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ABSTRACT 

Babu, D.K. and Van Genuchten, M.Th., 1980. A perturbation solution of the nonlinear 
Boussinesq equation: the case of constant injection into a radial aquifer. J. Hydrol., 
48: 269--280. 

A generalized version of the Boussinesq equation is solved, using a singular perturba- 
tion technique. Flow takes place in radial directions into an initially-dry homogeneous 
isotropic soil under the assumption of a constant injection rate at the origin. Explicit 
formulae are derived for the location of the advancing wetting front and the free surface 
height (or pressure head). Analytical results are compared graphically with a numerical 
finite-element solution. Excellent agreement is obtained between the results of the two 
methods. 

INTRODUCTION 

The Boussinesq equation is widely used in studying groundwater  flow 
problems. It is based upon  the Dupui t - -Forchheimer  (D--F) assumption that  
the groundwater,  when bounded above by a gently sloping phreatic (free) sur- 
face, moves essentially horizontal ly (Bear, 1972, Ch. 8). This equation has re- 
mained a powerful  tool  in modelling and analyzing flow patterns associated 
with many aspects of  subsurface flows in unconf ined aquifers. Recent  concern 
about  environmental  quality in relation to the t ransport  of dissolved sub- 
stances by groundwater  has increased the importance at tached to this equation. 

The basic equat ion is nonlinear. The nonlinearities, however, are no t  
strong, appearing only in the quadratic degree. Until now, solutions for  this 
equat ion have relied heavily on numerical schemes and linearization devices. 
Numerical solutions by Moody (1966),  Zucker et  al. (1973),  Dass and 
Morel-Seytoux (1974),  Skaggs (1975),  and Gureghian (1978);  or works on 
linearization techniques by Maasland and Bittinger (1963) and Bear et al. 
(1968),  are examples of  this kind of  approach. On the other  hand, very few 
analytical solutions are available (see, e.g., Van Schilfgaarde, 1963, 1964). 
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The phenomena of  moisture absorption by unsaturated soils, heat conduc- 
tion in nonlinear media, and the general groundwater movement  under the 
D--F assumptions are all described by the same nonlinear diffusion equation. 
Babu (1976a,  b, c) initiated and developed a general method of solution to 
the problems described by such a nonlinear diffusion equation. Techniques 
of  per turbat ion analysis formed the basis of this method.  

A nonlinear diffusion problem (in one-dimensional form) wherein diffu- 
sivity varied as a positive power  of  water saturation, was solved by Babu and 
Van Genuchten (1979a) by means of  singular perturbation techniques. A 
similar procedure is adopted in the following sections to solve the nonlinear 
diffusion problem in three-dimensional space. The flows are assumed to be 
symmetrical about  the vertical axis, and again, the diffusivity is taken to 
vary as a positive power  of  the concentration (temperature,  water saturation, 
etc.). Solutions to the Boussinesq equations follow as special cases of  the 
general solution. 

The work presented here is the result of  a t tempts  to derive analytical forms 
of  solutions to the Boussinesq equation in three-dimensional space. Analyti- 
cal expressions and formulae become very useful in checking the accuracy of 
numerical schemes of solution. Furthermore,  the behaviour of  solutions at 
large times and at large distances, is described more easily by analytical 
solutions than by numerical solutions. An outstanding feature of  the method 
presented below is that  the singular terms, that  so often lead to a breakdown 
of the formulae connected with such perturbation schemes, are eliminated 
from the solution. Thus, the method of solution yields results that remain 
valid for all times and distances. Agreement between the perturbation solu- 
tion, as presented here, and a finite-element numerical solution, was excellent. 

In what  follows, a constant-flux boundary condition is assumed to be in 
existence at the origin. Other types of  boundary conditions are possible for 
the general Boussinesq equation; however, in this analysis, no other bound- 
ary conditions are considered. The perturbation method is well suited for 
handling constant  saturation, and constant  flux, boundary conditions, along 
with zero-state initial conditions. Non-zero initial conditions, and time- 
dependent  boundary  conditions, would require more elaborate and involved 
analysis (Babu and Van Genuchten,  1979b). Therefore, no a t tempt  was 
made to include such cases here. 

THE EQUATIONS 

All variables in this s tudy are assumed to have been rendered dimension- 
less by appropriate normalizations. Radial distance is denoted by r, time by 
t, and the pressure head by h. For the special case of  interest here, one may 
interpret  h as the free surface elevation in an unconfined aquifer. For un- 
saturated soils absorbing mositure, h is identifiable with the moisture content .  
In the heat conduct ion  problems, h may be taken as the temperature.  
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If it is assumed that  the flux law is given by: 

v = --h" (Sh/Sr) (n > 0) 

the equat ion of  cont inui ty  takes the form of: 

Partial differential equation: 

r 5r r h n ~ r  = 5h/St n > O ,  O < r < r f ( t )  (a) 

The location of  the wetting f ront  is given by r f ( t ) ;  it is an unknown funct ion 
of time, and marks the ex ten t  to which water has penetra ted at any given 
time t. The determinat ion of  rf(t) consti tutes a part of the solution process. 

