U.S. Department of Commerce Economics and Statistics Administration BUREAU OF THE CENSUS
U.S. Department of Housing and Urban Development

Housing Completions

Seasonally adjusted data back to January 1995 have been revised. See the appendix in this report for a description of the seasonal adjustment process and new seasonal factors.

New Privately Owned Housing Units Completed

Note: Total includes units in structures with two to four units.
Source: U.S. Bureau of the Census, Housing Completions.

Questions regarding these data may be directed to Dale R. Jacobson, Residential Construction Branch, Telephone 301-457-4703.
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

SUMMARY OF FINDINGS

This report provides monthly statistics on the number of new privately owned housing units completed and under construction. This report is released jointly by the Bureau of the Census and the U.S. Department of Housing and Urban Development.

Privately owned housing units were completed in January 1998 at a seasonally adjusted annual rate of $1,288,000$. This is $9(\pm 5)$ percent below the revised December 1997 rate of $1,410,000$, and $6(\pm 6)$ percent below the revised January 1997 rate of $1,375,000$.

The January 1998 rate of single-family housing completions was 999,000 . This is $9(\pm 5)$ percent below the revised December 1997 rate of $1,093,000$. The rate for units in buildings with five units or more was 262,000, and the rate for units in buildings with two to four units was 27,000 .

The seasonally adjusted estimate of housing units under construction at the end of January 1998 was 885,000. This is $2(\pm 1)$ percent above the revised December 1997 estimate of 870,000 . Of these, 589,000 were single-family structures, 263,000 were in buildings with five units or more, and 33,000 were in buildings with two to four units.

In interpreting changes in the seasonally adjusted rates of housing completions, note that month-to-month changes may reflect movements which may be irregular. It may take 4 months to establish an underlying trend for total completions.

The statistics in this report are estimated from sample surveys and are subject to sampling variability as well as nonsampling error including bias and variance from response, nonreporting and undercoverage. Estimated average relative standard errors of preliminary data are shown in the tables. Whenever a statement such as " $2(\pm 3)$ percent above" appears in the text, this indicates the range (-1 to +5 percent) in which the actual percent change is likely to have occurred. All ranges given for percent changes are 90-percent confidence intervals and account only for sampling variability. If a range contains zero, it is unclear whether there was an increase or decrease; that is, the change is not statistically significant. For any comparison cited without a confidence interval, the change is statistically significant. The appendix in this issue includes explanations of confidence intervals and sampling variability. On average, the preliminary seasonally adjusted estimates of total housing completions are revised about ± 1 percent.

Housing completions and under construction statistics do not include mobile home units.

HISTORICAL DATA

Housing completions data have been collected since 1968. Housing starts are available from 1889 to the present date. Historical data for all these series are available from the Residential Construction Branch, Manufacturing and Construction Division, Bureau of the Census, Washington, DC 20233-6900. Telephone: 301-457-4666.

Table 1. New Privately Owned Housing Units Completed
[Thousands of units. Detail may not add to total because of rounding]

Period	Total	In structures with-				$\begin{aligned} & \text { Inside } \\ & \text { MSAs }^{1} \end{aligned}$	Outside MSAs	Northeast	Midwest	South	West
		1 unit	2 units	$\begin{array}{r} 3 \text { and } 4 \\ \text { units } \end{array}$	5 units or more						
ANNUAL DATA											
