Water Reuse and Remediation Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Assessment of Salinity and Irrigation/Drainage Practices
Development of an Integrated Methodology for Assessing and Controlling Salinity
Salinity Assessment Resources
 

Research Project: SALT AND TRACE ELEMENTS IN IRRIGATED SYSTEMS: PROCESSES, PREDICTIONS AND MANAGEMENT

Location: Water Reuse and Remediation

Title: PREDICTION OF BORON ADSORPTION BY FIELD SAMPLES OF DIVERSE TEXTURES

Authors

Submitted to: Agronomy Society of America, Crop Science Society of America, Soil Science Society of America Meeting
Publication Type: Abstract
Publication Acceptance Date: July 25, 2005
Publication Date: November 1, 2005
Citation: Goldberg, S.R., Corwin, D.L., Shouse, P.J., Suarez, D.L. 2005. Prediction of boron adsorption by field samples of diverse textures. Agronomy Society of America, Crop Science Society of America, Soil Science Society of America Meeting. Paper No. 317-3.

Technical Abstract: Soil texture often varies dramatically in both vertical and horizontal directions in field situations and affects the amount of B adsorbed and B movement. Boron adsorption on 15 soil samples (Lillis soil series: very-fine, smectitic thermic Halic Haploxerert) constituting 5 depths of each of three sites from the Broadview Water District in the western San Joaquin Valley of California was investigated as a function of solution pH (5-11). Boron adsorption increased with increasing solution pH, reached an adsorption maximum around pH 9, and decreased with further increases in solution pH. The constant capacitance model was able to describe B adsorption on the soil samples as a function of solution pH by simultaneously optimizing three surface complexation constants. The model was able to predict B adsorption using surface complexation constants calculated from easily measured chemical parameters using a regression prediction equation approach. The model was also able to predict B adsorption at all of the depths using the surface complexation constants predicted with the chemical properties of one of the surface depths and a surface area value calculated from clay content. Both modeling approaches were well able to predict the B adsorption behavior with the greatest deviation being about 40% in a couple of cases. These results are very encouraging, suggesting that for a particular soil series, B adsorption for various sites and depths in a field can be predicted using only clay content and the chemical information from a different site in the same field. Incorporation of the prediction equations into chemical speciation-transport models will allow simulation of soil solution B concentrations both spatially and vertically under diverse environmental and agricultural conditions.

   

 
Project Team
Suarez, Donald
Suarez, Donald
Corwin, Dennis
Goldberg, Sabine
 
Publications
   Publications
 
Related National Programs
  Soil Resource Management (202)
  Water Resource Management (201)
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House