Housing Starts

The March 2001 issue will be the last "Housing Starts" publication. Information previously found in the publication will be available in the "New Residential Construction" press release. This can be found on our Web site at www.census.gov/mcd. For all series except Building Permits, we will introduce new estimation methods and revise unadjusted data and seasonally adjusted annual rates back to January 1999. The Building Permits series will have the usual annual revisions for 2000 and revised seasonal factors back to January 1999.

New Privately-Owned Housing Units Started

Seasonally adjusted annual rate in thousands Seasonally adjusted annual rate

Note: Total includes units started in structures with two to four units.
Source: U.S. Census Bureau, Housing Starts.
Questions regarding these data may be directed to Residential Construction Branch, Manufacturing and Construction Division, telephone: 301-457-1321.
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

Current
Construction Reports

For

USCENSUSBUREAU

Helping You Make Informed Decisions
U.S. Department of Commerce Economics and Statistics Administration u.s. Census bureau

HOUSING STARTS AND BUILDING PERMITS

Privately-owned housing starts in January 2001 were at a seasonally adjusted annual rate of $1,651,000$; this is $5(\pm 6)$ percent above the revised December 2000 rate of $1,568,000$, but is $5(\pm 7)$ percent below the January 2000 figure of $1,744,000$.

Single-family housing starts in January 2001 were at a rate of $1,340,000$; this is $3(\pm 6)$ percent above the revised December figure of $1,304,000$. The January rate for units in buildings with five units or more was 265,000 . The January rate for units in buildings with two to four units was 46,000 .

New privately-owned housing construction was authorized in January 2001 in the 19,000 permitissuing places at a seasonally adjusted annual rate of $1,697,000$ units. This is $13(\pm 1)$ percent above the revised December 2000 rate of $1,507,000$, but is $4(\pm 1)$ percent below the January 2000 estimate of $1,762,000$.

Single-family authorizations in January 2001 were at a rate of $1,273,000$. This is $10(\pm 1)$ percent above the December figure of $1,158,000$. Authorizations of units in buildings with five units or more were at a rate of 368,000 in January. This is 24 percent above the December estimate of 296,000. The January rate of permit-authorized units in buildings with two to four units was 56,000.

In interpreting changes in housing starts and building permits, note that month-to-month changes in seasonally adjusted statistics often show movements which may be irregular. It may take 5 months to establish an underlying trend for total starts and 3 months for building permit authorizations.

The statistics in this report are estimated from sample surveys and are subject to sampling variability as well as nonsampling error including bias and variance from response, nonreporting, and undercoverage. Estimated average relative standard errors of preliminary data are shown in the tables. Whenever a statement such as " $2(\pm 3)$ percent above" appears in the text, this indicates the range (-1 to +5 percent) in which the actual percent change is likely to have occurred. All ranges given are 90-percent confidence intervals and account for only sampling variability. If a range contains zero, it is uncertain whether there was an increase or decrease; that is, the change is not statistically significant. For any comparison cited without a confidence interval, the change is statistically significant. The appendix to this report includes explanations of confidence intervals and sampling variability. On average, the preliminary seasonally adjusted estimates of total housing starts and building permits are revised about ± 1 percent.

HISTORICAL DATA

Historical data on housing starts and residential permit authorizations are available from Residential Construction Branch, Manufacturing and Construction Division, U.S. Census Bureau, Washington, DC 20233-6900. Telephone 301-457-1321.

A list of tables and special supplements is shown below:

Title	C20 issues				
New privately-owned housing units started, by purpose of construction (quarterly and annual data).	01-1	00-10	00-7	00-4	99-10
Total time from start of construction to completion of private residential buildings (annual data)	00-3	99-3	98-3	97-3	96-3
Total time from authorization of construction to start for private residential buildings (annual data)	00-3	99-3	98-3	97-3	96-3
New privately-owned housing units, by intended use and design at time of start (annual data)	00-2	99-2	98-2	97-2	96-2

Table 1. New Privately-Owned Housing Units Started
[Thousands of units. Detail may not add to total because of rounding]

Period		Total	In structures with-				$\begin{aligned} & \text { Inside } \\ & \text { MSAs }^{1} \end{aligned}$	OutsideMSAs ${ }^{1}$	Northeast	Midwest	South	West	
		1 unit	2 units	3 and 4 units	5 units or more								
ANNUAL DATA													
1991.			1,013.9	840.4	15.5	20.1	137.9	789.2	224.7	112.9	233.0	414.1	254.0
1992 .		1,199.7	1,029.9	12.4	18.3	139.0	931.5	268.2	126.7	287.8	496.9	288.3	
1993		1,287.6	1,125.7	11.1	18.3	132.6	1,031.9	255.8	126.5	2977	561.8	301.7	
1994		$1,457.0$	1,198.4	14.8	20.2	223.5	1,183.1	273.9	138.2	328.9	639.1	350.8	
1995.		1,354.1	1,076.2	14.3	19.4	244.1	1,106.4	247.6	117.7	290.1	615.0	331.3	
1996		$1,476.8$	1,160.9	16.4	28.8	270.8	$1,211.4$	265.5	132.1	321.5	661.9	361.4	
1997.		1,474.0	1,133.7	18.1	26.4	295.8	$1,221.3$	252.7	1368	303.6 33	670.3	363.3	
1998		1,616.9	1,271.4	15.7	26.9	302.9	1,349.9	267.0	148.5	330.5	743.0	394.9	
1999.		1,666.5	1,334.9	13.4	18.5	299.7	1,404.5	261.9	153.7	356.4	760.3	396.1	
$2000{ }^{\text {r }}$		1,592.3	1,262.1	13.6	22.2	294.4	1,340.1	252.1	151.5	328.5	723.0	389.3	
MONTHLY DATA													
Not Seasonally Adjusted													
2000:	January	105.2	80.5	1.0	0.7	23.0	91.2	14.1	8.1	15.9	55.4	25.8	
	February	12.1	90.2	0.9		29.4	10.8	15.3		22.9	58.1	31.2	
	March.	137.2	115.3	0.7	0.5	20.7	115.9	21.3	11.9	25.4	68.4	31.5	
	April	151.8	121.5	1.3	1.4	27.5	124.0	27.8	12.2	35.8	65.6	38.1	
	May	155.3	125.7	1.4	0.7 3	27.5	128.5	26.8	14.2	35.6	70.2	35.3	
	June	148.5	118.7	1.0	3.2	25.6	124.1	24.4	14.2	31.4	68.2	34.6	
	July.	138.0	108.5	1.0	3.3	25.2	114.7	23.3	14.6	30.8	57.6	34.9	
	August ${ }_{\text {September }}$	142.0 132.4	104.6	1.0	2.4	24.3	118.8 110.2	22.2	14.2	28.6	56.6	335.7	
	October.	141.3	111.0	2.1	2.1	26.1	117.6	23.7	15.2	32.6	64.6	28.9	
	November	117.8	90.7	1.2	2.0 1.3	23.9	88.9	18.9 11.3	12.1	25.5 14.3	49.3	30.9	
2001:	January ${ }^{\text {p }}$.	105.2	84.7	1.0	1.7	17.9	91.1	14.1	6.5	15.9	53.4	29.4	
Seasonally Adjusted Annual Rate													
1998:	January	1,525	1,227					(NA)	148	345			
	February	1,584	1,237			280	(NA)	(NA)	190	376	690	328	
	March .	1,567	1,221	4		304	(NA)	(NA)	147	311	712	397	
	April	1,540	1,230			268			132	340	690	378	
	May	1,536 1,641	1,212 1,275	5		270 320	(NA)	(NA)	147 139 149	294 318	770	388 412	
	July. .	1,698	1,300			358	(NA)	(NA)	152	312	803	431	
	August	1,614	1,274	5		289	(NA)	(NA)	132	316	779	387	
	September		1,262			295	(NA)	(NA)	145	314	713	410	
	October	1,715	1,298	4		374	(NA)	(NA)	167	355	833	360	
	November.	1,660	1,383			244	(NA)	(NA)	142	325	791	402	
	December.	1,792	1,412			353	(NA)	(NA)	162	427	763	440	
1999:	January.	1,804	1,393			358	(NA)	(NA)	146	328	871	459	
	February.	1,738	1,379			334	(NA)	(NA)	194	358	843	343	
	March .	1,737	1,377			327	(NA)	(NA)	159	378	810	390	
	April	1,561	1,248			282	(NA)	(NA)	135	337	684	405	
	May	1,649	1,368			255	(NA)	(NA)	152	352	734	411	
	June	1,562	1,269			264	(NA)	(NA)	158	355	697	352	
		1,704	1,348	4		316	(NA)	(NA)	171	320	768	445	
	August	1,657	1,285	3		341	(NA)	(NA)	171	337	762	387	
	September	1,628 1,636	1,290 1,343	3		306	(NA)	(NA)	139	365 371	764	372	
	November.	1,663	1,344			294	(NA)	(NA)	150	389	709	415	
	December.	1,769	1,441			298	(NA)	(NA)	159	407	807	396	
2000:	January.	1,744	1,361	3		351			153	381	821	389	
	February		1,324	4				(NA)				414 373	
	March.	1,630 1,652	1,327 1,310	3		287 312	(NA)	(NA)	155 140	330 370	772 710	373 432	
	May	1,591	1,258	2		307	(NA)	(NA)	148	345	737	${ }_{361}$	
	June	1,571	1,227			305	(NA)	(NA)	144	301	762	364	
		1,527							144				
	August .	1,519	1,229			249	(NA)	(NA)	145	299	703	372	
	September	1,537 1,529	1,226 1,232	4		270 257	(NA)	(NA)	157 158	308 317	674 720	398 334	
	November'	1,564	1,233			290	(NA)	(NA)	146	326	670	422	
	December ${ }^{\text {r }}$	1,568	1,304			230	(NA)	(NA)	160	254	708	446	
2001:	January ${ }^{\text {p }}$.	1,651	1,340			265	(NA)	(NA)	126	367	743	415	
aVERAGE RELATIVE STANDARD ERRORS ${ }^{2}$													
Annua Month		3	1 3	7 11	11 13	3 9	3	3 9	3	2	1 4	4	

