this parameter is set to a value greater than 0 (say, 10) this implies that users find lower cost alternatives in the alternate case when the crossing is closed and 10 percent of the base case cost is realized as benefit. Conversely, if the parameter is set to -10 then users find alternatives that are 10% more costly than the base case and there is a net disbenefit from the closure.

Grade Crossing Data

The following are the crossing data variables. The variables noted below are either common to both corridors and regions, or are unique to one or the other as noted. Except where noted, the variable descriptions are self-explanatory.

Milepost (corridor and region)

The Milepost is a decimal number (i.e., 153.7) that identifies the GCX and specifies its geographic location within the rail corridor. The difference between the mileposts of two consecutive GCXs should equal the distance between them in miles. The data for crossings in a corridor should be entered in a linear sequence (i.e., with mileposts in either ascending or descending order). This order has no significance for a region and the milepost only serves as an additional identifier of the crossing.

Crossing ID (region only)

This is the unique crossing ID corresponding to the 7-character crossing identifier in the National Inventory of Grade Crossings.

Paved/Unpaved (corridor and region)

This yes/no variable designates whether the highway at the crossing is paved or unpaved.

Urban/Rural (corridor and region)

A yes/no variable that designates whether the GCX is in an urban or rural

Grade Crossing Base Type (corridor and region)

This variable designates the type of crossing in the base case.

There are six types of grade crossings used in *GradeDec.NET*: passive, flashing lights only, flashing lights and gates, closure, grade separation and new technology. The "new technology" type of grade crossing is a hypothetical type of crossing that may involve advanced traffic management and information systems and/or new kinds of barriers.

The crossing types correspond to the crossing types in the National Inventory of Grade Crossings database. *GradeDec.NET* maps these types into the types used by its model as follows:

Table 4 Mapping of Crossing Types

National Inventory Crossing Type	GradeDec.NET Crossing Type
No Device	Passive
Stand Stop	
Crossbucks	
Special Procedure	
Flashing Lights	Flashing Lights
Wigwags	Lights and Gates
Gates	

Region crossing types also include closure, grade separation and new technology. These are the same types as in the corridor model.

Grade Crossing Alternate Type (corridor and region)

This variable designates the type of crossings in the alternate case. See the descriptions for crossing types in the base case.

Safety Supplement Base Type (corridor and region, only available for gated crossings)

This variable specifies whether a supplementary safety measure is deployed at the crossing in the base case. Supplementary safety measures include the following: four quadrant gates – no detection, four quadrant gates with detection, four quadrant gates with 60 foot medians, mountable curbs, barrier curbs, one-way streets, and, photo enforcement.

Safety Supplement Base Type (corridor and region, only available for gated crossings)

This variable specifies whether a supplementary safety measure is deployed at the crossing in the base case. Supplementary safety measures include the following: four quadrant gates – no detection, four quadrant gates with detection, four quadrant

gates with 60 foot medians, mountable curbs, barrier curbs, one-way streets, and, photo enforcement.

Safety Supplement Alternates Type (corridor and region, only available for gated crossings)

This variable specifies whether a supplementary safety measure is deployed at the crossing in the alternate case. See the Base Type description above.

Number of Highway Lanes (corridor and region)

Highway Traffic (AADT) (corridor and region)

This is the bi-directional average annual daily highway traffic at the crossing.

Of the Highway Traffic, the Percent of Vehicles that are Trucks (corridor and region)

Of Trucks, the Percent that are Truck Trailers (corridor)

Of the Highway Traffic, the Percent of Vehicles that are Buses (corridor and region)

Auto Time-of-Day Traffic Distribution (corridor and region)

This variable represents the distribution of auto traffic at the crossing in a typical 24-hour period.

The user can choose from one of five daily traffic distributions: uniform, AM peak, PM peak, day flat, night flat. These distributions of traffic divide the daily traffic into four six-hour periods. These are early AM (12AM-6AM), late AM (6AM-12PM), early PM, (12PM-6PM), and late PM (6PM-12AM). The traffic distributions are each represented as a vector of four values that sum to 1. For example, the uniform distribution is given by (.25,.25,.25,.25). The *GradeDec.NET* default distributions are given in the "Exposure and Correlation of Time-of-Day Distributions by Highway and Rail" subsection of "The Model" section. The user can modify these distributions to reflect conditions in the corridor or region under evaluation.

Truck Time-of-Day Traffic Distribution (corridor and region)

This variable represents the distribution of truck traffic at the crossing in a typical 24-hour period. See the discussion under auto time-of-day traffic distribution.