1988	1,529.8	1,084.6	23.5	33.2	388.6	1,286.1	243.7	250.2	280.3	594.8	404.6
1989	1,422.8	1,026.3	24.1	34.6	337.9	1,181.2	241.7	218.8	267.1	549.4	387.5
1990	1,308.0	966.0	16.5	28.2 18	297.3	1,060.2	247.7	157.7	263.3	510.7	376.3
1991	$1,090.8$ $1,157.5$ 1	${ }_{963} 8$	15.1	19.8	15.0	${ }_{909.5}^{862.1}$	2888.0	$\begin{array}{r}120.4 \\ 136.4 \\ \hline 1\end{array}$	248.4 28.4	4	291.3 290.3
1993	1,192.7	1,039.4	9.5	16.7	127.1	943.0	249.8	117.6	273.3	512.0	290.0
1994	1,346.9	1,160.3	12.1	19.5	154.9	1,086.3	260.6	123.4	307.1	580.9	335.5
1995	1,312.6	1,065.5	14.8	19.8	212.4	1,065.0	247.6	126.9	287.9	581.1	316.7
1996	1,412.9	1,128.5	13.6	19.5	251.3	1,163.4	249.4	125.1	304.5	637.1	346.2
$1997{ }^{\text {r }}$	1,400.8	1,116.7	13.6	23.4	247.0	1,152.8	247.9	134.0	295.8	634.5	336.5
MONTHLY DATA Not Seasonally Adjusted											
1997: $\begin{aligned} & \text { January } \\ & \text { Februry } \\ & \text { Marchat } \\ & \text { April } \\ & \text { Apil } \\ & \text { May } \\ & \text { June ... }\end{aligned}$	95.7	78.9	0.3	1.0	15.5	79.1	16.6	8.5	21.2	41.6	24.4
	104.8	84.8	1.1	2.3	16.7	85.7	19.1	10.5	20.5	49.0	24.7
	109.6	87.4	1.2	2.4	18.6	90.7	19.0	13.4	19.0	51.9	25.4
	110.8	86.8	1.4	2.7	19.8	89.4	21.4	8.6	23.1	52.8	26.2
	113.6 113.8	90.1	1.3	1.7	20.4 170	93.8 95.9	19.8	12.7 10.7	22.8 24.5	49.0 50.4	29.0 28.3
	113.8	94.2	1.1	1.5	17.0	95.9	18.0	10.7	24.5	50.4	28.3
July. . ${ }^{\text {August }}$	112.8 121.2	89.2	0.8 1.5	2.3 1.6	20.5 23.8 1.8	94.6 100.0	18.2 21.2	11.3 10.2	24.3 28.7	49.7 52.6	27.5 29.8
August ${ }^{\text {September }}$	129.2 129.3	94.3 103.5	1.0	1.6 2.7	22.1	107.4	22.0	13.1	28.4	60.7	
October	128.8	100.3	1.1	2.2	25.2	101.9	26.9	11.4	29.2	57.3	30.9
November ${ }^{\text {r }}$	123.4	100.6	1.2	0.9	20.7	101.9		11.4	27.3	55.0	29.7
December ${ }^{\text {r }}$	136.8	106.6	1.4	2.2	26.7	112.5	24.3	12.0	26.8	64.4	33.7
1998: January ${ }^{\text {p }}$.	89.8	70.7	0.7	1.1	17.2	75.7	14.1	9.9	18.2	39.8	22.0
Seasonally Adjusted Annual Rate											
1995:' January	1,423	1,195			183	(NA)	(NA)	148	351	629	
February	1,294	1,079			175	(NA)	(NA)	122	309	566	297
March................	1,413 1,342 1	1,195 1,098			$\begin{array}{r}184 \\ 206 \\ \hline\end{array}$	(NA)	(NA)	153 106 108	$\begin{array}{r}313 \\ 332 \\ \hline\end{array}$	580 588	367 316
May	1,326	1,062			229	(NA)	(NA)	134	328	563	301
June	1,242	1,038			170	(NA)	(NA)	118	273	551	300
July...	1,352	1,054			251	(NA)	(NA)	155	307	578	312
	1,265	1,028			210	(NA)	(NA)	105	267	583	310
September	1,279 1,335	1,005 1,049			247 258	(NA)	(NA)	127 124 124	280 266	559 611	313 334
November.	1,360	1,070			249	(NA)	(NA)	105	269	626	360
December.	1,200	1,000			173	(NA)	(NA)	132	214	557	297
1996: J January	1,418	1,120			269	(NA)	(NA)	113	334	608	363
February	1,314	1,039			245	(NA)	(NA)	129	233	596	356
March.	1,377	1,108			241		(NA)	103	299	622	353
April	1,339	1,067			247	(NA)	(NA)	120	311	590	318
May June	1,406 1,432	1,124 1,140			257 266	(NA)	(NA)	110 133	287 297	654 647	355 355
	1483	1.171									
August	1,470	1,166			261	(NA)	(NA)	129	310	680	351
September	1,354	1,093			223	(NA)	(NA)	131	286	576	361
October	1,383	1,143			216	(NA)	(NA)	135	269	648	331
November.	1,423	1,131			245	(NA)	(NA)	143	329	637	314 338
December.	1,464	1,169			252	(NA)	(NA)	130	318	678	338
1997:r $\begin{array}{ll}\text { January } \\ & \text { February. } \\ \\ \text { March } \\ \\ \text { April }\end{array}$.	1,375	1,121			236		(NA)	118	323	590	344
	1,570 1,460	1,266 1,153			256 265	(NA)	(NA)	151 208	333 284 284	723 635	363 333
	1,457	1,155			253	(NA)	(NA)	126	305	680	346
	1,387	1,098			251	(NA)	(NA)	151	284	603	349
	1,307	1,097			176	(NA)	(NA)	125	277	577	328
	1,331							131	291		
	1,335	1,062			239	(NA)	(NA)	122	297	587	329 313
	1,384	1,063			279	(NA)	(NA)	118	308 296	632	338
	1,432	1,145			265	(NA)	(NA)	126	289	669	348
	1,410	1,093			277	(NA)	(NA)	118	288	668	336
1998: January ${ }^{\text {p }}$.	1,288	999			262	(NA)	(NA)	137	271	567	313
AVERAGE RELATIVE STANDARD ERRORS ${ }^{2}$											
Annual (percent). Monthly (percent)	1 3	1 3	20	7 21	3 9	1 3	4 9	+ ${ }_{11}$	3	2	1 6