The initial condition is one of zero state: 

rf(0) = 0; h = 0, t = 0 (b) 

The boundary conditions at the front are taken as zero water pressure, and 
zero water flux: 

h = 0. r = r f ( t )  ( u n k n o w n )  (c) 

and 

~h 
h . . . .  0, r = rf(t) (unknown) (d) 

5r 

The boundary eonclition at the origin is one of constant  flux (constant  injec- 
t ion rate) : 

5h 
lim 27rrh n - Q(n) (given) (e) 
r-~0 5r 

Although it is assumed that  the flux Q is specified externally,  it should be 
obvious that  no water can be t ransported if n becomes large. Therefore,  on 
the right-hand-side of  eq. e, the imposed flux Q(n) i s  shown to depend on 
the index n. 

Eq. a may be considered as a generalized version of the well-known 
Boussinesq equation.  The next  step is to solve the boundary  value problem 
formulated in eqs. a--~. 

THE TRANSFORMED EQUATIONS 

A sequence of t ransformations will be int roduced now. These transfor- 
mations reduce the governing partial differential equat ion to an ordinary 
differential equation,  and simplify to  some ex ten t  the associated initial/ 
boundary  conditions.  Fur thermore ,  the original domain of  flow 0 <~ r <~ rf(t) 
will be normalized to lie between 0 and 1. 
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T h e  p e r t u r b a t i o n  pa rame te r :  

e =- 1 / (n  + 1) (1) 

R e d u c e d  f lux:  

q = Q(e ) /4~e  (2) 

A new d e p e n d e n t  variable:  

P -~ h n+l/q, or,  h ==- (Pq)C (3) 

A new i n d e p e n d e n t  variable x ,  with range 0 ~< x ~< 1 : 

x = (r 2 /4 t ) "  [e~p(e)q 1-~]-1 (4) 

where  ¢P(e) is an u n k n o w n  func t ion  (of  the pa rame te r  e) such tha t  x = 1 
def ines  the  we t t ing  f r o n t  pos i t ion :  

r~(t)  = 4 t ' e . ¢ P ( e ) . q l - C  

with 

(P(e) = 1 + e~bl + e2¢2  + . . .  

(5) 

(¢1,  ¢2, • • • are u n k n o w n  cons tan ts ) (  
' 5a) 

I t  m a y  be m e n t i o n e d  in passing tha t  P, as def ined  in iden t i ty  (3),  is usual ly 
associa ted wi th  the  t e rm K i r c h h o f f  Poten t ia l  of  Soil Physics and Hea t  Con- 
duc t i on  l i tera ture .  

In t e rms  o f  these  new variables,  eqs. a--e t r ans fo rm in to :  

The  d i f ferent ia l  equa t ion :  

d~c x - ~  + q ~ ( e ) ' X  dx  -- 0 0 < x < l  (6) 

T h e , b o u n d a r y  cond i t ions  at  the  f ron t :  

P = 0, x = 1 (7) 

dP /dx  = 0, x = 1 (8) 

T he  f lux c ond i t i on  at  the  origin: 

dP 
lim x - 1 (9) 

x ~ 0  d x  

Note:  From a mathematical point of view, conditions (7 ) - (9 )  constitute an overspecifi- 
cation for the second-order ordinary differential equation. However, eq. 6 contains the 
function alP(e) associated with the unknown location of the wetting front. Since an addi- 
tional unknown is introduced into the problem via the function alP(e), a third condition 
becomes necessary to complete the formulation of the problem. 

I t  will be  seen la ter  (see comme.nt  a f te r  eq. 32) tha t  cond i t i on  (8} is diffi- 
cul t  to  use in the  so lu t ion  scheme,  because o f  cer ta in  i nde t e rmina t e  and 
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unbounded  quantities appearing in eq. 32. To circumvent this difficulty, we 
integrate eq. 6 by parts, and use conditions (7)--(9) to develop an alternative 
formula. 

