Water Reuse and Remediation Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Assessment of Salinity and Irrigation/Drainage Practices
Development of an Integrated Methodology for Assessing and Controlling Salinity
Salinity Assessment Resources
 

Research Project: SALINITY AND TRACE ELEMENTS ASSOCIATED WITH WATER REUSE IN IRRIGATED SYSTEMS: PROCESSES, SAMPLING PROTOCOLS, AND SITE-SPECIFIC MANAGEMENT

Location: Water Reuse and Remediation

Title: Chemical modeling of As(III, V) and Se(IV, VI) adsorption by soils surrounding ash disposal facilities

Authors
item Goldberg, Sabine
item Hyun, Seunghun - KOREA UNIVERSITY
item Lee, Linda - PURDUE UNIVERSITY

Submitted to: Vadose Zone Journal
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: May 22, 2008
Publication Date: N/A

Interpretive Summary: Arsenic and selenium are trace elements that are toxic to animals at elevated concentrations. Toxic concentrations can occur in agricultural soils and irrigation waters. A better understanding of the adsorption behavior of this ion is necessary. Adsorption of arsenate, arsenite, selenate, and selenite by 16 soil samples surrounding ash disposal facilities was investigated under changing conditions of solution ion concentration. The adsorption behavior was evaluated and described using a chemical surface complexation model. Our results will benefit scientists who are developing models of arsenic and selenium movement in soils. The results can be used to improve predictions of arsenic and selenium behavior in soils and thus aid action and regulatory agencies in the management of soils which contain elevated concentrations of arsenic and selenium.

Technical Abstract: Leachate derived from coal ash disposal facilities is a potential anthropogenic source of arsenic and selenium to the environment. To establish a practical framework for predicting attenuation and transport of As and Se in ash leachates, the adsorption of As(III), As(V), Se(IV), and Se(VI) had been characterized in prior studies (Burns et al., 2006; Hyun et al., 2006) for 18 soils obtained down-gradient from ash landfill sites and representing a wide range of soil properties. The constant capacitance model was able to describe adsorption of these ions on all soils as a function of solution ion concentration by optimizing only one adjustable parameter, the anion surface complexation constant. This chemical model represents an advancement over adsorption isotherm equation approaches which contain two empirical adjustable parameters. Incorporation of these anion surface complexation constants into chemical speciation transport models will allow simulation of soil solution anion concentrations under diverse environmental and agricultural conditions.

   

 
Project Team
Suarez, Donald
Suarez, Donald
Corwin, Dennis
Goldberg, Sabine
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Availability and Water Management (211)
 
Related Projects
   IDENTIFYING SOURCES OF SALT AND WATER IN GRAND VALLEY, COLORADO
   SPATIAL DATA INFRASTRUCTURE TO IMPLEMENT AND MONITOR NON POINT SOURCE POLLUTION MANAGEMENT IN IMPERIAL VALLEY, CA
   IMPACT OF LOW QUALITY WATERS ON SOIL PROPERTIES
   SPATIO-TEMPORAL ASSESSMENT OF A NUTRIENT MANAGEMENT PLAN FOR FIELD-SCALE LAGOON WATER APPLICATION AT SCOTT BROTHERS DAIRY, SAN JACINTO, CA
   THE REGENTS OF THE UNIVERSITY OF CALIFORNIA AT RIVERSIDE AND USDA-ARS U.S. SALINITY LABORATORY NON-FUNDED MEMORANDUM OF UNDERSTANDING
   RESPONSE OF STRAWBERRY CVS, VENTANA AND CAMAROSA TO SALINITY AND CHLORIDE CONCENTRATION IN IRRIGATION WATER
   EDITOR OF JOURNAL OF ENVIRONMENTAL QUALITY
 
 
Last Modified: 11/04/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House