Bus Time-of-Day Traffic Distribution (corridor and region)

This variable represents the distribution of bus traffic at the crossing in a typical 24hour period. See the discussion under auto time-of-day traffic distribution.

Yes/No Flag Indicating whether Alternate Case includes Traffic Management Measures for Re-assigning Traffic at the Crossing (corridor and region)

This flag determines that the user specifies alternate case values for AADT by traffic segment and the time-of-day distribution of traffic segments. These new values represent the projected impact of proposed traffic management measure on highway traffic at the crossing.

Highway Traffic (AADT), Of the Highway Traffic, the Percent of Vehicles that are Trucks, Of the Highway Traffic, the Percent of Vehicles that are Buses, Auto Time-of-Day Traffic Distribution, Truck Time-of-Day Traffic Distribution, Bus Time-of-Day Traffic Distribution – Alternate Case (corridor and region) These data are entered in the Alternate Case only if the flag indicating the presence of traffic management measures is set.

Number of Railroad Tracks (corridor)

This is the number of traffic-bearing tracks at the crossing.

Number of Main Railroad Tracks (region)

This is the number of daily traffic-bearing tracks at the crossing.

Number of Other Railroad Tracks (region)

Other tracks at the crossing are special use tracks.

Maximum Schedule Train Speed (corridor and region)

Average Number of Day Through Trains (region)

This includes both passenger and freight trains.

Average Number of Night Through Trains (region)

This includes both passenger and freight trains.

Average Number of Day Switch Trains (region)

Average Number of Night Switch Trains (region)

Distance from Highway (corridor only)

This is the distance, measured in miles, from the crossing to the nearest major highway intersection.

Number of Accidents at Crossing in Past Five Years

Crossing Costs

The cost data for the crossing include O&M costs and other lifecycle costs for the base and alternate cases and capital costs for the alternate case. O&M and other lifecycle costs are annual outlays that are repeated every year. Capital costs (i.e. the cost of improving the crossing) is a one-time outlay that is expended in the year prior to the start year of the analysis

Scenario Data

The scenario data include those variables to which probability distributions can be assigned. There are distinct scenarios for the two models, as the set of variables for the corridor model differs slightly from that of the regional model. In the descriptions below, the variables belonging to each model are shown.

A simulation engine solves the *GradeDec.NET* model for a specified number of trials. For each trial, a randomly sampled value is selected from each of the probability distributions as its input value. The collection of model solutions represents a probability distribution of the model's result variables.

The scenario variables are divided into four data sets, namely: Rail Operations, Highway, Social Costs and Price Indexes. For each of the variables in the scenario data the user can specify whether the value is fixed or, is one of four types of probability distributions. These distributions types are:

- uniform probability distribution, which requires the specification of two end points of an interval to define the distribution.
- normal probability distribution, which requires that the user specify the mean value and the standard deviation of the distribution, and

- a skewed-bell distribution that is normal when symmetric, but allows for skew and which requires three defining points corresponding to its 10, 50 and 90 percentiles.
- A triangle distribution, where the user specifies a minimum value, maximum value and the most likely value.

Rail Operations

These variables are used to define the rail operations in the corridor. The variables are:

- Annual Rate of Growth in Train Traffic, Near Term, Percent (corridor and region)
- Annual Rate of Growth in Train Traffic, Far Term, Percent (corridor and region)
- Number of Rail Cars per Freight Train (corridor)
- Number of Rail Cars per Passenger Train (corridor)
- Number of Rail Cars per Switch Train (corridor and region)
- Average Length of Freight Rail Cars, Feet (corridor)
- Average Length of Passenger Rail Cars, Feet (corridor)
- Average Length of Switch Train Cars, Feet (corridor and region)
- Number of Rail Cars per Through Train (region)
- Average Length of Through Train Rail Cars, Feet (region)

Highway

The following variables define the corridor-level highway characteristics. The highway data are required for the forecasting of highway-related benefits.

Annual Rate of Growth of Highway Traffic, Near Term, Percent (corridor and region

Annual Rate of Growth of Highway Traffic, Far Term, Percent (corridor and region)

Annualization Factor (corridor and region)

This is a factor for converting daily benefits to annual benefits.

Average Auto Vehicle Occupancy (corridor and region)

This is the average number of occupants per vehicle.

Average Bus Vehicle Occupancy (corridor and region)

This is the average number of passenger occupants on a bus.

Elasticity of Auto Travel Demand with respect to Generalized Cost of Travel (corridor and region)

This variable is the percent change in corridor or region AADT per percent change in generalized cost. For instance, if a 10% increase in travel cost results in a 1% decrease in AADT then the elasticity of demand with respect to cost is -0.1. Many travel demand studies show that the value for the variable is many cases about -0.1.