[^0]${ }^{1}$ Metropolitan statistical areas.
${ }^{2}$ Average Relative Standard Errors (Avg. RSE): Annual—Avg. RSE for the last 2 years; Monthly—Avg. RSE for the latest 6-month period (January through June or July through December).

Table 2. New Privately Owned Housing Units Completed by Location and Type of Structure
[Thousands of units. Detail may not add to total because of rounding]

${ }^{\text {r Revised. }} \quad S$ Withheld because estimate did not meet publication standards on the basis of response rate, associated standard error, or a consistency review.
${ }^{1}$ Metropolitan statistical areas.
${ }^{3}$ Average Relative Standard Errors (Avg. RSE): Annual—Avg. RSE for the last 2 years; Quarterly—Avg. RSE for the latest 2-quarter period (quarter 1 through quarter 2 or quarter 3 through quarter 4)

Table 3. New Privately Owned Housing Units Under Construction
[Thousands of units. Detail may not add to total because of rounding]

Period		Total	In structures with-				InsideMSAs ${ }^{1}$	Outside MSAs ${ }^{1}$	Northeast	Midwest	South	West	
		1 unit	2 units	3 and 4 units	5 units or more								
ANNUAL DATA													
1988		$\begin{aligned} & 919.4 \\ & 850.3 \\ & 711.4 \\ & 606.3 \\ & 612.4 \\ & 680.1 \\ & 762.2 \\ & 775.9 \\ & 792.3 \\ & 846.2 \end{aligned}$	$\begin{aligned} & 569.6 \\ & 535.1 \\ & 449.1 \\ & 433.5 \\ & 472.7 \\ & 543.0 \\ & 557.8 \\ & 547.2 \\ & 550.0 \\ & 554.2 \end{aligned}$	16.111.910.9	24.1	309.5278.1	757.5686.765	161.9163.615	201.6158.8	148.1 145.5 1	308.2282.12	261.6263.9214	
1989					25.1								
1990					15.1	236.3	553.9 458.4	157.5 147.9	121.6 103.9	133.4 122.4 1	242.3 208.5	214.1 171.6	
1992				5.6	11.3	122.8	453.1	159.4159.1	81.489.3	13.8154.415	228.4265.4	164.8170.9	
1993					12.4	118.2	521.0						
1994				9.1	12.912.7	182.5207.7	597.6620.1	164.5155.8	96.386.3	173.5172.0	$\begin{array}{r}312.1 \\ 331.4 \\ \hline\end{array}$	180.3186.318.4	
1995				8.49.0									
1996					19.120.4	214.3260.5	683.2	163.0	86.9	182.2	364.3	191.4	
1997				11.1								212.7	
MONTHLY DATA													
Not Seasonally Adjusted													
1997:	January	777.2	536.2	9.1	19.0	212.8	621.7	155.5	84.8	167.0	335.8	189.6	
	February	763.7	524.1	9.1	17.5	213.1	615.2	148.5	80.1	162.3	333.1	188.2	
	March..	772.9 7998	530.7 5512	8.7 8.9	17.5 16.5	216.0 223	625.5	147.4 150.6	77.8	164.9	336.6	193.6	
	Aprii May	799.8 820.0	551.2 566.6	8.9 8.9	16.5 16.2	223.2	649.2 663.7	150.6 156.3	82.1 81.4	169.6 178.0	348.4 356.3	199.7	
		845.0	579.7	8.7	17.3	239.3	680.0	165.0	82.2	185.5	367.1	210.1	
	July. .	864.9	596.9	9.5	16.0	242.6	694.7	170.2	85.3	190.9	375.4	213.3	
	August	869.6	601.8	$\begin{array}{r}9.4 \\ 10.5 \\ \hline 1.0\end{array}$	16.4	242.0		171.3	86.5 867	190.0		214.1	
	Sctober.	886.4	653.3	11.0	18.0	254.1	711.6	174.8	86.4	195.7	383.4 38	219.0	
	November ${ }^{\text {r }}$	877.9	586.7	11.0	20.3	260.0	706.3	171.6	90.1	190.1	388.1 3	219.7	
	December	846.2	554.2	11.1	20.4	260.5	683.2	163.0	86.9	182.2	364.3	212.7	
1998:	January ${ }^{\text {p }}$	845.2	554.0	10.9	20.6	259.7	683.9	161.3	84.8	178.3	365.9	216.2	
	Seasonally Adjusted												
1995:'	January	783	571	22		190	(NA)	(NA)	959695	174 175	325 325 22	189197185	
	February.	793	577										
	March..	771	554 544	22		$\begin{array}{r}195 \\ 196 \\ \hline\end{array}$	(NA)	(NA)	959493	169 163	$\begin{array}{r}322 \\ 320 \\ \hline\end{array}$	185 184	
	May	758	540	2122		196	(NA)	(NA)		156 159	320319	189188	
	June	759	537	2		201			93	159			
	July...	762	539	2		202	(NA)	(NA)	89	155	329	189	
	August	774	547	2		206	(NA)	(NA)	90	162	330	192	
	September	780	552	2		207	(NA)	(NA)	90	163	334	193	
	October	781	$\begin{array}{r}557 \\ 559 \\ \hline\end{array}$	2		202	(NA)	(NA)	90	165	$\begin{array}{r}332 \\ 337 \\ \hline\end{array}$	194	
	December.	799	569	2		209	(NA)	(NA)	88	173	344	194	
1996:'	January	$\begin{aligned} & 802 \\ & 794 \\ & 815 \\ & 828 \\ & 829 \\ & 830 \end{aligned}$	569563581593593597			213	(NA)	(NA)	87	176	344	195	
	February			19		212	(NA)	(NA)	83	176	338	197	
	March.			20		214	(NA)	(NA)	89	179	349	198	
	April			2		213	(NA)	(NA)	89	181	354	204	
	May			2		212	(NA)	(NA)	90	182	$\begin{array}{r}354 \\ 355 \\ \hline\end{array}$	203	
	June			2		206	(NA)	(NA)	90	181	355		
		824	592	2		205	(NA)	(NA)	91	180	352	201	
	August September	819 824	591	24		204	(NA)	(NA)	89	181 183	$\begin{array}{r}347 \\ 353 \\ \hline\end{array}$	202	
	October .	824	585	28		211	(NA)	(NA)	89	183	351	201	
	November	828	584	28		216	(NA)	(NA)	85	182	355	206	
	December.	817	573	29		215	(NA)	(NA)	87	179	351	200	
1997:'	January			$\begin{aligned} & 29 \\ & 27 \\ & 28 \\ & 27 \\ & 26 \\ & 25 \end{aligned}$		216	$\begin{aligned} & \text { (NA) } \\ & \text { (NA) } \end{aligned}$	$\begin{aligned} & \text { (NA) } \\ & \text { (NA) } \end{aligned}$	$\begin{aligned} & 89 \\ & 86 \\ & 83 \\ & 85 \\ & 83 \\ & 82 \end{aligned}$	177		199202202201204205	
	February	820	574			219				181	351		
	March..	814	566							179	350		
	April May	814 815	564 565			223 224				178 179	350 349		
	June	828	566			237				182	359		
		836		25						183			
	August.	834	567	25		242	(NA)	(NA)	82	179	367	206	
	September	843	571	26		246	(NA)	(NA)	83	181	369	210	
	November	862	574 575	${ }_{30}$		257	(NA)	(NA)	88	181	376	218	
	December.	870	578	30		262	(NA)	(NA)	88	183	378	221	
1998:	January ${ }^{\text {p }}$.	885	589	33		263	(NA)	(NA)	88	189	381	227	
	AVERAGE RE TANDARD ER												
						2	1	4	3	4	2	2	

NA Not available. ${ }^{\text {p }}$ Preliminary. ${ }^{\text {r}}$ Revised.
${ }_{2}^{1}$ Metropolitan statistical areas.
${ }^{2}$ Average Relative Standard Errors: Average for the latest 6-month period (January through June or July through December).
[Thousands of units. Detail may not add to total because of rounding]