[^0]Table 2. New Privately-Owned Housing Units Authorized in Permit-Issuing Places
[Thousands of units. Detail may not add to total because of rounding]

Period		United States							Northeast			Midwest			South			West									
		Total	In structures with-				$\begin{aligned} & \text { Inside } \\ & \text { MSAs }^{1} \end{aligned}$	Outside MSAs	Total	In structures with-																	
		1 unit	2 units	$\begin{array}{r} 3 \text { and } 4 \\ \text { units } \end{array}$	5 units more	1 unit				2 units more	1 unit		2 units more	1 unit		2 units more	1 unit		2 units more								
ANNUAL DATA																											
1996			1,425.6	1,069.5	33.6	32.2	290.3	1,200.0	225.6	136.9	108.8	28.1	317.8	236.6	81.3	623.4	468.5	155.0	347.4	255.6	91.8						
1997		1,441.1	1,062.4	34.9	33.6	310.3	1,220.2	220.9	141.9	111.2	30.7	299.8	220.0	79.8	635.9	464.2	171.7	363.5	267.1	96.5							
1998		1,612.3	1,187.6	33.2	36.0	355.5	1,377.9	234.4	159.4	124.1	35.3	327.2	247.8	79.4	724.5	521.9	202.6	401.2	293.8	107.4							
1999		1,663.5	1,246.7	32.5	33.3	351.1	1,427.4	236.1	164.9	127.1	37.8	345.4	262.1	83.3	748.9	550.4	198.6	404.3	307.1	97.3							
$2000{ }^{\text {r }}$		1,574.4	1,183.5	30.1	32.4	328.4	1,349.0	225.4	161.1	118.3	42.8	318.1	239.5	78.6	697.4	528.4	169.0	397.8	297.4	100.4							
MONTHLY DATA Not Seasonally Adjusted																											
1998:	January	96.2	70.1	2.0	2.0	22.1	84.6	11.6	9.7	7.0	2.7	14.7	10.9	3.8	46.3	34.4	12.0	25.4	17.8	7.6							
	February.	107.4	78.1	2.3	2.6	24.4	93.5	13.9	8.9	7.2	1.8	19.7	14.3	5.4	51.2	37.5	13.7	27.5	19.1	8.4							
	March.	140.9	105.1	2.8	3.3	29.9	121.0	20.0	12.1	10.2	1.9	26.8	20.4	6.4	68.4	47.7	20.7	33.6	26.8	6.9							
	April	146.3	113.6	2.7	2.7	27.3	123.3	23.0	13.2	11.4	1.7	31.0	25.2	5.8	63.6	48.0	15.6	38.5	29.0	9.5							
	May	138.2	107.3	2.5	2.9	25.5	116.4	21.8	13.3	11.2	2.1	30.7	24.4	6.3	62.5	45.9	16.5	31.8	25.8	5.9							
		153.4	115.8	3.2	4.3	30.1	129.7	23.7	16.0	12.8	3.2	31.6	25.2	6.4	65.0	48.6	16.4	40.8	29.2	11.6							
	July.	149.3	111.2	3.3	3.2	31.7	126.1	23.2	15.4	11.9	3.5	29.7	23.4	6.3	66.1	47.7	18.5	38.0	28.2	9.8							
	August	144.7	104.4	3.1	3.0	34.1	122.8	21.9	14.3	11.1	3.2	28.9	21.8	7.1	67.1	46.5	20.6	34.4	25.1	9.4							
	September	141.7	102.5	2.9	3.4	32.9	120.8	20.9	14.7	11.0	3.7	30.3	22.1	8.1	62.2	44.0	18.2	34.7	25.4	9.2							
	October	149.8	103.8	3.0	3.7	39.3	126.8	23.1	15.7	11.1	4.6	32.4	23.6	8.8	65.8	44.0	21.9	35.9	25.1	10.7							
	November.	119.9	86.6	2.4	2.3	28.6	104.1	15.8	13.4	9.8	3.6	24.9	18.9	6.0	51.2	37.2	14.1	30.3	20.7	9.5							
	December.	124.5	89.0	3.1	2.6	29.8	108.8	15.7	12.7	9.5	3.2	26.5	17.6	8.9	55.1	40.6	14.5	30.2	21.3	8.8							
1999:		105.7	74.2	2.1	2.2						2.4			3.3	55.3	37.7	17.6	27.7									
	February.	114.7	86.6	2.2	2.3	23.7	100.9	13.8	9.7	7.7 10.7	2.0	18.9	14.8	4.1	58.7	43.3	15.4	27.4	20.8	6.7							
	March...	154.6	118.9	3.0	3.0	29.8	132.6	22.0	14.4	10.7	3.7	32.0	24.2	7.7	70.4	54.2	16.2	37.9	29.8	8.0							
	April	151.8	119.9	2.9	3.2	25.9	128.2	23.5	15.5	12.7	2.8	34.3	27.4	6.9	66.2	51.2	15.0	35.8	28.6	7.2							
	May	145.1	115.9	2.7	2.2	24.3	122.7	22.4	14.7	12.6	2.1	33.4	25.5	7.9	60.5	49.2	11.3	36.5	28.7	7.8							
		169.3	128.0	3.4	3.1	34.9	143.9	25.5	18.7	13.2	5.4	34.5	27.2	7.2	71.4	52.9	18.5	44.8	34.5	10.2							
	July.	149.1	114.6	2.6	2.6	29.2	127.7	21.4	15.1	12.3	2.8	30.4	24.6	5.8	66.3	49.1	17.3	37.2	28.6	8.6							
	August	151.9	112.6	2.7	3.2	33.3	129.2	22.7	15.5	12.1	3.4	33.4	25.2	8.2	68.5	49.3	19.3	34.4	26.1	8.3							
	September	137.3	103.1	3.2	2.6		115.9			10.4	3.0	32.2	24.0	8.2	58.3	43.9	14.4	33.4	24.8	8.6							
	October ..	137.6	97.6	2.8	3.0	34.2	117.4	20.2	12.8	10.0	2.8	31.3	23.2	8.1	62.3	41.6	20.7	31.2	22.8	8.4							
	November.	125.6	90.3	2.6	3.1	29.6	107.1	18.6	13.6	9.6	4.0	29.4	20.0	9.4	55.0	40.0	15.0	27.6	20.6	7.0							
	December.	120.9	84.8	2.4	2.8	30.9	107.1	13.9	12.3	8.9	3.4	22.1	15.6	6.5	55.9	38.0	18.0	30.6	22.3	8.3							
2000:	January	104.8	76.7	1.8	1.8	24.6	92.4	12.4	10.5	6.6	3.8	16.4	12.4	3.9	50.4	38.1	12.3	27.6	19.5	8.1							
	February.	115.1	85.9	2.5	2.2	24.5	100.4	14.7	9.1	6.7	2.5	20.4	14.9	5.5	56.5	43.9	12.6	29.1	20.5	8.6							
	March...	147.0	116.3	2.7	3.1	24.8	126.2	20.7	14.1	10.8	3.3	32.2	24.3	7.9	64.8	53.4	11.3	36.0	27.7	8.2							
	April	135.1	104.1	2.4	2.5	26.0	115.1	20.0	14.2	10.2	4.0	31.6	24.6	6.9	56.3	43.3	13.0	33.1	26.0	7.1							
	May	145.3	116.0	2.5	3.2	23.6	122.0	23.2	15.1	12.0	3.1	32.3	25.2	7.1	63.1	49.8	13.2	34.8	28.9	5.9							
	June	151.9	112.4	3.1	3.0	33.4	129.7	22.2	15.7	11.4	4.3	30.2	23.5	6.7	65.1	49.0	16.2	40.9	28.6	12.3							
	July.	128.3	96.4	2.2	2.2	27.5	108.0	20.3	13.9	10.2	3.8	27.7	20.9	6.8	54.5	41.5	13.0	32.2	23.8	8.4							
	August	141.1	108.9	2.9	3.3	26.0	119.9	21.3	13.8	10.6	3.2	30.2	22.8	7.4	59.1	47.7	11.4	38.0	27.8	10.2							
	September	129.1	94.9	2.3	3.3	28.6	109.1	20.0	13.6	9.7	3.9	27.3	20.3	7.0	56.3	40.6	15.6	32.0	24.3	7.7							
	October .	134.5	101.6	3.1	3.4	26.4	112.8	21.7	13.6	10.8	2.8	31.5	22.1	9.4	57.3	43.6	13.7	32.1	25.2	6.9							
	November.	119.6	86.2	2.4	3.0	28.0	103.8	15.7	13.7	9.1	4.6	23.1	17.2	5.9	52.9	37.9	15.0	29.8	22.0	7.8							
	December ${ }^{\text {r }}$	100.6	72.2	1.8	1.8	24.8	89.4	11.2	9.7	7.3	2.5	15.1	10.6	4.5	46.0	33.6	12.4	29.8	20.8	9.0							
2001:	January ${ }^{\text {p }}$.	112.9	83.2	1.6	2.0	26.2	100.9	12.0	8.7	6.6	2.1	16.7	12.4	4.3	54.3	41.3	13.0	33.3	22.9	10.4							