The "generalized cost of travel" includes all of the internal costs of auto travel that are perceived by users including: vehicle operating costs, travel time and safety risk.

Average Percent of Auto Trip Costs that are Crossing-Related, Percent

This is the corridor or region average of the percent of total trip costs at the crossing. For instance, if an average trip has a generalized cost of \$8.00 and \$0.80 are the average trips costs at the crossing, then the value for this variable should be 10. This factor is used in the consumer surplus calculation.

Social and Other Costs

The variables represent the monetized value of social costs and the market value of other costs.

The Discount Rate

This variable is the real discount rate for the analysis. This rate is applied to future constant dollar cost and benefit streams (i.e., the benefits and costs have been adjusted to account for forecast inflation).

Cost of a Fatal Accident, \$'000 (corridor and region) Cost of an Injury Accident, \$'000 (corridor and region) Cost of a Property Damage Accident, \$'000 (corridor and region) Cost per Fatality, \$'000 (HSR formulas) Cost per Injury, \$'000 (HSR formulas) Average Out-of-Pocket Cost per Accident, \$''000 (HSR formulas) Value of Time (auto) (\$/person-hr.) Value of Time (truck – driver time)) (\$/truck-hr.) (corridor and region) Cost of HC Emissions, \$'000/Ton Cost of NOx Emissions, \$'000/Ton Cost of CO Emissions, \$'000/Ton Base Fuel Cost, \$/Gallon

This variable refers to the cost of fuel (dollars per gallon) in the base year.

Base Oil Cost, \$/Quart

Fuel Cost, Annual Rate of Change, Percent

Inflation, Annual Rate, Percent

This variable refers to the cost of motor oil (dollars per quart) in the base year.

Sources for social cost data included in the scenarios provided with *GradeDec.NET* were derived from the following sources:

Values of time:

Valuation of Travel-Time Savings and Predictability in Congested Conditions for Highway User-Cost Estimation, Small, Keneth, Xuehau Chu, Robert Noland, et al, National Cooperative Highway Research Program 2-18(2), January 1977

Accident and casualty unit cost values:

The Cost of Highway Crashes, Miller, Ted, John Viner, Nancy Pindus, et al., The Urban Institute, Washington, DC, prepared for the Federal Highway Administration, U.S. Department of Transportation, Washington, DC, 1991.

Unit cost values for emissions:

Monetary Values of Air Pollution Emissions in Various U.S. Cities, Wang, M. and D. Santini, Transportation Research Board Paper No. 951046, 74th Annual Meeting, January 1995.

Model Parameters and Default Values

The following parameters and default values are used in the model to calculate: accident costs, capital and maintenance costs, emission rates by vehicle type, railroad emissions by engine type, and the rate fuel and oil are consumed by vehicle type per minute.

Grade crossing types used in the following data tables are:

- 1. Passive Grade Crossing
- 2. Flashing Lights
- 3. Flashing Lights and Gates
- 4. Grade Closure
- 5. Grade Separation
- 6. New Technology

Table 4 Project Costs

Crossing Type	Initial Capital Cost	O and M Costs	Other Life Cycle Costs
	(thous. of \$)	(thous. of \$)	(thous. of \$)
Passive	1.6	.2	0.0
Lights	74.80	1.8	0.0
Gates	106.10	2.5	0.0
Closure	20.00	0.0	0.0
Separation	1,500.00	.5	0.0
New Technology	180.00	.5	0.0

Based on FRA internal data

Table 5 Costs for Supplementary Safety Measures

Measure Type	Initial Capital Cost	O and M Costs	Other Life Cycle Costs
	(thous. of \$)	(thous. of \$)	(thous. of \$)
4-quadarnt gates without detection	244	3.5	0.0
4-quadarnt gates with detection	260	5	0.0
4-quadarnt gates with 60' medians	255	25	0.0

Mountable curbs	15	3.5	0.0
Barrier curbs	15	3.5	0.0
One-way street	5	3.5	0.0
Photo enformcement	65	25	0.0

Based on FRA internal data

Table 6 Emission Rates by Type of Vehicle, Grams per Minute

Type of Vehicle	Hydro Carbons (HC)	Carbon Monoxide (CO)	Nitrogen Oxides (NOx)
1-car	0.3030	4.86	0.0915
2-bus	0.6655	11.85	0.183
3-truck	0.2559	3.144	0.2754

Derived from EPA Idling Emissions Table, Reference Document: EPA420-F-98-014 Table 7 Rates of Fuel and Oil Consumption