	Period	United States			Inside MSAs ${ }^{1}$			Outside MSAs ${ }^{1}$			Northeast			Midwest			South			West		
		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-		Total ${ }^{2}$	In structures with-	
			1 unit	5 units more		1 unit	5 units or more		1 unit	5 units more												
QUARTERLY DATA																						
1989:	1st quarter	894.2	548.1	303.5	739.2	425.0	281.0	155.0	123.1	22.5	182.3	123.7	50.0	139.5	80.4	48.8	310.9	204.8	93.5	261.5	139.2	111.2
	2nd quarter	942.9	597.0	303.5	765.8	453.0	280.0	177.0	144.0	23.5	180.8	128.5	44.2	157.8	95.7	52.0	323.0	215.1	95.2	281.3	157.7	112.1
	3rd quarter.	925.2	593.6	289.6	747.8	449.3	266.2	177.3	144.2	23.4	176.2	124.9	43.5	157.9	102.1	45.0	309.4	205.5	91.7	281.7	161.0	109.4
	4th quarter.		535.1	278.1	686.7	405.6	254.2	163.6	129.6	24.0	158.8	109.8	42.9	145.5	89.6	46.8	282.1	184.6	85.6	263.9	151.1	102.8
1990:	1 st quarter	841.5	528.7	278.6	683.1	402.0	254.8	158.4	126.6	23.8	147.9	100.9	41.3	141.9	87.2	45.8	285.5	189.0	87.3	266.1	151.5	104.3
	2nd quarter	873.3	560.8	278.2	698.7	418.6	253.4	174.6	142.2	24.8	143.2	98.4	39.0	161.3	103.6	48.8	301.3	202.2	90.2	267.5	156.6	100.1
	3 rd quarter.	818.8	529.6	258.8	648.0	389.6	234.8	170.7	140.0	24.0	137.2	93.8	38.1	155.5	104.2	43.2	273.4	185.2	80.5	252.7	146.4	97.0
	4th quarter	711.4	449.1	236.3	553.9	321.2	212.8	157.5	127.9	23.5	121.6	80.1	37.3	133.4	86.8	39.3	242.3	160.3	75.4	214.1	121.9	84.4
1991:	1st quarter	644.8	412.6	207.8	497.4	293.8	185.6	147.5	118.8	22.3	105.1	68.1	33.3	119.9	77.6	35.2	229.8	153.0	70.5	190.1	114.0	68.9
	2nd quarter	675.1	465.3	185.0	518.4	336.5	163.9	156.6	128.7	21.1	112.2	77.0	31.6	136.1	97.3	31.4	231.2	165.8	58.8	195.5	125.2	63.1
	3 rd quarter	657.1	476.7	157.3	502.6	347.7	138.3	154.5	129.0	19.0	110.3	78.4	28.9	135.1	102.5	25.2	222.5	172.4	44.2	189.3	123.4	59.0
	4th quarter	606.3	433.5	149.2	458.4	314.3	127.1	147.9	119.2	22.1	103.9	72.6	28.4	122.4	90.5	25.1	208.5	158.3	42.7	171.6	112.1	53.0
1992:	1st quarter	622.9	451.8	148.7	471.6	330.2	125.5	151.3	121.6	23.2	96.8	66.6	27.2	127.3	95.2	25.6	226.0	173.7	45.4	172.8	116.4	50.4
	2nd quarter	667.6	504.8	140.5	501.9	366.7	119.2	165.7	138.1	21.3	95.4	72.0	20.7	150.1	113.5	29.9	242.6	193.4	42.4	179.5	125.9	47.4
	$3 \mathrm{3rd}$ quarter.	664.0	511.5	132.2	491.6	364.5	112.3	172.5	147.0	19.9	91.7	70.2	19.1	155.5	116.9	32.5	239.1	196.0	37.6	177.8	128.5	43.0
	4th quarter.				453.1	336.8	104.2	159.4	135.8	18.7	81.4	62.7	16.8	137.8	104.2	28.4	228.4	186.1	38.0	164.8	119.7	39.6
1993:	1st quarter	600.9	471.1	111.7	451.6	344.0	94.7	149.3	127.1	17.0	76.9	58.9	16.0	130.4	101.9	22.9	234.8	192.6	37.5	158.8	117.7	35.4
	2nd quarter	675.3	542.5	112.7	513.1	401.8	96.9	162.2	140.7	15.8	86.0	68.1	16.0	153.0	120.2	26.4	265.7	223.8	36.5	170.6	130.5	33.9
	3 rd quarter .	707.6	572.4	114.4	538.5	423.7	100.0	169.1	148.7	14.4	94.3	76.1	16.2	161.9	129.6	25.6	271.1	228.0	37.1	180.3	138.7	35.5
	4 th quarter.	680.1	543.0	118.2	521.0	404.7	102.9	159.1	138.3	15.3	89.3	72.5	14.8	154.4	119.0	29.2	265.4	219.1	40.9	170.9	132.4	33.3
1994:	1st quarter	695.6	551.1	126.8	542.5	418.6	111.5	153.0	132.5	15.3	84.9	65.9	17.0	148.5	116.1	27.1	286.5	231.5	49.4	175.6	137.7	33.3
	2nd quarter	776.8	608.9	150.5	605.0	459.4	132.8	171.7	149.4	17.7	96.8	77.5	17.4	176.3	139.4	31.5	316.9	245.9	65.7	186.7	146.0	36.0
	3rd quarter.	806.0	621.2	164.7	625.5	464.3	146.7	180.5	156.8	17.9	96.6	77.8	16.7	185.0	144.0	34.5	330.3	250.6	74.0	194.1	148.7	39.4
	4th quarter	762.2	557.8	182.5	597.6	417.9	163.9	164.5	139.9	18.5	96.3	77.0	17.2	173.5	128.1	38.2	312.1	223.4	82.8	180.3	129.2	44.3
1995:	1 st quarter	732.3	520.5	190.9	584.5	396.7	172.5	147.8	123.7	18.4	88.7	69.9	16.7	155.3	111.4	37.6	310.6	216.3	87.9	177.7	122.9	48.7
	2nd quarter	775.7	551.4	202.4	617.6	417.2	184.3	158.0	134.2	18.2	94.7	73.2	19.4	162.0	121.4	33.8	327.2	226.3	94.3	191.7	130.5	54.9
	3 rd quarter .	813.4	584.7	206.8	645.3	441.8	187.3	168.1	143.0	19.5	94.4	76.4	16.1	172.8	131.4	34.2	343.1	237.9	98.8	203.0	139.0	57.7
	4th quarter.	775.9	547.2	207.7	620.1	417.0	187.4	155.8	130.2	20.3	86.3	70.1	14.3	172.0	125.0	40.2	331.4	226.7	98.5	186.3	125.3	54.8
1996:	1st quarter	772.8	544.0	209.9	620.5	417.2	189.2	152.3	126.8	20.7	82.6	66.8	13.8	164.5	121.0	37.3	335.7	231.4	98.5	190.0	124.8	60.2
	2nd quarter	845.1	610.5	208.0	672.9	465.2	188.1	172.2	145.3	19.8	90.4	74.2	13.5	183.6	141.5	32.9	363.2	257.9	97.6	208.0	136.9	64.1
	3 rd quarter .	858.9	624.5	209.1	680.0	473.2	188.3	178.9	151.3	20.9	93.7	76.7	14.3	193.4	150.3	34.1	364.4	259.2	98.2	207.5	138.3	62.5
	4th quarter.	792.3	550.0	214.3	629.9	417.2	191.6	162.4	132.9	22.7	85.2	68.1	14.0	178.0	128.7	39.4	337.6	230.3	99.5	191.4	122.9	61.3
1997:	1st quarter	772.9	530.7	216.0	625.5	411.5	194.2	147.4	119.2	21.8	77.8	60.2	14.6	164.9	119.5	36.2	336.6	223.4	105.9	193.6	127.6	59.3
	2nd quarter	845.0	579.7	239.3	680.0	446.0	214.6	165.0	133.8	24.7	82.2	63.1	16.2	185.5	134.9	41.6	367.1	242.4	116.9	21.1	139.3	64.6
	3 rd quarter.	877.0	605.2	245.5	703.0	461.8	221.5	174.0	143.3	24.0	86.7	65.7	18.0	190.9	143.9	37.9	380.4	248.7	123.7	219.0	146.9	65.8
	4th quarter ${ }^{\text {r }}$.	846.2	554.2	260.5	683.2	426.2	235.2	163.0	128.0	25.2	86.9	63.1	20.7	182.2	127.1	42.3	364.3	226.4	129.1	212.7	137.6	68.4
AVERAGE RELATIVE STANDARD ERRORS ${ }^{3}$																						
End of period . (percent). .		1	2	2	1	1	2	4	5	8	3	3	7	4	4	8	2	3	3	2	3	2
${ }^{\text {P}}$ Preliminary. $\quad{ }^{\text {r }}$ Revised.																						
	opolitan statistica des units under con age Relative Stan	reas. struction ard Errors	in struct	ures with	wo to fo	units.	iod (qua	er 1 thro	gh quar	er 2 or q	arter 3	rough q	arter 4).									