Table 2. New Privately-Owned Housing Units Authorized in Permit-Issuing Places-Con.
[Thousands of units. Detail may not add to total because of rounding]

Table 3. New Privately-Owned Housing Units Authorized, but Not Started, in Permit-Issuing Places at End of Period
[Thousands of units. Detail may not add to total because of rounding]

Authorized, but not started at end of period	United States				Northeast				Midwest				South				West			
	Total	In structures with-			Total	In structures with-			Total	In structures with-			Total	In structures with-			Total	In structures with-		
		1 unit	$\begin{array}{r} 2 \text { to } 4 \\ \text { units } \end{array}$	5 units more		1 unit	2 to 4 units	5 units or		1 unit	$2 \text { to } 4$ units	5 units more		1 unit	$\begin{array}{r} 2 \text { to } 4 \\ \text { units } \end{array}$	5 units or more		1 unit	2 to 4 units	5 units more
END OF YEAR 16,000-Place Series																				
1981	145.5	60.1	10.7	74.7	23.3	11.5	0.9	10.8	10.0	5.0	1.7	3.2	77.5	29.8	4.9	42.8	34.7	13.8	3.1	17.9
1982	167.8	66.9	11.6	89.3	19.4	9.4	1.0	9.0	10.4	4.5	1.7	4.2	100.3	38.5	5.9	55.9	37.7	14.5	2.9	20.2
1983	178.0	68.9	13.0	96.1	21.9	12.6	1.1	8.2	12.2	5.2	1.8	5.1	104.2	33.6	6.8	63.8	39.8	17.4	3.3	19.0
1984	192.5	66.2	10.2	116.1	23.2	10.8	1.2	11.2	14.0	5.1	1.5	7.5	109.4	34.5	4.8	70.1	45.8	15.7	2.7	27.4
17,000-Place Series																				
1985	223.3	80.6	13.7	129.0	36.9	19.2	2.1	15.7	20.4	5.8	2.2	12.4	120.6	43.3	5.7	71.6	45.4	12.3	3.8	29.3
1986	205.2	92.8	12.3	100.2	34.4	21.2	2.4	10.8	21.1	6.4	2.3	12.4	91.3	43.5	3.8	43.9	58.4	21.7	3.7	33.0
1987	155.0	79.3	11.1	64.6	36.8	23.3	2.1	11.4	11.9	6.5	2.2	3.2	68.6	33.8	3.5	31.4	37.7	15.7	3.3	18.6
1988	156.4	76.4	9.9	70.1	32.9	20.0	1.9	11.0	15.5	5.9	2.3	7.3	64.0	30.4	2.9	30.7	44.0	20.1	2.7	21.1
1989	173.9	93.1	8.4	72.5	34.1	25.1	1.6	7.4	18.0	7.5	1.8	8.7	73.5	34.3	2.1	37.1	48.3	26.2	2.8	19.2
1990	131.6	75.0	8.5	48.1	25.8	20.0	1.3	4.5	14.2	5.7	2.2	6.3	55.1	27.3	2.1	25.7	36.5	22.0	2.9	11.6
1991	126.3	71.1	4.7	50.6	24.4	17.3	0.7	6.4	16.9	6.4	1.4	9.1	51.3	26.0	1.3	24.0	33.8	21.4	1.4	11.1
1992	108.7	71.9	5.1	31.7	18.6	13.5	0.7	4.5	13.4	8.8	1.7	2.9	49.8	33.3	1.3	15.2	26.9	16.3	1.5	9.1
1993	118.9	72.5	3.7	42.8	22.3	15.4	0.5	6.4	14.3	8.6	1.2	4.5	58.5	35.2	1.0	22.3	23.8	13.2	1.0	9.6
1994	115.6	66.0	3.6	46.1	17.1	12.2	0.4	4.5	13.1	8.3	1.2	3.7	58.1	31.2	1.1	25.8	27.3	14.2	1.0	12.1
19,000-Place Series																				
1995	142.2	80.1	4.5	57.6	18.3	13.5	0.5	4.3	18.7	12.8	1.4	4.5	71.6	36.7	1.3	33.6	33.5	17.1	1.2	15.2
1996	126.4	67.5	4.8	54.2	16.0	9.0	0.6	6.4	16.6	10.6	1.7	4.2	68.1	32.3	1.3	34.4	25.8	15.5	1.2	9.2
1997	111.1	63.6	3.7	43.8	11.3	7.1	0.4	3.8	14.1	9.2	1.3	3.6	58.7	32.0	1.2	25.5	26.9	15.2	0.8	10.8
1998	137.1	79.5	3.1	54.5	16.0	10.2	0.5	5.3	18.2	11.8	1.1	5.3	75.9	41.4	0.8	33.7	27.1	16.2	0.7	10.2
1999 r .	138.9	79.3	3.9	55.7	15.7	9.0	0.6	6.1	16.5	11.4	1.2	3.9	79.3	40.5	1.2	37.5	27.4	18.4	1.0	8.1
$2000{ }^{\text {r }}$	132.1	78.5	4.2	49.4	16.2	8.1	0.8	7.3	19.1	13.1	1.1	4.9	67.4	39.8	1.1	26.5	29.3	17.4	1.1	10.8
END OF MONTH																				
2000: January	137.3	79.3	3.0	55.0	17.3	9.4	0.5	7.5	16.3	11.1	0.9	4.3	75.8	41.2	0.9	33.7	27.9	17.7	0.8	9.5
February.	132.4	80.2	3.1	49.0	15.9	9.8	0.5	5.6	14.1	11.2	0.9	1.9	76.3	42.8	1.0	32.4	26.1	16.3	0.7	9.0
March...	150.9	93.6	3.3	54.0	17.3	11.3	0.5	5.5	22.3	16.3	1.0	5.0	80.1	48.4	1.1	30.7	31.2	17.7	0.7	12.8
April	143.6	87.5	4.0	52.1	19.1	11.9	0.7	6.4	22.1	15.6	1.3	5.2	76.2	44.9	1.2	30.1	26.2	15.0	0.9	10.3
May	136.4	88.5	5.9	42.0	18.6	11.4	1.0	6.1	20.2	15.5	1.8	2.8	72.0	44.0	1.8	26.2	25.6	17.5	1.2	6.9
June	144.4	90.2	6.4	47.8	20.4	11.8	1.1	7.4	23.0	16.4	2.1	4.5	69.1	41.7	1.9	25.5	31.9	20.2	1.3	10.4
	137.8	86.0	4.6	47.3	18.7	11.7	0.8	6.2	20.9	14.9	1.5	4.4	70.5	42.1	1.2	27.1	27.7	17.3	0.9	9.5
August	137.1	87.0	4.5	45.7	17.8	11.4	0.8	5.6	20.0	14.4	1.4	4.2	68.9	42.1	1.2	25.6	30.5	19.1	1.1	10.2
September	134.6	82.1	4.6	47.8	16.9	9.5	0.9	6.5	19.9	13.6	1.3	5.0	70.5	40.4	1.4	28.7	27.3	18.7	1.0	7.6
October . ${ }^{\text {a }}$	129.3	81.0	4.3	44.0	15.7	9.9	0.7	5.1	19.0	12.6	1.2	5.2	65.0	38.2	1.4	25.4	29.6	20.3	1.0	8.3
November ${ }^{r}$ December ${ }^{r}$	131.1	82.3 78.5	3.7 4.2	45.1 49.4	17.4 16.2	9.4	0.6 0.8	7.4	18.8 19.1	13.8 13.1	1.1 1.1	3.8 4.9	67.0 67.4	39.7 39.8	1.2 1.1	26.1 26.5	27.9 29.3	19.4	0.8	7.7 10.8
December ${ }^{\text {r }}$	132.1	78.5	4.2	49.4	16.2	8.1	0.8	7.3	19.1	13.1	1.1	4.9	67.4	39.8	1.1	26.5	29.3	17.4	1.1	10.8
2001: January ${ }^{\text {P }}$.	139.8	82.7	3.2	54.0	17.2	8.7	0.6	7.9	19.4	13.2	0.8	5.4	69.3	40.7	1.0	27.6	33.9	20.1	0.8	13.0
aVERAGE RELATIVE STANDARD ERRORS ${ }^{1}$ End of period . (percent).	3	4	8	5	13	20	19	4	8	8	12	25	4	4	15	7	6	8	15	9

