Water Reuse and Remediation Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Assessment of Salinity and Irrigation/Drainage Practices
Development of an Integrated Methodology for Assessing and Controlling Salinity
Salinity Assessment Resources
 

Research Project: SALINITY AND TRACE ELEMENTS ASSOCIATED WITH WATER REUSE IN IRRIGATED SYSTEMS: PROCESSES, SAMPLING PROTOCOLS, AND SITE-SPECIFIC MANAGEMENT

Location: Water Reuse and Remediation

Title: LEACHING REQUIREMENT: STEADY-STATE VS. TRANSIENT MODELS

Authors
item Corwin, Dennis
item Rhoades, J - AGR SALINITY CONSULTING
item Simunek, J - UC, RIVERSIDE

Submitted to: Book Chapter
Publication Type: Book/Chapter
Publication Acceptance Date: December 31, 2007
Publication Date: N/A

Technical Abstract: When water is extracted by plants, salts are left behind. These salts can accumulate in the lower portion of the root zone if insufficient water is applied to remove the salts by leaching. Under these low leaching conditions salts can accumulate to levels that reduce plant productivity. The concept of leaching requirement (LR) was developed as an irrigation management strategy to control soil salinity. The LR was originally defined by the U.S. Salinity Laboratory in 1954 as the minimum fraction of the irrigation water that is needed to leach salts to a level that will not significantly reduce crop yield and was quantitatively formulated as the salinity level of the irrigation water divided by the maximum permissible salinity level of the drainage water. The original LR model is based on steady-state conditions (i.e., water content and salinity do not change over time), which do not generally exist, and does not account for a variety of processes that influence LR including irrigation non-uniformity, precipitation-dissolution reactions, transient root water uptake distributions, preferential flow, climate, runoff, extraction of shallow groundwater, and leaching from effective precipitation. Even though there are numerous weaknesses in the original LR model, it is still widely used by farmers, extension specialists, irrigation district managers, and even research scientists. Information is presented that brings the use of the original LR model into question, suggesting that a new paradigm is needed. Simulations using transient models, which account for processes influencing LR, show that the use of the original LR model results in the over application of irrigation water and increased drainage volumes. The use of more sophisticated transient LR models that account for influencing processes will significantly reduce irrigation water needs and drainage water volumes. It is estimated that the valley-wide LR for Imperial Valley can be reduced from 0.13 to 0.08, resulting in an estimated reduction in drainage volume of 1.23 x 108 m3 or 100,000 ac-ft.

   

 
Project Team
Suarez, Donald
Suarez, Donald
Corwin, Dennis
Goldberg, Sabine
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Availability and Water Management (211)
 
Related Projects
   IDENTIFYING SOURCES OF SALT AND WATER IN GRAND VALLEY, COLORADO
   SPATIAL DATA INFRASTRUCTURE TO IMPLEMENT AND MONITOR NON POINT SOURCE POLLUTION MANAGEMENT IN IMPERIAL VALLEY, CA
   IMPACT OF LOW QUALITY WATERS ON SOIL PROPERTIES
   SPATIO-TEMPORAL ASSESSMENT OF A NUTRIENT MANAGEMENT PLAN FOR FIELD-SCALE LAGOON WATER APPLICATION AT SCOTT BROTHERS DAIRY, SAN JACINTO, CA
   THE REGENTS OF THE UNIVERSITY OF CALIFORNIA AT RIVERSIDE AND USDA-ARS U.S. SALINITY LABORATORY NON-FUNDED MEMORANDUM OF UNDERSTANDING
   RESPONSE OF STRAWBERRY CVS, VENTANA AND CAMAROSA TO SALINITY AND CHLORIDE CONCENTRATION IN IRRIGATION WATER
   EDITOR OF JOURNAL OF ENVIRONMENTAL QUALITY
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House