Appendix

DEFINITIONS

One-unit structures are defined as completed when all finish flooring has been installed (or carpeting, if used in place of finish flooring). If the building is occupied before all construction is finished, it is classified as completed at the time of occupancy. In buildings with two or more housing units, all the units in the building are counted as completed when 50 percent or more of the units are occupied or available for occupancy. All units in a residential building are counted as started when excavation is started for the footings or foundations of the building. Beginning with statistics for September 1992, estimates of housing starts include units in residential structures being totally rebuilt on an existing foundation. Housing units are counted as under construction between start and completion, as defined above.

A housing unit is a single room or group of rooms intended for occupancy as separate living quarters by a family, by a group of unrelated persons living together, or by a person living alone. Separate living quarters are those in which the occupants do not live and eat with any other persons in the structure and which have direct access from the outside of the building or through a common hall which is used or intended to be used by the occupants of another unit or by the general public.

A housekeeping residential building is one consisting primarily of housing units. New housing units exclude group quarters (such as dormitories and rooming houses), transient accommodations (such as transient hotels, motels, and tourist courts), mobile homes (trailers), moved or relocated buildings, and housing units created in an existing residential or nonresidential structure. However, in a building combining substantial residential and nonresidential floor areas, every effort is made to include the residential units in these statistics, even though the primary function of the entire building is for nonresidential purposes.

Housing units, as distinguished from mobile homes, include conventional "stick-built" units, prefabricated, panelized, componentized, sectional, and modular units.

Housing completions exclude dormitories and rooming houses, and transient accommodations such as transient hotels, motels, and tourist courts. Mobile homes (trailers) are also excluded.

The standard census geographic regions are used in the tables of this report. States contained in each region are as follows: Northeast - Maine, New Hampshire, Vermont,

Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania; Midwest - Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas; South - Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas; West - Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska, and Hawaii.

The distribution of housing completions between units inside and outside metropolitan statistical areas (MSAs) is based on definitions published by the Office of Management and Budget in Metropolitan Statistical Areas. Data for the period beginning January 1994 are based on the 1992 definitions, as amended June 1993; data for the period January-December 1993 are based on the 1992 definitions; data for January 1984-December 1992 are based on the 1974 definitions, as amended June 1983; data for January 1976-December 1983 are based on the 1974 definitions, as amended August 1975; data for January 1975-December 1975 are based on the 1967 definitions, as amended April 1974; data for January 1974-December 1974 are based on the 1967 definitions, as amended November 1973; data for April 1973-December 1973 are based on the 1967 definitions, as amended February 1973; data for April 1968-March 1973 are based on the 1967 definitions.

SAMPLE DESIGN AND SELECTION

The sample design for the Survey of Construction (SOC) is a stratified multistage cluster design derived from the Current Population Survey (CPS), 1980 design. Each state was divided into areas made up of counties (towns in New England) and independent cities. These areas were grouped within each state to form strata for the CPS according to metropolitan status and the 1980 labor force, race/ethnic origin, population change, and family and housing characteristics. One area from each of the strata was selected with probability proportional to the number of persons 16 years of age and older. The CPS strata were further stratified into 169 strata according to census region, metropolitan status, building permit activity in 1982, population, and the percent of the population in areas which do not issue permits. One of the CPS selected areas was chosen from each of these 169 strata with probability proportional to the number of persons 16 and older.

Within each of these 169 areas, the sample was selected from two different sample frames: permit-issuing places and land areas not covered by building permit systems.

Each of the 17,000 permit-issuing places was assigned to one of six size classes based on a weighted average of 1978, 1981, and 1982 permit activity. The permit places in each of the 169 areas were grouped into these six size classes and a systematic sample of places was selected from each one of them. Places were selected at different sampling rates in each of the classes so that larger proportions of the places were selected from the larger size classes. For example, all places in the largest size classes fell into sample if they were in the 169 areas, whereas, only an expected 1 in 40 of the places in the smallest size class fell into sample. Approximately 840 permit-issuing places were selected.

Monthly, census field representatives sample permits from these 840 permit-issuing places. They select permits for one-to-four-unit buildings with probability proportional to the number of units at an overall rate of 1 in 40 . All permits for buildings with five units or more are selected.

Within each of the 169 areas, the land not covered by building permit systems, called nonpermit areas, was identified. Small land areas (1980 Census enumeration districts) in these nonpermit areas were grouped into two strata according to the 1980 population. Overall, 1 out of every 120 land areas was selected from the strata with the larger areas and 1 out of 600 was selected from the strata with the smaller areas. Monthly, census field representatives intensively canvassed about 130 selected land areas looking for all housing units started.

In January 1995, the area covered by building permit systems was expanded to 19,000 pemit-issuing places. Canvassing was stopped in those selected land areas now represented by permit-issuing places. Census field representatives continue to canvass monthly about 70 land areas still not covered by building permit systems.

HOUSING COMPLETIONS AND UNDER CONSTRUCTION COMPILATION

The housing completions and under construction series is a product of the housing starts survey and the compilation is basically the same as that used for housing starts.

1. An estimate is made monthly of the number of housing units for which building permits have been issued in all 19,000 permit-issuing places. The estimate of building permit authorizations is based on a sample of 8,300 of these 19,000 jurisdictions.
2. For each permit selected in the 840 permit-issuing places, inquiries are made of the owners or builders of units that are under construction to determine if these units have been completed. For those units not completed, inquiries are made in successive months to determine when they are completed. Ratios are then
calculated (by type of structure) of the number of units completed and under construction to the number of units covered by permits. Separate ratios are calculated for units authorized from permits of that month and each preceding month. These ratios are then applied to the appropriate estimate of the number of units authorized by permits in the corresponding months to provide estimates of the total number of units completed and under construction for each month of authorization.
3. Having produced estimates of the number of units completed and under construction with permit authorization, an upward adjustment of 3.3 percent is made to the number of one-unit structures (single-family houses) to account for those units built within permitissuing areas but without permit authorization. (A study spanning a four-year period indicated that permits were obtained for all buildings with two housing units or more.) For housing completions, upward imputations are also made to account for late reports.
4. The total estimates of housing completions and under construction include estimates of the number of units completed and under construction in areas where building permit systems do not exist. All buildings within the sampled nonpermit areas are followed up for completion information provided by the owners, builders, or site inspection and weighted appropriately.

HOUSING COMPLETIONS AND UNDER CONSTRUCTION, BY TYPE OF STRUCTURE

A total of 14 different sets of rates that change from month to month are utilized to calculate the number of housing units completed and under construction (by type of structure) in permit places. Eight sets of rates are used for one-unit structures: separate sets of rates for metropolitan and nonmetropolitan areas within each of the four regions. For structures with five units or more, separate sets of rates are used for each of the four regions. Single sets of rates are used for all regions for structures with two units and for structures with three and four units.

Housing completions and under construction estimates (by type of structure) in nonpermit areas are calculated directly in the estimating procedure described above.