[^1]${ }^{1}$ Average Relative Standard Errors: Average for the latest 6-month period (January through June or July through December).
Note: These backlog data represent the number of housing units authorized in all months up to and including the last day of the reporting period and not started as of that date without regard to the months of original permit issuance. Cancelled, abandoned, expired, and revoked permits are excluded from the backlog.

Table 4. New Privately-Owned Housing Units Started by Location and Type of Structure
[Thousands of units. Detail may not add to total because of rounding]

Period		United States			Inside MSAs ${ }^{1}$			Outside MSAs ${ }^{1}$			Northeast			Midwest			South			West			
		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-			In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		
		1 unit	5 units more	1 unit		5 units or more	Total ${ }^{2}$	1 unit	5 units or more more	1 unit		5 units more	1 unit		5 units or more	1 unit		5 units or more more	1 unit		5 units more		
ANNUAL DATA																							
1981			1,084	705	288	760	458	236	324	247	52	117	84	25	165	110	40	562	363	153	240	148	69
1982		1,062	663	320	785	452	274	277	211	46	117	79	31	149	99	38	591	357	189	205	127	61	
1983.		1,703	1,068	522	1,351	795	464	352	272	58	168	123	35	218	153	48	935	557	317	382	234	121	
1984.		1,750	1,084	544	1,415	830	491	335	254	53	204	158	35	243	167	60	866	528	274	436	230	175	
1985		1,742	1,072	576	1,494	882	535	248	190	41	252	182	55	240	148	77	782	504	240	468	239	204	
1986		1,805	1,179	542	1,546	970	508	259	209	34	294	228	50	296	188	91	733	504	201	483	261	200	
1987.		1,620	1,146	409	1,372	934	385	248	212	24	269	204	50	298	203	81	634	485	129	420	255	148	
1988.		1,488	1,081	348	1,243	874	323	245	207	25	235	181	42	274	194	66	575	443	115	404	264	125	
1989.		1,376	1,003	318	1,128	798	289	248	205	29	178	132	37	266	190	62	536	409	109	396	272	108	
1990 .		1,193	895	260	947	685	233	246	210	27	131	104	21	253	193	50	479	371	99	329	226	91	
1991		1,014	840	138	789	648	117	225	193	21	113	99	8	233	191	31	414	353	51	254	197	47	
1992.		1,200	1,030	139	932	793	117	268	237	22	127	112	11	288	236	42	497	438	50	288	244	36	
1993.		1,288	1,126	133	1,032	897	114	256	229	19	126	116	8	298	251	37	562	498	55	302	261	33	
1994.		1,457	1,198	224	1,183	958	200	274	241	23	138	123	12	329	268	50	639	522	107	351	286	54	
1995.		1,354	1,076	244	1,106	861	221	248	215	23	118	102	12	290	234	46	615	485	119	331	256	67	
1996.		1,477	1,161	271	1,211	936	242	265	225	29	132	112	15	321	254	51	662	524	125	361	271	79	
1997.		1,474	1,134	296	1,221	923	267	253	211	29	137	111	21	304	238	48	670	507	151	363	278	76	
1998.		1,617	1,271	303	1,350	1,036	280	267	235	23	148	122	21	330	273	45	743	574	155	395	303	83	
1999.		1,666	1,335	300	1,405	1,100	280	262	235	20	154	129	20	356	297	49	760	595	154	396	314	76	
2000r		1,592	1,262	294	1,340	1,038	273	252	224	22	152	120	26	329	269	48	723	569	143	389	304	77	
QUARTERLY DATA																							
1997:	1st quarter	297	238	51	255	202	47	42	36	4	26	20		49	40	6	143	115	26	80	63	15	
	2nd quarter.	419	325	83	342	260	74	77	65	9	36	31	5	92	74	14	190	143	43	101	77	21	
	3rd quarter	400	315	75	328	252	68	72	62	7	40	33	6	88	72	12	177	134	39	96	75	18	
	4th quarter	357	257	86	296	209	78	62	48	8	35	28	6	75	52	16	161	115	43	87	62	22	
1998:	1st quarter	325	258	57	279	219	52	46	39	5	28	22		55	45		157	125	29	84	66	16	
	2nd quarter.	448	360	74	366	287	68	82	73		40	34	4	97	83	9	200	158	38	111	85	23	
	3 rd quarter.	445	348	86	369	281	80	76	67	7	41	35	5	92	76	13	201	153	44	111	84	24	
	4th quarter	399	305	86	336	250	79	63	55	6	39	31	7	86	68	15	185	138	44	89	68	20	
1999:	1st quarter	370	294	68	318	248	64	52	46	4	30	24	5	59	52	5	193	149	41	88	69	17	
	2nd quarter.	455	377	69	378	307	64	76	70	5	43	38	4	106	90	14	196	159	34	110	91	17	
	3rd quarter	453	356	88	381	291	82	73	64	6	46	36	8	99	81	14	197	152	42	111	86	23	
	4th quarter....	389	308	74	328	254	69	61	55	5	35	31	4	91	74	15	175	136	36	88	67	19	
2000:	1st quarter	365	286	73	314	242	68	51	44	5	30	22	7	64	52	11	182	142	38	89	70		
	2nd quarter.	456	366	81	377	294	75	79	72	5	41	34	5	103	88	12	204	161	40	108	83	23	
	3rd quarter	412	328	73	344	267	67	69	61	6	43	33	7	89	73	13	176	142	31	104	80	22	
	4th quarter ${ }^{\text {r }}$.	360	282	68	306	236	63	54	47	5	38	30	6	72	57	13	161	125	33	89	71	16	
AVERAGE RELATIVE STANDARD ERRORS ${ }^{3}$																							
Annual. (percent). Quarterly (percent).		1	1	5 5	1	1	5 5	4	5 6	$\begin{aligned} & 13 \\ & 22 \end{aligned}$	6 3	3 4	36 8	3 4	3 4	10 18	2	2	6 6	1	1	3 6	

pPreliminary. 'Revised.
Metropolitan statistical areas.
${ }^{2}$ Includes units started in structures with two to four units.
${ }^{3}$ Average Relative Standard Errors (Avg. RSE): Annual-Avg. RSE for the last 2 years; Quarterly—Avg. RSE for the latest 2-quarter period (quarter 1 through quarter 2 or quarter 3 through quarter 4)