From eq. 6 and condit ion (8): 

dP I1 x dP c 
x + q , ( e )  " d x  --  0 

Use of condit ion (9) gives: 

fl dPC --1 +qb(e)"  x ~ d x  = 0 

Integration by parts yields: 

1 = qb(e) x - P C  Ix 1 - P C - c k x  

Use of  condit ion (7) in the above relation finally gives: 

(P(e) • [P(x)l ~ dx = 1 (10) 

Alternatively, eq. 10 may be derived as follows. The condition of  constant  
flux, (e), and the increase in the total mass of  water in the aquifer, lead to 
the following equation (0 is the water content):  

f f: rf(t) 0 (h) .2zr rdr  = Q ' d t  = Q ' t  (11) 
~0 

NOW 

Q = 4zrqe (2) 

O(h) =- h = (pq)c  (3a) 

and from eq. 4: 

2nrdr  = 47rt • e • ¢P(e) • ql-~ . dx (4a) 

Use of  eqs. 2, 3a, 5 and 4 in eq. 11 yields (r = r~(t), x = 1): 

fx x=l (Pq)e4zrt  eq l -e  Op(e) dx  = (4~rqe)t o i % 

=0 

Minor cancellations result again in: 

s: Op(e)- p C . d x  = 1 (10) 

Therefore, the alternate condit ion (10) merely states that  the total mass of  
accumulated water,  in the aquifer equals the total mass of  water injected 
at the origin during the time t. 

A solution to eq. 6 with condit ions (7), (9) and (10) will be given in the 
next  section. 
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THEPERTURBATIONSCHEME 

The solut ion  is assumed to  take the form:  

P = - P ( x ; e ) =  expI (e  + e Z p ,  + e 3 p 2  +...)(fodx/lnx)] • 

[ ( - - lnx)  + e P l ( x )  + e2P2(x)  + . . .  ] (12) 

where P l ,  P2, • • - , are u n k n o w n  constants ,  and Pl(X),  P2 (x) . . . .  , are un- 
known funct ions ,  to  be de te rmined  next .  The above s t ructure  for  the solu- 
t ion,  especially the exponent ia l  factor ,  was suggested by rewrit ing eq. 6 in 
the fo rm:  

-~  x + x - ~  eaP(e)P ~-1 = 0 

dividing ou t  by (x • dP/dx) ,  and f inal ly integrating once with respect to x in 
an a sympto t i c  sense near x = 0. This term would  also be the starter  te rm for  
m a n y  rapidly convergent  iterative schemes a imed at solving such nonl inear  
problems.  

Since eq. 12 is taken  as the solut ion,  it  mus t  satisfy the differential  equa- 
t ion (6), and condi t ions  (7), (9) and (10). At  the same t ime,  it is expected  
tha t  func t ions  P1 (x), Pz (x) . . . .  , are bounded  in the entire interval 0 ~< x ~< 1. 

As a nex t  step in the solut ion,  the power  series expansions of  eq. 12 in 
parameter  e are wr i t ten  down:  

i 2 
P(x;e )  = ( - - l n x ) + e ( P 1  - - i l n x ) + e 2 ( P z  + iP 1 - - ~  l n x - - / J l i l n x )  + . . . 

(13) 
and 

[P(x;e)] 1 + e l n ( - - l n x ) + e 2 [  PI + i +  [ ln ( - - lnx) ]Z]  e = + (13a) 
- - lnx 2 " " " 

where 

i =- i(x) = f :  dy ln--y' P1 -- P l ( x )  and P2 = P2(x) (14) 

Al though  the above expansions in e apparent ly  break down  near x = 0 and 
x = 1, i t  is still possible to  free the original differential  equat ion  of  the 
singularities. 

THESOLUTION 

Eqs. 13 and  13a are subs t i tu ted  into  eq. 16 and condi t ions  (7), (9) and 
(10). Expans ion  (5a) is also uti l ized at  this stage. Collect ion of  like powers 
o f  e f rom these equat ions  leads to the fol lowing sequence of  linear problems. 



e-terms: 

P1 = O, 

x d P l / d x  = 

and 

x lny 

x = 1 

0, x = 0 

+ x 2 [ l n ( - - l n x ) ]  

O [~)1 -~- In(--Inx)] dx = 0 

e2-terms: 

l (So ) A dP2 alP1 x dy + x P  1 1 y 

dx x ~ -  + x ~ -  ~ny lnx 2 l~y 

I 'xdy ] [ d 
- -P l  Jo ~ --]'/lX +X q~l~[ ln ( - - lnx) ]  

dx ~-~ + 2 + = 0  

P2 = O, x = l  

x ' d . P 2 / d x  = O, x = 0 

and 
1 

f [¢2 + ~bl F,  (x) + F : ( x ) ] d x  = 0 
o 

with 

F l(x)  - ln(--lnx) 

F2(x )  -= (1 - - x ) / l n x  + ~[ln(--lnx)] 2 + dy / lny  

And so on, for higher-order terms in e z, e 3 , . . .  