RELIABILITY OF DATA

The various estimates of privately owned housing units completed and under construction which are shown in this publication are based on sample surveys and may differ from statistics which would have been obtained from a complete census using the same schedules and procedures. An estimate based on a sample survey is subject to both sampling error and nonsampling error. The accuracy of a survey result is determined by the joint effects of these errors.

Measures of Sampling Errors

Sampling error reflects the fact that only a particular sample was surveyed rather than the entire population. Each sample selected for this survey is one of a large number of similar probability samples that, by chance, might have been selected under the same specifications. Estimates derived from the different samples would differ from each other. The standard error, or sampling error, of a survey estimate is a measure of the variation among the estimates from all possible samples and, thus, is a measure of the precision with which an estimate from a particular sample approximates the average from all possible samples.

Estimates of the standard errors have been computed from the sample data for selected statistics in this report. They are presented in the tables in the form of average relative standard errors. The relative standard error equals the standard error divided by the estimated value to which it refers.

The sample estimate and an estimate of its standard error allow us to construct interval estimates with prescribed confidence that the interval includes the average result of all possible samples with the same size and design. For example, suppose Table 1 of this report showed that an estimated 110,000 units in one-unit structures were completed in a particular month. Further, suppose that the average relative standard error of this estimate is 3 percent. Multiplying 110,000 by 0.03 , we obtain 3,300 as the standard error. This means that we are confident, with 2 chances out of 3 of being correct, that the average estimate from all possible samples of one-unit structures completed during the particular month is between 113,300 and 106,700 units. To increase the probability to about 9 chances out of 10 that the interval contains the average value over all possible samples (this is called a 90 -percent confidence interval), multiply 3,300 by 1.6 yielding limits of 115,280 and 104,720 (110,000 units plus or minus 5,280 units). The average estimate of one-unit structures completed during the specified month may or may not be contained in any one of these computed intervals; but for a particular sample, one can say that the average estimate from all possible samples is included in the constructed interval with a specified confidence of 90 percent.

Ranges of 90-percent confidence intervals for estimated percent changes are shown in the text. When the range of the confidence interval contains zero, it is unclear whether there was an increase or decrease; that is, the change is not statistically significant.

Nonsampling Errors

As calculated for this report, the coefficient of variation estimates sampling variation but does not measure all nonsampling error in the data. Nonsampling error consists
of both a variance component and a bias component. Bias is the difference, averaged over all possible samples of the same size and design, between the estimate and the true value being estimated. Nonsampling errors are usually attributed to many possible sources: (1) coverage error failure to accurately represent all population units in the sample, (2) inability to obtain information about all sample cases, (3) response errors, possibly due to definitional difficulties or mis- reporting, (4) mistakes in recording or coding the data obtained, and (5) other errors of coverage, collection and nonresponse, response, processing, or imputing for missing or inconsistent data. These nonsampling errors also occur in complete censuses. Although no direct measures of these errors have been obtained, precautionary steps were taken in all phases of the collection, processing, and tabulation of the data to minimize their influence.

As described in the section, "Housing Completions and Under Construction Compilation," a potential source of bias is the upward adjustment of 3.3 percent made to account for one-unit structures completed and under construction in permit-issuing areas without permit authorization. Another source is the imputation for late-reported completions. The final estimates of housing units completed are imputed about 1 percent.

SEASONAL ADJUSTMENT

For analyzing general trends in the economy, seasonally adjusted data are usually preferred since seasonal adjustment eliminates the effects of changes that normally occur at about the same time and in about the same magnitude every year. For example, suppose that the normal month-to-month change in an unadjusted series between February and March was an increase of 20 percent. Then an increase in the unadjusted series of less than 20 percent would be viewed as a decrease in the seasonally adjusted series; an increase of exactly 20 percent would be viewed as no change in the adjusted series; and an increase of more than 20 percent would be viewed as an increase in the adjusted series.

The recurring changes in a series that are removed by seasonal adjustment result from such factors as normal changes in weather and differing lengths of months. It should be emphasized that seasonal adjustment does not account for abnormal weather conditions or for year-toyear changes in weather.

The seasonally adjusted housing completions series in this report is shown as a seasonally adjusted annual rate (SAAR). A SAAR is the seasonally adjusted monthly rate multiplied by 12. The seasonal adjustment indexes shown in this publication have been developed using the X -11ARIMA, a modification of the $\mathrm{X}-11$ Census Method II seasonal adjustment program. The computation of the monthly seasonal indexes uses trading-day adjustment factors to account for different patterns of activity among days of the week and the variation in the number of times each day of the week occurs in each particular month.

The X-11-ARIMA program also gives summary statistics which are used in determining the adequacy of the seasonal adjustment. These statistics are summarized in table A-3. A brief definition of each statistic is given below the table. A description of the X-11-ARIMA version appears in "The X-11-ARIMA Seasonal Adjustment Method," by Estela Bee Dagum, Statistics Canada. This publication is available from Statistics Canada, 25-A Coats Building, Ottawa, Ontario, K1A0T6. A description of the test for the impact of trading days is found in Bureau of the Census Technical Paper No. 12, "Estimating Trading-Day Variation in Monthly Economic Time Series" (1967). This paper is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

An assumption underlying the seasonal adjustment process is that the original series can be separated into a seasonal component, a trading-day component, a trendcycle component, and an irregular component. The seasonally adjusted series consists of the trend-cycle and irregular components taken together. The trend-cycle component includes the long-term trend and the business cycle. The irregular component is made up of residual variations, such as the sudden impact of political events and the effects of strikes, unusual weather conditions, reporting and sampling errors, etc.

Seasonal indexes are developed concurrently each month for total private housing completions and under construction, by region and by type of structure. With the concurrent seasonal adjustment procedure, each series is run through the X-11-ARIMA program each month as new data become available. The seasonally adjusted U.S. total is the sum of six seasonally adjusted components: single family structures in each of the four regions, U.S. total for
two-to-four-unit structures, and U.S. total for structures with five units or more. Also, the unadjusted data for the four regions are seasonally adjusted and subsequently modified so that the seasonally adjusted U.S. total derived from the regions equals the seasonally adjusted U.S. total derived from the structures. The seasonal indexes for private housing completions shown in Table A-1 and for housing under construction in Table A-2 include trading-day adjustment factors which were estimated internally by the regression routine.

CENSUS BUREAU CONSTRUCTION REPORTS AND RELATED PUBLICATIONS

Current Construction Reports, Series C20: Housing Starts (monthly).

Current Construction Reports, Series C21: New Residential Construction in Selected Metropolitan Statistical Areas (quarterly).

Current Construction Reports, Series C25: New OneFamily Houses Sold and For Sale (monthly).

Current Construction Reports, Series C30: Value of New Construction Put in Place (monthly).

Current Construction Reports, Series C50: Expenditures for Residential Improvements and Repairs (quarterly).