Type of	Fuel	Oil
Vehicle	gallons/minute	quarts/minute
1-car	.00969	0.000626
2-bus	0.0184	0.000119
3-truck	0.02067	0.00134

Sources: "Passenger Car Fuel Economy - A Report to Congress", January 1980, EPA

HERS Technical Report v3.26 Appendix H: A Numerical Example, FHWA, June 2000

"Technology Options to Reduce Truck Idling", F. Stodolsky, L. Gaines, A. Vyas, Transportation Technology, R&D Center - Argonne National Laboratory

Table 8 High Speed Rail Model Parameters – Accident Breakout by Type

Percent Breakout of accidents by type	
Train Strike Highway Vehicle	84
Highway Vehicle Strikes Train	16

Table 9 High Speed Rail Model Parameters – Coefficients for Train Strikes Highway Vehicle Accident

Name	Auto	Truck	Trailer
Highway Fatalities	0.000127	0.000111	0.00004
Train Fatalities	0.000005	0.00001	0.000044
% Accidents with Severe Derailment	0.0001	0.001	0.007
Added Severity with Severe	0.00022	0.00022	0.00022

Derailment			
Speeds of maximum severity (highway)	70	70	65

Table 10 High Speed Rail Model Parameters – Coefficients for Highway Vehicle Strikes Train Accident

Name	Auto	Truck	Trailer
Highway Fatalities	0.000127	0.000111	0.00004
Train Fatalities	0.000005	0.00001	0.000044
% Accidents with Severe Derailment	0.0001	0.001	0.007
Added Severity with Severe Derailment	0.00022	0.00022	0.00022
Speeds of maximum severity (highway)	70	70	65
Highway Fatalities	0.217	0.16	0.091
Train Fatalities	0.01	0.01	0.01

Source: Assessment of Risks for High Speed Rail Grade Crossings on the Empire Corridor, Mark Mironer and Michael Coltman, High Speed Ground Transportation Division, VNTSC, April 1998

Index

6

60' medians 22

A

AADT 6, 14, 29, 33, 39, 46 accident prediction 10, 11, 13 Accident Prediction and Severity Model 1, 9, 10, 17 accident severity 11, 13 accident type 20 added severity with severe derailment 52 alternate case 5, 6, 9, 10, 13, 38 alternate type 46 AM peak 15 analysis frame 5 annualization factor 31, 32, 34, 50 APS model 1, 10, 13 arrival rate of vehicles 24 average annual daily traffic 10, 29, 33, 39, 46 average auto vehicle occupancy 50 average bus vehicle occupancy 50 average daily delay 24 average daily highway traffic 14 average daily number of trains 7 average daily trains at crossing 14 average out-of-pocket cost per accident 51 average percent of auto trip costs that are crossing related 50

В

barrier curbs 6, 22 base case 5, 6, 9, 10, 13, 38 base case trips 39 base fuel cost 51 base type 46 base year 8, 11 base year traffic 14 benefits 1, 6, 34

С

capital 38 capital investment 6 capital outlay 6 car length 24 casualties 9, 20 channelized devices 22 closed crossing 7 closure 29 closures 13 CO 33 coefficients for train strikes highway vehicle accident 52 congestion 39 constant dollars 9, 34 consumer surplus 39 correlation of time-of-day distribution 15 correlation of time-of-day distributions 32 corridor 5, 6, 7, 13, 45 corridor model 11, 13, 28, 35, 45 corssing costs 46 cost of a fatal accident 51 cost of a property damage only accident 51 cost of an injury accident 51 cost of capital 1 cost of CO emissions 51 cost of HC emissions 51 cost of NOx emissions 51 cost per fatality 51 cost per injury 51 costs 1, 6, 9 CRF Parts 222 and 229 22 crossing closure time 24 crossing ID 46 crossing signal integration 11 crossing types 52 crossing warning devices 22

D

daily exposure with time-of-day correlation 15 day flat 15 day switch trains 46 day through trains 46 decision-making 1 default values 52 delay 24, 32 demand curve 39 Department of Transportation 1 derailment 11, 20, 52 disbenefit from induced trips 39 discount rate 9, 51 dispersal rate of vehicles 24 distance to the nearest major highway 35 diversion 29 DOT formulas 31 DOT model 7, 13, 17

Ε

effectiveness multipliers 10, 13, 22 effectiveness values 22 elasticity of auto travel demand 39, 50 emission rates 11, 52 emissions 1, 33, 39 emissions type 33 end year 8 engine length 24 environmental benefits 33 exposure 15 external costs 39

