Water Reuse and Remediation Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Assessment of Salinity and Irrigation/Drainage Practices
Development of an Integrated Methodology for Assessing and Controlling Salinity
Salinity Assessment Resources
 

Research Project: SALINITY AND TRACE ELEMENTS ASSOCIATED WITH WATER REUSE IN IRRIGATED SYSTEMS: PROCESSES, SAMPLING PROTOCOLS, AND SITE-SPECIFIC MANAGEMENT

Location: Water Reuse and Remediation

Title: Short-term sustainability of drainage water reuse: Spatio-temporal impacts on soil chemical properties

Authors
item Corwin, Dennis
item Lesch, Scott - UNIV CALIFORNIA RIVERSIDE
item Oster, James - UNIV CALIFORNIA RIVERSIDE
item Kaffka, Stephen - UNIV CALIFORNIA DAVIS

Submitted to: Journal of Environmental Quality
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: December 10, 2007
Publication Date: August 1, 2008
Reprint URL: http://www.ars.usda.gov/SP2UserFiles/Place/53102000/pdf_pubs/P2188.pdf
Citation: Corwin, D.L., Lesch, S.M., Oster, J.D., Kaffka, S.R. 2008. Short-term sustainability of drainage water reuse: Spatio-temporal impacts on soil chemical properties. Journal of Environmental Quality. Vol. 37:S8-S24

Interpretive Summary: Greater urban demand for finite water resources, increased frequency of drought resulting from erratic weather, and increased pressure to reduce drainage water volumes have intensified the need for drainage water reuse in arid and semi-arid agricultural areas. Drainage water reuse would be particularly useful on the west side of California¿s San Joaquin Valley (WSJV) where no drainage water disposal outlet exists. To dispose of drainage water evaporation ponds are used, which could remove as much as 34,000 ha of land from productivity in the WSJV. A 10-year study has been developed to determine if the quality and productivity of forage grown on previously low-productivity, saline-sodic soils of the WSJV can be maintained at sufficiently high levels to be sustainable when irrigated with drainage water. A preliminary short-term (5 yr) evaluation is made of the sustainability of drainage water reuse from the perspective of the impact on soil chemical properties crucial to the soil¿s intended use of producing forage for livestock. Results of the preliminary evaluation are very positive. Drainage water reuse is shown to not only reduce drainage volumes thereby mitigating the need for non-productive evaporation ponds, but an alternative water resource asset becomes available that can be used to economic advantage by reclaiming non-productive saline-sodic soils and bringing them back into agricultural production. Even though the extrapolation of short-term results points to a positive prognosis, the long-term sustainability (i.e., 10 years or more) of drainage water reuse in California¿s Central Valley needs to be evaluated because of the potential for the slow accumulation of detrimental trace elements (i.e., molybdenum and selenium).

Technical Abstract: Greater urban demand for finite water resources, increased frequency of drought resulting from erratic weather, and increased pressure to reduce drainage water volumes have intensified the scrutiny of water used for irrigated agriculture in arid zones throughout the world. A study was initiated in 1999 on a 32.4-ha saline-sodic field (Lethent clay loam series; fine, montmorillonitic, thermic, Typic Natrargid) located on the west side of California¿s San Joaquin Valley (WSJV) with the objective of evaluating the sustainability of drainage water reuse from the perspective of impact on soil quality. A preliminary 5-year evaluation is presented. Geo-referenced measurements of apparent soil electrical conductivity (ECa) were used to direct soil sampling at 40 sites to characterize the spatial variability of soil properties (i.e., salinity, Se, Na, B, and Mo) crucial to the soil¿s intended use of growing Bermuda grass (Cynodon dactylon (l.) Pers.) for livestock consumption. Soil samples were taken at 0.3-m increments to a depth of 1.2 m at each site in August 1999, April 2002, and November 2004. Drainage water varying in salinity from 3¿5 dS m-1 has been applied to the field. An analysis of the general temporal trend shows that overall soil quality has improved with leaching of B from the top 0.6 m of soil; salinity and sodium from the top 1.2 m, but primarily from 0¿0.6 m; and Mo from the top 1.2 m. Short-term sustainability of drainage water reuse is supported by the results. However, since April 2002 Se has started to accumulate and Mo has reappeared in the surface soil indicating that continued monitoring is essential to evaluate the long-term sustainability of drainage water reuse in the WSJV.

   

 
Project Team
Suarez, Donald
Suarez, Donald
Corwin, Dennis
Goldberg, Sabine
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Availability and Water Management (211)
 
Related Projects
   IDENTIFYING SOURCES OF SALT AND WATER IN GRAND VALLEY, COLORADO
   SPATIAL DATA INFRASTRUCTURE TO IMPLEMENT AND MONITOR NON POINT SOURCE POLLUTION MANAGEMENT IN IMPERIAL VALLEY, CA
   IMPACT OF LOW QUALITY WATERS ON SOIL PROPERTIES
   SPATIO-TEMPORAL ASSESSMENT OF A NUTRIENT MANAGEMENT PLAN FOR FIELD-SCALE LAGOON WATER APPLICATION AT SCOTT BROTHERS DAIRY, SAN JACINTO, CA
   THE REGENTS OF THE UNIVERSITY OF CALIFORNIA AT RIVERSIDE AND USDA-ARS U.S. SALINITY LABORATORY NON-FUNDED MEMORANDUM OF UNDERSTANDING
   RESPONSE OF STRAWBERRY CVS, VENTANA AND CAMAROSA TO SALINITY AND CHLORIDE CONCENTRATION IN IRRIGATION WATER
   EDITOR OF JOURNAL OF ENVIRONMENTAL QUALITY
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House