Construction Review: A quarterly publication of the International Trade Administration, U.S. Department of Commerce.

Table A-1. Seasonal Indexes Used to Adjust Housing Units Completed

Period	United States implicit index ${ }^{1}$	In structures with-						All units			
		1 unit				2 to 4 units	5 units or more	Northeast	Midwest	South	West
		Northeast	Midwest	South	West						
$1995{ }^{\text {r }}$											
January	84.5	90.8	80.3	85.0	88.1	84.1	80.7	92.1	77.1	85.7	85.8
February	79.8	83.2	71.4	83.4	81.4	80.9	78.1	82.6	73.6	82.8	82.4
March .	89.3	80.4	77.6	98.5	90.2	98.3	86.2	77.6	78.9	95.7	90.4
April.	90.8	81.9	88.5	90.5	92.6	100.5	94.9	82.5	95.6	92.4	92.4
May.	97.6	95.8	94.1	99.2	100.8	94.5	96.1	101.1	90.7	100.1	99.2
June	105.1	101.7	105.2	103.1	103.2	97.8	116.7	103.2	106.7	102.9	100.9
July	102.5	97.0	100.2	101.6	99.5	107.4	110.4	101.1	99.8	100.2	103.9
August.	109.5	103.5	110.3	107.3	106.4	108.2	120.2	102.6	118.1	112.3	107.7
September.	108.4	109.2	116.8	106.8	109.0	106.8	103.2	105.0	116.1	106.7	106.3
October..	112.7	123.7	122.0	111.3	110.4	101.3	107.1	123.5	117.2	110.6	110.5
November	102.3	112.0	116.2	97.8	102.3	113.9	93.6	111.0	111.9	98.6	101.6
December	115.3	118.5	116.5	115.1	115.4	105.0	113.6	115.9	115.9	110.5	118.3
$1996{ }^{\text {r }}$											
January	84.0	88.6	80.3	85.0	88.1	83.5	79.7	88.8	75.2	86.6	85.6
February	83.1	87.6	74.6	86.0	84.5	85.5	81.3	88.5	80.3	86.2	85.4
March	89.9	81.7	78.0	98.8	89.8	99.4	85.0	76.0	79.0	94.6	89.8
April.	91.3	86.2	88.8	91.0	92.6	101.2	94.4	88.9	89.1	94.1	92.3
May	97.8	91.2	94.1	99.4	101.6	94.6	96.7	100.3	94.9	98.1	100.0
June	105.5	101.7	104.7	102.5	103.6	95.2	116.8	96.4	110.0	103.1	101.1
July	102.2	97.5	99.7	101.0	99.0	106.2	110.9	104.2	93.9	101.7	103.6
August...	109.5	104.1	109.9	107.0	106.3	108.1	119.7	102.3	118.3	109.0	108.0
September.	108.2	110.4	116.5	106.7	107.3	108.2	102.3	107.0	114.7	107.0	105.5
October .	112.7	119.3	121.9	110.9	110.5	99.1	108.0	119.7	122.5	112.3	110.4
November	103.5	113.5	116.9	98.7	102.8	114.4	93.5	111.9	107.7	97.2	101.9
December	116.3	124.6	116.5	115.9	116.1	106.0	115.1	123.0	113.2	113.8	118.6
$1997{ }^{\text {r }}$											
January	83.5	83.9	80.3	84.8	88.1	83.2	79.0	86.6	78.8	84.9	85.4
February	80.1	83.8	72.1	82.5	81.9	84.0	78.2	85.0	75.0	82.4	82.8
March	90.1	85.2	78.2	98.9	89.7	100.9	84.3	76.0	78.8	96.1	89.6
April.	91.2	81.7	89.0	91.5	92.2	102.7	94.1	83.8	92.2	94.6	92.2
May.	98.3	95.6	94.3	99.4	102.2	94.6	97.8	102.1	97.7	98.3	100.8
June	104.5	103.3	104.4	102.2	103.4	91.7	115.8	100.4	103.4	102.4	100.9
July	101.7	96.6	99.5	100.8	99.0	104.9	111.5	103.8	100.8	101.9	103.5
August....	109.0	101.5	109.5	106.5	106.2	108.2	119.2	99.8	115.4	107.0	107.9
September.	108.3	115.8	116.5	106.7	106.4	109.8	102.2	113.1	111.9	109.4	104.8
October.	111.7	113.7	121.4	110.7	110.5	96.4	108.6	116.5	118.8	109.2	110.2
November	103.4	112.3	117.6	99.4	103.4	115.1	93.5	109.1	113.6	98.8	102.4
December	116.5	122.2	116.6	116.4	116.4	108.0	115.5	120.2	111.0	114.6	119.0
1998											
January ${ }^{\text {P }}$	83.7	88.3	80.4	84.5	88.1	82.9	78.7	87.6	81.5	85.2	85.0

${ }^{\text {ppreliminary. }}$ 'Revised.
${ }^{1}$ The implicit seasonal index is the ratio of the unadjusted number of housing units completed in the United States to the seasonally adjusted national total of housing units completed. It provides an indication of the overall seasonality for the particular month.

Note: These seasonal indexes include trading-day adjustment factors.