Table 5. New Privately-Owned Housing Units Started by Purpose of Construction
[Thousands of units. Detail may not add to total because of rounding)

Period		Total	In structures with-								
		1 unit	2 units or more								
		Total	For sale ${ }^{1}$	For owner occupancy on owner's land		For rent	Total	For sale	For rent		
		Contractor built		Owner built							
ANNUAL DATA											
1979.			1,745	1,194	742	213	222	17	551	173	378
1980.		1,292	852	526	149	164	12	440	163	277	
1981.		1,084	705	426	122	148	10	379	158	221	
1982.		1,062	663	409	108	133	12	400	140	259	
1983.		1,703	1,068	713	151	179	24	635	210	425	
1984.		1,750	1,084	728	157	165	33	665	206	459	
1985.		1,742	1,072	713	177	157	26	669	154	515	
1986.		1,805	1,179	782	204	166	27	626	143	483	
1987.		1,620	1,146	732	208	178	28	474	130	344	
1988.		1,488	1,081	709	196	154	22	407	99	307	
1989.		1,376	1,003	648	192	144	19	373	87	286	
1990.		1,193	895	529	196	147	22	298	56	241	
1991.		1,014	840	490	198	138	14	174	41	132	
1992.		1,200	1,030	618	224	168	19	170	41	128	
1993.		1,288	1,126	716	225	162	22	162	44	118	
1994.		1,457	1,198	763	245	169	22	259	52	206	
1995.		1,354	1,076	712	199	133	33	278	51	227	
1996.		1,477	1,161	774	218	144	25	316	59	257	
1997.		1,474	1,134	784	189	131	29	341	59	282	
1998.		1,617	1,271	882	209	144	36	346	59	287	
1999.		1,666	1,335	940	211	144	40	332	64	267	
$2000^{\text {p }}$		1,592	1,262	903	196	127	37	330	74	256	
QUARTERLY DATA											
1994:	1st quarter.	294	253	176	46	26	5	41	12	30	
	2nd quarter	423	354	221	75	54	4	69	14	54	
	3 rd quarter	398	326	199	71	50	5	72	16	56	
	4th quarter	342	266	170	52	36	7	77	12	64	
1995:	1st quarter.	270	214	149	37	25	4	56	11	45	
	2nd quarter	371	297	195	54	37	10	74	15	59	
	3 rd quarter	387	308	198	59	42	9	79	13	66	
	4th quarter	326	257	177	46	27	8	69	12	57	
1996:	1st quarter.	303	240	175	40	21	4	63	11	52	
	2nd quarter	428	344	229	70	39	5	85	18	67	
	3 rd quarter	410	324	210	63	44	7	87	18	68	
	4th quarter	335	252	171	46	30	5	83	16	67	
1997:	1st quarter.	297	238	175	36	22	5	59	13	46	
	2nd quarter.	419	325	220	56	40	7	94	18	77	
	3 rd quarter	400	315	215	55	38	7	86	17	69	
	4th quarter	357	257	178	42	29	8	101	13	88	
1998:	1st quarter.	325	258	195	36	23	5	67	13	53	
	2nd quarter.	448	360	249	60	43	8	88	16	72	
	3 rd quarter	445	348	229	67	43	10	97	16	81	
	4th quarter	399	305	214	49	33	8	95	16	79	
1999:	1st quarter.	370	294	219	42	26	8	75	16	59	
	2nd quarter.	455	377	257	65	45	10	77	16	61	
	3 rd quarter	453	356	250	57	41	8	98	16	82	
	4th quarter	389	308	217	49	31	11	81	15	65	
2000:	1st quarter.	365	286	215	41	22	8	79	16	63	
	2nd quarter.	456	366	255	58	42	12	89	21	69	
	3 rd quarter ${ }^{\text {r }}$.	412	328	230	55	36	7	84	19	65	
	4th quarter ${ }^{\text {p }}$.	360	282	207	43	25	7	77	18	60	
AVERAGE RELATIVE STANDARD ERRORS ${ }^{2}$											
Annua	1	1	2	7	6	13	3	13	4	
Quarte	1	1	2	7	7	16	6	19	7	

${ }^{\text {P Preliminary. }}$ 'Revised
${ }^{1}$ Includes houses already sold when construction started
${ }^{2}$ Average Relative Standard Errors (Avg. RSE): Annual—Avg. RSE for the last 2 years; Quarterly—Avg. RSE for the latest 2-quarter period (quarter 1 through quarter 2 or quarter 3 through quarter 4).

Notes: Housing units for which purpose of construction was not reported have been distributed proportionally to those for which the information was reported. Quarterly estimates may not add to the annual figures as the latter include late reports and corrections.

Appendix A.
 Definitions and Survey Description

DEFINITIONS

The start of construction of a privately-owned housing unit is when excavation begins for the footings or foundation of a building intended primarily as a housekeeping residential structure and designed for nontransient occupancy. All housing units in a multifamily building are defined as being started when excavation for the building has begun. Beginning with statistics for September 1992, estimates of housing starts include units in residential structures being totally rebuilt on an existing foundation.

A housing unit is a house, an apartment, a group of rooms or a single room intended for occupancy as separate living quarters. Separate living quarters are those in which the occupants live separately from any other individuals in the building and which have a direct access from the outside of the building or through a common hall.

A housekeeping residential building is one consisting primarily of housing units. New housing starts exclude group quarters (such as dormitories and rooming houses), transient accommodations (such as transient hotels, motels, and tourist courts), manufacturer homes (trailers), moved or relocated buildings, and housing units created in an existing residential or nonresidential structure. However, in a building combining substantial residential and nonresidential floor areas, every effort is made to include the residential units in these statistics, even though the primary function of the entire building is for nonresidential purposes.

Housing units, as distinguished from HUD-coded manufactured homes, include conventional "stick-built" units, prefabricated, panelized, componentized, sectional, and modular units. HUD-coded manufactured homes-singlewide and multiwide-are excluded from the statistics.

Publicly owned housing units (contract awards) are excluded from the statistics. Units in structures built by private developers with partial public subsidies or which are for sale upon completion to local public housing authorities under the HUD "Turnkey" program are both classified as private housing.

The statistics, by type of structure, refer to the structural characteristics of the building. The one-unit structure category includes fully detached, semidetached (semiattached, side-by-side), rowhouses, and townhouses. In the case of attached units, each must be separated from the adjacent unit by a ground-to-roof wall in order to be classified as a one-unit structure. Also, these units must
not share heating/air-conditioning systems or interstructural public utilities, such as water supply, power supply, or sewage disposal lines. Units built one on top of another and those built side-by-side which do not have a ground-to-roof wall and/or have common facilities (i.e., attic, basement, heating plant, plumbing, etc.) are classified by the number of units in the structure (i.e., two-unit structure, three-unit structure, etc.). In these statistics, apartment buildings are defined as buildings containing five units or more. Apartments in a conventional-type apartment building may share a common basement, heating plant, stairs, entrance halls, and water supply and sewage disposal facilities. Townhouse apartments, though attached, are not separated by a ground-to-roof wall and/or share some interstructural facilities, such as water supply, sewage disposal, etc.

Ownership is not the criterion for structural classifications in this report. A condominium apartment building is classified with apartment buildings in structures with five units or more, despite the fact that each unit is individually owned. Condominium townhouses may be in the oneunit category if each unit is separated from its neighbor by a ground-to-roof wall (no commonly shared interstructural facilities), or in the multiunit building categories if they are not separated from each other by a ground-toroof wall (share interstructural facilities).

The standard census geographic regions are used in the tables of this report. States contained in each region are as follows: Northeast - Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania; Midwest - Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas; South - Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas; West - Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska, and Hawaii.

The distribution of housing starts between units inside and outside metropolitan statistical areas (MSAs) is based on the definitions published by the Office of Management and Budget in Metropolitan Statistical Areas. Data for the period beginning January 1994 are based on the 1992 definitions, as amended June 1993; data for the period January-December 1993 are based on the 1992 definitions; data for January 1984-December 1992 are based on
the 1974 definitions, as amended June 1983; data for January 1976-December 1983 are based on the 1974 definitions, as amended August 1975; data for January 1975December 1975 are based on the 1967 definitions, as amended April 1974; data for January 1974-December 1974 are based on the 1967 definitions, as amended November 1973; data for April 1973-December 1973 are based on the 1967 definitions, as amended February 1973; data for April 1968-March 1973 are based on the 1967 definitions.

