Contaminant Fate and Transport Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Detection, Survival, Transport, and Reduction of Human Pathogens from Animal Manure
Methyl Bromide
Methyl Iodide
Telone (1,3-D)
Choropicrin
Emission Reduction
Film Permeability
Pictures
 

Research Project: DECISION SUPPORT TOOLS AND DATABASES FOR OPTIMAL MANAGEMENT OF CHEMICALLY-AFFECTED SOILS

Location: Contaminant Fate and Transport

Title: CALIBRATION OF RICHARDS' AND CONVECTION--DISPERSION EQUATIONS TO FIELD-SCALE WATER FLOW AND SOLUTE TRANSPORT UNDER RAINFALL CONDITIONS

Authors
item Jacques, Diederik - UNIV LEUVEN, BELGIUM
item Simunek, Jirka - UC RIVERSIDE, CA
item Timmerman, Anthony - UNIV LEUVEN, BELGIUM
item Feyen, Jan - UNIV LEUVEN, BELGIUM

Submitted to: Journal of Hydrology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: November 12, 2001
Publication Date: N/A
Publisher's URL: http://www.elsevier.com/locate/jhydrol

Interpretive Summary: A key factor in understanding and describing solute transport macroporous in field soils is the identification and quantification of lateral exchange processes between different flow domains of both water and solutes. Two extremes of lateral exchange, i.e. fast lateral mixing compared to the solute particle velocity, and no exchange of solute particles between the different flow domains, are frequently used to describe solute transport in field soils. In some cases, these models may be accurate, but in many other cases considerable deviations between model descriptions and measurements are observed such as systematic underestimation of early breakthrough. The main objectives of the paper are to (i) evaluate how well a physically-based model can describe the flow and transport dynamics measured in-situ at a detailed temporal scale, (ii) compare two approaches for representing the soil profile (an equivalent homogeneous soil profile versus a layered soil profile), and (iii) compare simulated breakthrough curves for the equilibrium and non-equilibrium convection-dispersion solute transport equations. Results are important for improved prediction of the transport of agricultural and other contaminants in undistributed field soils.

Technical Abstract: Identification of flow and transport processes under natural boundary conditions in field soils is a complex task since most model parameters are not measurable at that scale. However, combining a numerical solution method of the governing flow and transport equations with an inverse optimization algorithm and detailed measurements of different state variables may be a promising tool for process identification. The objective of the paper is to evaluate how well a physically-based model can describe the flow and transport dynamics measured in-situ at a detailed temporal scale. The data consisted of depth-averaged time series of water content, pressure head and resident solute concentration data measured several times a day during 384 days. In a first approach, effective parameters are estimated using the time series for one depth and assuming a homogeneous soil profile. In a second approach, all time series are used simultaneously to estimate the parameters of a multi-layered soil profile. Water flow is described by the Richards' equation and solute transport either by the equilibrium convection-dispersion (CDE) or the physical non-equilibrium convection-dispersion (MIM) equation. To represent the dynamics of the water content and pressure head data, the multi-layered soil profile approach gave better results. Fitted soil hydraulic parameters were comparable with parameters obtained with other methods on the same soil. At larger depths, both the CDE- and MIM-model gave acceptable descriptions of the observed breakthrough data, although the MIM performed somewhat better in the tailing part. Both models underestimated significantly the fast breakthrough. To describe the breakthrough curves at the first depth, only the MIM with a mixing layer close to the soil surface gave acceptable results.

   

 
Project Team
Skaggs, Todd
Shouse, Peter - Pete
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Resource Management (201)
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House