F

far term 8, 14 fatal accidents 9, 19 fatalities 9, 11, 20 Federal Railroad Administration 1 flow-density relationship 24 forecast 1 forecast traffic 14 four quadrant gates 6, 22 free flow 24 freight train 7 freight trains per day 45 fuel 9, 34 fuel burn 34 fuel burn rate 11 fuel consumption 34 fuel consumption rates 52 fuel cost, annual rate of change 51

G

general price level 9 generalized cost of travel 39, 50 generalized trip cost 39 geographic region 7 grade crossing 1 grade crossing characteristics 10 grade crossing closure 28 grade crossing costs 52 grade crossing device 6, 38 grade separated crossing 29 grade separation 28, 29

Н

HC 33 high speed rail model 7, 11 high speed rail model parameters 52 High-Speed Rail Accident Severity Model 9 highway fatalities 52 highway lanes 46 highway network 35 highway traffic flows 6 highway vehicle strikes train 20 HSR formulas 31 HSR model 9, 10, 11, 13, 17, 20

I

idling 34 impact of a closure 24 impacts of closures and separations 7 impedance 29 improvement action 22 incidents 9 induced traffic 39 induced trips 39 inflation 9 inflation, annual rate 51 injuries 9, 20 injury accidents 9, 19 input-output diagram 24 intersection 35 investment 5, 6

L

last year of near term 8 lead time 24 length of car 50 lifecycle 38 lifecycle costs 1 local benefits 38 local benefits factor 38

Μ

maximum timetable train speed 46 mean value 49 median value 49 medians 6 milepost 29, 46 minutes of delay 32 model parameter 11 model parameters 52 modes 10 mountable curbs 6, 22

Ν

National Grade Crossing Inventory 7 near term 14 near-term 8 net costs 38 network 1 network benefits 35 network delay 35 network delays 7 night flat 15 night switch trains 46 night through trains 46 no detection 22 normal probability distribution 49 normalized 17 NOx 33 number of accidents 46 number of affected highway vehicles 24 number of blocked vehicles 32 number of cars per train 50 number of main tracks 46 number of other tracks 46

0

occupancy mode 20 oil 9, 34 operating and maintenance 38 operating and maintenance costs 1

Ρ

passenger train 7 passenger trains per day 45 paved/unpaved 46 peak exposure 6 percent benefit from closure 46 percent breakout of accidents by type 52 percent reduction in user costs 7 percentiles 49 photo enforcement 6 PM peak 15 potential AADT diverting 29 predicted accidents 9, 11, 17 predicted number of accidents 17 present value 8 prices 9 probability distribution 49 probability distributions 1 project costs 38 property damage only (PDO) accidents 19 property damage only accidents 9

Q

queue 24 queue length 35

R

rail alignment 7

rail characteristics 11 rate of return 1 rates of growth 14, 50 ratio of prices 9 re-allocation of highway traffic 13 re-assignment 7, 9, 10, 29 re-assingment 29 reduced queuing 7 reduction in delay 7 region 5, 6, 7, 13 regional model 13 re-routing 22 resource allocation 10, 22

S

safety 1 safety benefits 9, 31 safety supplement alternate type 46 safety supplement base type 46 savings 34 separation 13 severe derailment 11, 20, 52 severity 9, 19 severity prediction 10 share vehicle type 14 signage 6 signal synchronization 45 signaling 6 skewed bell probability distribution 49 speed of maximum severity 52 start year 8 supplementary measure 22 supplementary measures 6, 38 supplementary safety measure costs 52 supplementary safety measures 22 switch train 7 switch trains per day 45 synchronized 7

Т

technical coefficients 11 technology impact factor 45, 46 technology improvement 7 technology parameter 11 temporal match 15 temporal mismatch 15 time horizon 5, 6, 8 time savings 1 time-in-queue 24, 33 time-in-queue per closure 24 time-of-day 24 time-of-day distribution 7, 15 time-of-day traffic distribution 10 time-space queuing model 24 total costs 38 total vehicle delay 24 traffic density 24 traffic forecast 14 traffic management 6, 22 traffic management measures 46 traffic segment 24 traffic segments 15, 46 train fatalities 52 train speed 46 train strikes highway vehicle 20 trains per day 45 travel time benefits 32 travel time savings 32 triangle probability distribution 49

U

uniform 15 uniform probability distribution 49 urban/rural 46 US DOT 1 Use of Locomotive Horns 22

V

value of time 51 vehicle emissions 33 vehicle operating costs 1, 9, 34 vehicle type 14, 34 vehicles in queue 24

W

with detection 6, 22