SAMPLE DESIGN AND SELECTION

The sample design for the Survey of Construction is a stratified multistage cluster design derived from the Current Population Survey (CPS), 1980 design. Each state was divided into areas made up of counties (towns in New England) and independent cities. These areas were grouped within each state to form strata for the CPS according to metropolitan status and 1980 labor force, race/ethnic origin, population change, and family and housing characteristics. One area from each of the strata was selected with probability proportional to the number of persons 16 years of age and older. The CPS strata were further stratified into 169 strata according to census region, metropolitan status, building permit activity in 1982, population, and the percent of the population in areas which do not issue permits. One of the CPS selected areas was chosen from each of these 169 strata with probability proportional to the number of persons 16 and older.

Within each of these 169 areas, the sample was selected from two different sample frames: permit-issuing places and land areas not covered by building permit systems.

Each of the 17,000 permit-issuing places was assigned to one of six size classes based on a weighted average of 1978, 1981, and 1982 permit activity. The permit places in each of the 169 areas were grouped into these six size classes and a systematic sample of places was selected from each one of them. Places were selected at different sampling rates in each of the classes so that larger proportions of the places were selected from the larger size classes. For example, all places in the largest size classes fell into sample if they were in the 169 areas, whereas, only an expected 1 in 40 of the places in the smallest size class fell into sample. Approximately 840 permit-issuing places were selected.

Monthly, census field representatives sample permits from these 840 permit-issuing places. They select permits for one-to-four-unit buildings with probability proportional to the number of units at an overall rate of 1 in 40 . All permits for buildings with five units or more are selected.

Within each of the 169 areas, the land not covered by building permit systems, called nonpermit areas, was identified. Small land areas (1980 Census enumeration districts) in these nonpermit areas were grouped into two
strata according to the 1980 population. Overall, 1 out of every 120 land areas was selected from the strata with the larger areas and 1 out of 600 was selected from the strata with the smaller areas. Monthly, census field representatives intensively canvassed about 130 selected land areas looking for all housing units started.

In January 1995, the area covered by building permit systems was expanded to 19,000 permit-issuing places. Canvassing was stopped in those selected land areas now represented by permit-issuing places. Census field representatives continue to canvass monthly about 70 land areas still not covered by building permit systems.

HOUSING STARTS COMPILATION

The compilation of the housing starts series is a multistage process. First, an estimate is made monthly of the number of housing units for which building permits have been issued in all 19,000 permit-issuing places (Table 2). The estimate of building permit authorizations is based on a sample of 8,500 of these 19,000 jurisdictions.

Second, for each permit selected in the 840 permitissuing places, an inquiry is made of the owner or the builder to determine in which month and year the unit(s) covered by the permit was (were) started. In case the units authorized by permits in a particular month are not started by the end of that month, follow-ups are made in successive months to find out when the units were actually started.

From this sample of permits, ratios are calculated (by type of structure) of the number of units started to the number of units covered by permits; separate ratios are calculated for units started from permits of that month and of each preceding month. These ratios, or starts rates, are then applied to the appropriate estimate of the number of units authorized by permits in the corresponding months to provide estimates of the number of units started for each month of authorization.

Having produced estimates of the number of units started with permit authorization, two additional adjustments are made.

1. An upward adjustment of 3.3 percent is made to the number of one-unit structures (single-family houses) started to account for those units started within permit-issuing areas but without permit authorization. A study spanning a 4 year period indicated that permits were obtained for all buildings with two housing units or more.
2. Upward adjustments are made to account for those units started prior to permit authorization and for late reports.

The estimates for housing units started in the 19,000 permit-issuing places result from the procedures outlined above.

Then, units identified as started in the monthly canvass of nonpermit areas are weighted appropriately to provide an estimate of total housing starts in areas not covered by building permit systems.

Addition of this estimate of starts in nonpermit areas to the estimate of starts in the 19,000 permit-issuing places results in an estimate of total private housing units started (Table 1).

STARTS BY TYPE OF STRUCTURE

A total of 14 different sets of starts rates that change from month-to-month are utilized to calculate the number of housing units started by type of structure in permit places. Eight sets of starts rates are used for one-unit structures: separate sets of rates for metropolitan and nonmetropolitan areas within each of the four regions. For structures with five units or more, separate sets of starts rates are used for each of the four regions. Single sets of starts rates are used for all regions for structures with two units and for structures with three and four units.

Starts by type of structure in nonpermit areas are calculated directly in the estimating procedure described above.

BUILDING PERMITS

Data on housing units authorized by local building permits relate to the time of issuance rather than to the actual start of construction. They do, however, provide some indication of residential building activity in advance of the start of actual construction. Although construction is started on most residential buildings in the same month in which the permit is issued, several months may pass before start of construction.

The 19,000 areas with local building permit systems for which figures are currently given in Table 2 of this report account for a major portion of residential building in the United States. For the country as a whole, approximately 96 percent of private housing units are now constructed in permit-issuing places. Beginning with 1994, data are based upon 19,000 places. Data for 1985 through 1994 are for 17,000 places; data for 1978 through 1984 are for 16,000 places; data for 1971 through 1978 are for 14,000 places; data for 1968 through 1972 are for 13,000 places.

Monthly estimates of building permit authorizations are based on reports from a stratified probability sample of 8,500 local building permit jurisdictions. A more detailed description of the sample is provided in the Census Bureau's monthly C40 series, Housing Units Authorized by Building Permits. This information can be found on the U.S. Census Bureau's Web site at:
www.census.gov/const/www/c40index.html

RELIABILITY OF DATA

The various estimates of privately owned housing units started and privately owned housing units authorized by building permits which are shown in this publication are
based on sample surveys and may differ from statistics which would have been obtained from a complete census using the same schedules and procedures. An estimate based on a sample survey is subject to both sampling error and nonsampling error. The accuracy of a survey result is determined by the joint effects of these errors.

Measures of Sampling Errors

Sampling error reflects the fact that only a particular sample was surveyed rather than the entire population. Each sample selected for the Housing Starts and Building Permits surveys is one of a large number of similar probability samples that, by chance, might have been selected under the same specifications. Estimates derived from the different samples would differ from each other. The standard error, or sampling error, of a survey estimate is a measure of the variation among the estimates from all possible samples and, thus, is a measure of the precision with which an estimate from a particular sample approximates the average from all possible samples.

Estimates of the standard errors have been computed from the sample data for selected statistics in this report. They are presented in the tables in the form of average relative standard errors. The relative standard error equals the standard error divided by the estimated value to which it refers.

The sample estimate and an estimate of its standard error allow us to construct interval estimates with prescribed confidence that the interval includes the average result of all possible samples with the same size and design. For example, suppose Table 1 of this report showed that an estimated 110,000 units in one-unit structures were started in a particular month. Further, suppose that the average relative standard error of this estimate is 3 percent. Multiplying 110,000 by 0.03 , we obtain 3,300 as the standard error. This means that we are confident, with 2 chances out of 3 being correct, that the average estimate from all possible samples of one-unit structures started during the particular month is between 113,300 and 106,700 units. To increase the probability to about 9 chances out of 10 that the interval contains the average value over all possible samples (this is called a 90-percent confidence interval), multiply 3,300 by 1.6 , yielding limits of 115,280 and 104,720 (110,000 units plus or minus 5,280 units). The average estimate of one-unit structures started during the specified month may or may not be contained in any one of these computed intervals. However, for a particular sample, one can say that the average estimate from all possible samples is included in the constructed interval with a specified confidence of 90 percent.

Ranges of 90-percent confidence intervals for estimated percent changes are shown in the text. When the range of the confidence interval contains zero, it is unclear whether there was an increase or decrease; that is, the change is not statistically significant.

Nonsampling Errors

As calculated for this report, the coefficient of variation estimates sampling variation but does not measure all nonsampling error in the data. Nonsampling error consists of both a variance component and a bias component. Bias is the difference, averaged over all possible samples of the same size and design, between the estimate and the true value being estimated. Nonsampling errors are usually attributed to many possible sources: (1) coverage error failure to accurately represent all population units in the sample, (2) inability to obtain information about all sample cases, (3) response errors, possibly due to definitional difficulties or misreporting, (4) mistakes in recording or coding the data obtained, and (5) other errors of coverage, collection and nonresponse, response, processing, or imputing for missing or inconsistent data. These nonsampling errors also occur in complete censuses. Although no direct measures of these errors have been obtained, precautionary steps have been taken in all phases of the collection, processing, and tabulation of the data to minimize their influence.