Table A-2. Seasonal Indexes Used to Adjust Housing Units Under Construction

Period	United States implicit index ${ }^{1}$	In structures with-						All units			
		1 unit				2 to 4 units	5 units or more	Northeast	Midwest	South	West
		Northeast	Midwest	South	West						
$1995{ }^{\text {r }}$											
January	94.9	96.0	91.8	93.8	94.1	96.7	98.4	95.8	93.4	95.1	95.3
February	92.8	91.2	86.6	93.8	91.2	95.2	97.0	93.0	89.0	94.9	92.8
March	95.0	91.6	90.4	95.5	95.1	96.6	98.1	93.2	91.6	96.1	95.9
April.	98.2	95.2	94.5	99.5	98.8	97.9	100.1	96.6	95.5	99.8	99.2
May.	100.8	98.0	99.9	102.0	100.4	98.4	101.9	98.4	100.0	102.6	100.5
June	102.2	101.5	103.1	103.0	102.5	102.7	100.8	102.0	102.2	102.8	102.1
July	103.4	105.1	106.2	104.0	104.4	100.3	100.6	103.8	105.1	103.5	103.0
August.	104.4	105.9	108.3	104.5	106.3	102.9	100.4	104.9	106.3	103.5	104.4
September.	104.3	105.9	108.5	104.4	105.7	103.0	99.9	105.1	105.8	103.0	104.8
October.	103.9	105.3	108.1	102.7	104.6	103.2	101.5	104.6	106.6	101.7	104.4
November	101.8	103.9	104.5	101.0	101.1	102.9	100.8	104.0	104.8	100.2	100.7
December	97.1	99.4	97.4	95.2	95.1	99.6	99.6	98.2	99.0	96.0	95.9
$1996{ }^{\text {r }}$											
January.	95.2	95.8	92.2	94.0	94.1	96.9	98.6	95.5	93.6	95.3	95.1
February	96.4	94.4	89.8	97.1	94.6	98.4	100.6	96.1	92.5	98.3	96.3
March	94.8	91.9	90.4	95.3	95.0	96.6	98.0	93.1	91.8	96.0	95.8
April.	98.2	95.5	94.4	99.3	98.8	97.6	100.0	97.1	95.2	99.6	99.4
May.	100.8	98.3	99.2	101.8	100.3	98.2	101.9	98.5	99.7	102.4	100.6
June	101.8	100.8	102.8	102.8	102.4	102.8	100.9	101.2	101.9	102.6	102.4
July	103.6	105.3	106.2	104.0	104.4	100.1	100.5	104.1	104.8	103.6	103.0
August. . .	104.6	106.4	108.2	104.5	106.1	102.9	100.3	105.2	106.1	103.5	104.3
September.	104.2	105.8	108.9	104.5	105.9	102.8	99.9	105.0	105.7	103.2	104.6
October	103.8	105.0	108.7	102.9	104.8	103.3	101.2	104.1	106.8	101.8	104.6
November	101.9	103.8	104.3	101.1	101.2	103.3	101.0	104.3	104.9	100.3	100.8
December	97.0	99.1	97.4	95.2	94.9	100.0	99.6	98.1	99.4	96.0	95.6
$1997{ }^{\text {r }}$											
January	95.2	95.9	92.4	94.2	94.1	96.9	98.7	95.6	93.8	95.4	94.8
February	93.1	91.3	86.9	93.7	91.4	94.8	97.3	92.8	89.4	94.8	93.2
March	94.9	91.9	90.3	95.2	95.0	96.6	98.0	93.0	91.8	96.0	95.6
April.	98.3	95.6	94.3	99.3	98.8	97.4	99.9	97.4	95.1	99.4	99.4
May.	100.6	98.4 100.4	98.9	101.8	100.2	98.2	101.9	98.5	99.6	102.3	100.7
June	102.0	100.4	102.6	102.7	102.4	102.8	100.9	100.7	101.7	102.5	102.6
July ..	103.5	105.4	106.2	103.9	104.3	100.0	100.5	104.2	104.6	103.6	103.0
August....	104.3	106.7	108.1	104.5	106.0	102.8	100.2	105.3	106.1	103.6	104.3
September.	104.0 103.9	105.9 104.8	109.2	104.6	105.9 105.0	102.7 103.4	99.9 101.1	105.1 103.8	105.7 107.0	103.3	104.5
November	101.8	103.8	104.0	101.1	101.3	103.6	101.2	104.5	104.9	100.4	100.9
December	97.3	98.9	97.4	95.2	94.8	100.2	99.6	98.1	99.5	96.0	95.6
1998											
January ${ }^{\text {p }}$	95.5	96.0	92.4	94.3	94.0	97.0	98.8	95.6	93.9	95.5	94.7

PPreliminary. 'Revised.
${ }^{1}$ The implicit seasonal index is the ratio of the unadjusted number of housing units under construction in the United States to the seasonally adjusted national total of housing units under construction. It provides an indication of the overall seasonality for the particular month.

Note: These seasonal indexes include trading-day adjustment factors.

Table A-3. Average Percent Changes and Related Measures for Monthly Private Housing Units Completed and Under Construction

Definitions of Summary Measures

The following are brief definitions of the measures shown here. More complete explanations appear in Electronic Computers and Business Indicators by Julius Shiskin, issued as Occasional Paper 57 by the National Bureau of Economic Research, 1957 (reprinted from the Journal of Business, October 1957).
\mathbf{O} is the average month-to-month percentage change, without regard to sign, in the original series.
$\mathbf{C I}$ is the average month-to-month percentage change, without regard to sign, in the seasonally adjusted series.
I is the average month-to-month percentage change, without regard to sign, for the irregular component, which is obtained by dividing the cyclical component into the seasonally adjusted series.
\mathbf{C} is the average month-to-month percentage change, without regard to sign, in the cyclical component. \mathbf{C} is a smooth, flexible moving average of the seasonally adjusted series.
I/C is the average month-to-month percentage change, without regard to sign, of the irregular component divided by the average month-to-month percentage change, without regard to sign, of the cyclical component. It serves as an indication of the series' relative smoothness (small values) or irregularity (large values).

MCD (months for cyclical dominance) gives an estimate of the appropriate time span over which to observe cyclical movement in a monthly series. In deriving MCD, the average (without regard to sign) percentage changes in the irregular and in the cyclical component are computed for 1-month spans (Jan.-Feb., Feb.-Mar., etc.), 2-month spans (Jan.-Mar., Feb.-Apr., etc.), up to 5 -month spans. MCD is the shortest span for which the average change (without regard to sign) in the cyclical component is larger than the average change (without regard to sign) in the irregular component; thus, it indicates the point at which fluctuations begin to be more attributable to cyclical than to irregular movements. MCD is small for smooth series and large for erratic series.

MONTHLY REVISIONS TO ESTIMATES

Each month the Census Bureau publishes preliminary estimates of Housing Completions. The Census Bureau releases these estimates to provide government and private data users with early measures of new privately owned residential construction activity. A necessary part of the process of issuing these early data involves the issuance of subsequent revisions. The revisions to monthly housing completions are primarily the result of the replacement of imputed data with data which are reported in subsequent months.

For total housing completions, the range of the difference between the last 12 preliminary and first revision estimates for the same months was from 0.15 percent to 3.85 percent, with a median of 1.31 percent. The range of the difference between preliminary and final estimates was from 0.59 percent to 5.07 percent, with a median of 1.47 percent.

Analysis of Revisions to Monthly Seasonally Adjusted Estimates of Housing Completions

Series	Percent changes between estimates- last 12 months					
	First revision versus preliminary			Final versus preliminary		
	Range		Median	Range		Median
	From	To		From	To	
HOUSING COMPLETIONS						
U. S. total. .	-1.15	3.85	1.40	-0.50	4.32	1.36
In structures with-						
1 unit.	-0.70	4.07	1.75	-1.39	4.71	1.56
2 to 4 units.	-8.00	5.56	-3.49	-12.00	6.25	-5.61
5 units or more.	-5.17	4.92	1.00	-7.85	8.61	1.61
Northeast.	-2.86	13.99	1.65	-7.14	18.86	3.33
Midwest.	-2.65	7.01	1.84	-4.30	5.43	3.90
South .	-1.42	3.13	0.86	-2.61	3.73	1.12
West.	-2.02	5.40	2.10	-2.31	5.71	2.61

[^0]: NA Not available. pPreliminary. rRevised.