As described in the section, "Housing Starts Compilation," a potential source of bias is the upward adjustment of 3.3 percent made to account for one-unit structures started in permit-issuing areas without permit authorization. Another source is the adjustment for units started prior to permit authorization and for late reports. For the Building Permits Survey, estimates are imputed for nonresponse. The final estimates of privately owned housing units started and building permits issued are adjusted less than 2 percent.

SEASONAL ADJUSTMENT

Seasonal adjustment is the process of estimating and removing seasonal effects from a time series to better reveal certain nonseasonal features such as underlying trends and business cycles. Seasonal adjustment procedures estimate effects that occur in the same calendar month with similar magnitude and direction from year-toyear. In series whose seasonal effects come primarily from weather, the seasonal factors are estimates of average weather effects for each month. It does not account for abnormal weather conditions or for year-to-year changes in weather. Seasonal factors are estimates based on present and past experience. Future data may show a different pattern.

The mechanics of seasonal adjustment involve breaking down a time series into its trend-cycle, seasonal and irregular components.
Trend-cycle. The long-term tendencies of a series to grow or decline.

Seasonal effects. Effects that are reasonably stable in terms of timing, direction and magnitude. Possible causes include natural factors (the weather), administrative measures and social/cultural/religious traditions.

Anything not included in the trend-cycle or the seasonal effects (including trading-day or holiday effects). Its values are unpredictable as regards timing, impact, and duration. It can arise from sampling error, nonsampling error, unseasonable weather, natural disasters, strikes, etc.

Monthly time series that are totals of daily activities can be influenced by each calendar month's weekday composition. This influence is revealed when monthly values consistently depend on which days of the week occur five times in the month. For example, building permit offices are usually closed on Saturday and Sunday. Thus, the number of building permits issued in a given month is likely to be higher if the month contains a surplus of weekdays and lower if the month contains a surplus of weekend days. Recurring effects associated with individual days of the week are called trading-day effects.

Trading-day effects can make it difficult to compare time series values or to compare movements in one series with movements in another. For this reason, when estimates of trading-day effects are statistically significant, we adjust them out of the series. The removal of such estimates is referred to as trading-day adjustment.

The seasonally adjusted series in this report are shown as seasonally adjusted annual rates (SAAR). The seasonally adjusted annual rate is the seasonally adjusted monthly value multiplied by 12 . The benefit of the annual rate is that not only can we compare one monthly estimate with another, we can also compare monthly data to an annual total.

The seasonal adjustment indexes shown in this publication were developed using X-12-ARIMA. The X-12-ARIMA is a seasonal adjustment program developed at the U.S. Census Bureau. The program is based on the Bureau's earlier X-11 program and the X-11-ARIMA/88 program developed at Statistics Canada. For more information on X-12-ARIMA please see the $\mathrm{X}-12$ Web site at www.census.gov/pub/ts.

Housing Starts

Seasonal indexes are developed each month (concurrent adjustment) for total private housing starts, by region and type of structure. Every month, each series is run through the X-12-ARIMA program. The seasonally adjusted U.S. total is the sum of six seasonally adjusted components: single-family structures in each of the four regions, U.S. total for two-to-four unit structures, and U.S. total for structures with five units or more. Also, the unadjusted data for the four regions are seasonally adjusted and modified so that the seasonally adjusted U.S. total derived from the regions equals the seasonally adjusted U.S. total derived from the structures. Note the seasonal factors for private housing starts shown in Table A-1 are the product of trading-day and seasonal factors. For simplicity we refer to the product factors as seasonal factors.

It has been customary to revise seasonally adjusted housing starts data back 3 years with the release of January data. This is not being done this year because with the release of April 2001 data we will implement a new process for estimating housing starts. At that time we will published revised estimates of both seasonally adjusted and not seasonally adjusted housing starts estimates back to January 1999.

Building Permits

Seasonal indexes are also developed each month for region and type of structure of total housing units authorized by building permits. The seasonally adjusted building permit estimates are computed using a procedure similar to that used for housing starts. Thus, the seasonal indexes for building permits shown in Table A-2 include trading-day adjustment.

Table A-1. Seasonal Indexes Used to Adjust Housing Units Started

Period	United States implicit index ${ }^{1}$	In structures with-						All units			
		1 unit				2 to 4 units	5 units or more	Northeast	Midwest	South	West
		Northeast	Midwest	South	West						
1998											
January	71.8	59.0	50.6	79.2	80.5	60.7	78.6	65.1	50.2	80.4	80.4
February	76.6	60.5	59.0	87.8	80.4	73.2	77.6	57.2	53.2	85.8	81.7
March. .	101.6	93.2	93.2	111.5	108.8	101.7	86.7	91.2	91.1	107.8	107.5
April .	112.9	108.1	116.8	116.2	111.3	112.5	106.0	108.9	117.5	113.7	109.0
May	111.9	114.3	120.0	112.9	107.4	101.7	108.0	115.4	121.5	109.4	107.8
June	116.7	125.0	135.2	112.0	125.0	125.7	97.9	122.8	128.4	110.9	122.5
July.	110.2	123.0	119.6	103.5	113.8	111.8	106.3	121.1	120.4	105.8	108.1
August	109.7	116.7	113.9	104.8	107.4	108.2	115.6	115.7	117.9	102.9	108.6
September	107.3	106.6	115.9	104.2	104.3	110.9	109.4	108.3	113.5	104.4	105.8
October	108.8	109.7	116.8	100.3	101.1	118.1	121.1	114.3	123.2	103.6	104.3
November	89.8	100.5	88.5	87.7	82.6	97.8	98.8	99.8	91.4	88.2	83.2
December	80.1	82.6	68.9	78.6	77.1	78.2	95.1	80.5	71.2	86.2	82.4
1999											
January	71.8	57.7	49.6	79.2	77.1	60.1	78.0	64.8	49.5	78.9	76.3
February	77.5	61.7	59.9	88.1	80.3	73.7	77.5	57.4	53.4	86.0	82.2
March. .	103.2	96.3	98.1	111.4	111.8	101.9	86.5	91.5	92.4	108.3	107.3
April	112.6	107.6	116.0	116.1	112.2	111.7	105.8	108.6	117.7	115.2	110.8
May	113.2	114.8	122.2	111.5	112.2	101.7	108.0	114.9	121.4	109.0	111.4
June	117.1	124.2	133.7	114.0	119.5	125.2	97.7	122.1	128.6	110.0	117.1
July.	109.3	120.2	117.0	102.1	115.4	112.3	106.4	122.6	118.9	105.7	109.1
August	112.2	119.3	115.0	109.4	109.6	107.1	114.7	115.3	119.4	106.8	114.6
September	105.6	106.0	113.2	100.7	102.6	110.6	109.5	108.7	113.4	101.7	103.7
October	106.6	105.8	114.2	100.7	96.8	120.7	121.4	113.6	121.4	102.0	98.8
November	92.3	103.6	92.4	89.6	87.8	95.8	96.8	99.7	92.4	92.4	89.4
December	78.5	83.8	69.0	76.2	75.5	77.5	94.3	80.1	70.6	82.8	79.5
2000											
January	72.4	57.3	50.5	79.2	80.1	63.3	78.7	63.2	49.6	80.4	78.8
February	80.4	62.6	64.1	93.8	84.7	76.6	77.1	62.4	57.3	92.1	89.4
March. .	101.0	96.3	92.1	110.2	107.4	102.2	86.3	92.1	92.1	105.9	101.1
April	110.2	99.4	114.9	113.1	109.0	110.3	105.9	104.2	115.6	110.2	105.3
May	117.1	124.0	128.9	116.8	116.2	98.0	107.6	115.6	123.7	114.0	117.1
June	113.4	123.3	126.7	110.0	115.7	127.0	100.7	120.6	127.9	109.5	116.1
July.	108.4	114.6	114.7	101.1	114.3	117.3	106.9	123.1	116.9	103.2	107.7
August	112.1	120.1	115.7	110.0	110.2	111.0	112.1	115.3	119.7	107.0	115.4
September	103.4	105.8	111.5	98.0	101.3	105.2	107.7	108.7	111.5	100.0	101.7
October...	110.9	109.2	119.5	106.0	101.7	126.8	121.5	115.8	123.6	107.7	104.0
November ${ }^{\text {r }}$	90.4	104.8	89.7	86.2	84.7	94.4	99.1	98.4	92.9	87.2	86.6
December ${ }^{\text {r }}$	77.1	83.2	66.0	75.8	73.6	76.3	93.6	82.5	68.4	80.5	78.1
2001											
January ${ }^{\text {p }}$	76.5	59.6	55.9	84.3	83.8	68.0	80.8	61.1	51.4	85.3	84.2

${ }^{\text {P P Preliminary. }} \quad{ }^{\mathrm{r}}$ Revised.

${ }^{1}$ The implicit seasonal index is the ratio of the unadjusted number of housing units started in the United States to the seasonally adjusted national total of housing units started. It provides an indication of the overall seasonality for the particular month.

Note: These seasonal indexes include trading-day adjustment factors.

Table A-2. Seasonal Indexes Used to Adjust Housing Units Authorized in Permit-Issuing Places

Period	United States implicit index ${ }^{1}$	In structures with-						All units			
		1 unit				2 to 4 units	5 units or more	Northeast	Midwest	South	West
		Northeast	Midwest	South	West						
1998											
January	74.2	63.6	50.2	85.1	76.4	68.4	81.2	66.8	52.6	84.8	77.9
February	78.2	60.7	63.9	90.5	81.1	77.3	77.3	63.2	63.4	87.4	82.3
March. .	105.4	97.3	105.0	112.0	110.5	102.1	96.3	99.2	103.5	111.4	104.3
April	113.5	116.3	126.8	114.7	116.6	112.9	98.3	113.2	122.9	111.1	112.3
May	106.7	119.3	119.9	105.5	108.4	98.2	94.6	113.1	114.3	103.4	103.2
June	118.7	126.6	129.2	115.4	122.3	123.8	109.3	125.3	121.9	114.4	125.3
July.	111.3	120.4	118.5	108.6	113.4	102.9	107.7	116.7	113.5	107.7	112.7
August	105.0	107.5	110.5	102.6	103.5	102.8	106.1	108.2	111.4	100.9	103.0
September	107.9	106.8	110.4	99.7	103.8	111.1	122.5	107.4	113.2	104.7	106.5
October.	104.6	108.2	110.9	98.4	99.6	116.0	109.0	108.6	115.1	100.2	103.0
November	86.0	90.3	84.8	82.5	80.3	93.7	94.0	92.1	90.3	85.5	80.3
December	85.7	83.1	69.7	85.1	84.1	91.1	102.1	86.3	78.8	89.5	90.6
1999											
January	72.7	61.4	47.8	80.7	73.6	66.0	82.0	65.5	50.2	81.9	73.7
February	78.8	60.9	64.0	90.9	81.2	77.3	76.6	63.5	64.2	87.4	82.4
March. .	110.4	99.5	109.3	117.5	116.9	109.8	98.9	101.4	108.1	112.9	110.9
April	114.2	119.6	127.5	114.5	113.8	110.5	100.9	113.5	120.3	114.9	110.5
May	106.2	115.8	121.1	106.3	109.6	100.2	89.2	109.7	116.5	101.2	104.6
June	119.8	126.8	127.5	114.9	124.8	122.9	114.2	128.2	121.3	113.3	125.7
July.	106.9	116.4	115.6	105.0	107.6	98.3	101.2	112.3	108.9	103.4	109.0
August....	109.9	113.8	115.3	107.1	107.4	107.6	111.3	114.4	116.5	108.1	105.3
September	106.1	106.1	109.7	99.5	103.0	107.5	118.0	105.7	113.3	103.3	107.1
October.	100.9	104.5	105.4	92.9	95.5	111.3	110.9	105.9	109.2	97.2	96.9
November	89.8	93.7	89.4	87.1	84.0	99.9	95.5	95.5	94.9	89.1	84.5
December	86.2	83.1	68.5	84.3	82.8	91.0	106.3	85.1	77.0	89.9	90.0
2000											
January	71.4	59.8	48.5	81.3	74.6	67.8	77.5	64.1	51.6	80.1	75.0
February	83.2	64.7	67.7	95.9	85.8	82.1	79.4	67.9	68.2	92.8	86.1
March. .	110.4	101.9	107.4	116.8	114.9	103.9	102.4	102.6	106.0	114.4	110.7
April	103.9	107.5	117.3	102.8	106.5	101.7	92.5	105.2	111.0	102.0	101.9
May	115.3	123.5	130.8	115.9	120.9	111.0	94.7	116.8	124.3	110.1	113.6
June	119.2	128.6	126.0	114.2	121.2	117.1	118.0	126.2	116.9	116.1	125.5
July.	101.9	109.3	110.4	99.0	104.4	95.7	97.3	106.7	104.7	98.0	103.4
August.	113.9	117.3	119.6	112.6	113.7	113.1	111.5	118.3	120.5	109.5	112.8
September	102.0	103.7	106.0	95.2	96.4	104.8	115.8	102.6	105.3	100.7	101.1
October.	104.3	108.6	111.5	98.1	100.7	119.7	109.5	108.8	117.3	102.5	100.6
November ${ }^{\text {December }}$	89.7 80.1	93.5 77.8	87.8 63.1	87.1	85.5	97.7 82.4	96.3 100.5	97.5 80.4	94.3 69.1	87.9 82.7	86.6 82.5
2001											
January ${ }^{\text {p }}$	79.8	65.6	53.6	91.1	82.9	75.6	85.4	69.4	59.1	88.8	83.3

pPreliminary. ${ }^{\text {r Revised. }}$
${ }^{1}$ The implicit seasonal index is the ratio of the unadjusted number of housing units authorized by building permits in the United States to the seasonally adjusted national total of housing units authorized. It provides an indication of the overall seasonality for the particular month.

Note: These seasonal indexes include trading-day adjustment factors.

Appendix B. Monthly Revisions to Estimates

Each month the Census Bureau publishes preliminary estimates of Housing Starts and Building Permits. The Census Bureau releases these estimates to provide government and private data users with early measures of new privately owned residential construction activity. A necessary part of the process of issuing these early data involves the issuance of subsequent revisions. The revisions to monthly housing starts and building permit estimates are primarily the result of the replacement of imputed data with data which are reported in subsequent months.

For total housing starts, the range of the difference between the last 12 preliminary and first revision estimates for the same months was from -0.96 percent to 2.10 percent, with a median of 0.38 percent. The range of the difference between preliminary and final estimates was from -1.75 percent to 3.33 percent, with a median of 0.29 percent. The preliminary-to-final difference for total building permits over the last 12 months ranged from -0.95 percent to 1.35 percent, with a median of 0.87 percent.

Analysis of Revisions to Monthly Seasonally Adjusted Estimates of Housing Starts and Building Permits

Series	Percent changes between estimates- last 12 months					
	First revision versus preliminary			Final versus preliminary		
	Range		Median	Range		Median
	From	To		From	To	
HOUSING STARTS						
U.S. total. .	-0.96	2.10	0.38	-1.75	3.33	0.29
In structures with-						
1 unit..	-2.36	1.71	0.08	-2.54	2.78	0.52
2 to 4 units	-26.09	19.44	6.85	-30.43	19.44	7.17
5 units or more. .	-2.01	5.75	-0.16	-3.38	8.26	1.53
Northeast.	-1.42	5.04	0.64	-2.52	5.04	1.23
Midwest.	-8.98	5.02	1.17	-7.52	7.89	1.13
South .	-1.40	2.87	0.07	-1.47	3.49	0.29
West.	-2.90	2.34	-0.25	-3.48	13.14	-0.60
BUILDING PERMITS ${ }^{1}$						
U.S. total....	-0.95	1.35	0.87	-0.95	1.35	0.87
In structures with1 unit						
1 unit 2 to 4 units	0.00 -6.45	1.22 7.94	0.89 0.76	0.00 -6.45	1.22 7.94	0.89 0.76
5 units or more. .	-4.26	6.46	0.14	-4.26	6.46	0.14
Northeast.	-3.54	3.70	-0.64	-3.54	3.70	-0.64
Midwest.	-1.16	5.04	0.16	-1.16	5.04	0.16
South.	-1.34	2.41	0.37	-1.34	2.41	0.37
West.	-1.78	3.77	1.26	-1.78	3.77	1.26

[^2]
[^0]: NA Not available. ${ }^{\text {PPPreliminary. } \quad \text { 'Revised. }}$
 ${ }^{2}$ Average Relative Standard Errors (Avg. RSE): Annual—Avg. RSE for the last 2 years; Monthly—Avg. RSE for the latest 6-month period (January through June or July through December).

[^1]: ${ }^{\mathrm{p}}$ Preliminary. ${ }^{\text {r}}$ Revised.

[^2]: ${ }^{1}$ For the building permit series, the first revision is the final estimate.