= 0  

--X 
X dy 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

Evaluation o f  Pa (x)  and the constant  ¢,  

Solving eqs. 15--18 results in: 

P1 (x) = x -- 1 

¢, = -- f :  In(-- Inx) dx 0.5775 (Euler's constant) 
Jo 

(25) 

(26) 
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Evaluation of P2 (x) and constants Pl and 42 

Rewrit ing eq. 19 and simplifying to some extent  with use of eqs. 25 and 
26 leads to: 

d (x--dl~2-) + 2 ( x - 1 ) + 1 + 4 ~ - p l  +ln(-lnx)-f~:dy/lnylnx = p~ (27) 

Or, equivalently, integrating by parts the expression f0 x dy/lny: 
d [ ~__~2) 2 ( x - - 1 ) + ( 1 - - x ) l n ( - - l n x ) t - l + 4 1 - - P l + f ~  ln(--lny)dy 

- -  x -t- 
d x  lnx 

= Pl (28) 

If singularities at x = 1 are to be avoided in eq. 28, it is necessary that:  

1 + 41 - -P I  + ln(- - lnx)dx = 0 (29) 

This and eq. 18 determine the constant  Pl : 

Pl = 1 + 41 + ln(- - lnx)dx = 1 (30) 

Thus, eq. 28 reduces to: 

d.~d(x - ~ ) +  [2(x--1)+(l--x)ln(--lnx)--f2ln(--lny)dY]lnx = 1 (31) 

Integrat ion of eq. 31, utilizing condit ions (20) and (21) finally gives: 

P2(x) = ( x - - 1 ) + ( x - - 1 )  2 + ( l n x )  I ~ 2 ( 1 - - x ) +  f l  ( 1 - - y ) / y l n y ' d Y d x  
lnx J0 

f ]  1 - - y  fx I 1 - - y  + - - -  d y - - x  - -  dy (32) 
lny ylny 

Expressions suitable for computa t ional  detail have been selected in structur- 
ing P2 (x). Other  forms of P2 (x) are also possible if analytical simplicity of 
structure is sought.  

C o m m e n t :  If term-by-term differentiation is accepted in eqs. 13 and 13a, the expressions 
for (dP/dx) derived by using eqs. 25 and 32 in eq. 13, would contain unbounded and 
indeterminate quantities when evaluated at x - - 1 .  Such unbounded quantities would 
obviously hinder the evolution of  the solution. It was, therefore, necessary to replace 
condition (8) by an alternate expression like condition (10), etc. 

Lastly, f rom eqs. 22--26, the constant  ¢2 may be de termined by straight- 
forward quadratures:  

(So' So ) ¢2 = -- F l (x ) 'O ldX+ F2(x)dx ~ ¢ ~  + 0 . 4 1 1 2 " 0 . 7 4 4 5  (33) 
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THE RESULTS 

To summarize, a solution to the problem formulated in eqs. 6--10 is given 
by the following formulae (to e 2 -order terms): 

P ( x ; e )  = e x p [  ( e + e 2  + ' ' ' ) ( f o x  dl~y)] " [ ( - - l n x ) + e P , ( x )  

+ e 2 P 2 ( x )  + . . . ]  (34) 

where: 

P l (x)  -- (x -- 1) (35) 

and 

= x ( x  - -  1) + (lnx) ( ~  2!1 - -y )  + f~ (1 - - t ) / t ln t*  d t  P2(x) dy 
Jo lny 

1 - - Y d y - - x  dy  (36) 
+ lny y--~ny 

Through back substitutions via eqs. 1--5a, the pressure head h is easily writ- 
ten down: 

h(r , t ;  e) =- (pq)e [4~re ] 

P ~ -  exp[  (e2 + e 3  + ' ' ' ) ( f o  a l l y ) ]  " [ ( - l n x ) + e P ' ( x ) + e 2 P 2 ( x ) ] c  (38) 

where 

e -- 1 / (n  + 1); 01 ~-- 0.5775; 02 ~ 0 . 7 4 5 5 ;  . . .  (39) 

r 2 = 4 x t e ( 1  + e01 + e2dp2 + • . .) " [Q(e)/4Tre] 1-¢ (40) 

Q(e)  = the given constant rate of injection (41) 

Location of the advancing wet front r~(t) is given by setting x = 1 in eq. 40. 
Thus, for the location of the wet front: 

rf( t )  = [ 4 t e ( l + e O l  +e202 + . . . ) ] l / 2 " [ Q ( e ) / 4 ~ r e ] ( l - ° n  (42) 

Eqs. 35--42, therefore, constitute the solution to the problem formulated in 
eqs. a--e at the beginning of this paper. 

Spec ia l  case o f  smal l  x (or  smal l  r, t, e tc . )  
A simpler expression for the solution can be obtained when x (or r and t) 

is small. From the Appendix (A-I--A-4), if x ~ 0: 

P(x ;  e) ~-- exp(O) • l(-- lnx) + e(x  - -  1) -- e 2 [x{2 + 21nx + (lnx) -1 } -t- 0.693] ] 
(43) 
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or, neg lec t ing  terms  in x: 

P ( x ; e )  ~-- - - ( lnx  + e + 0 . 6 9 3  e 2) 

Thus ,  for  smal ler  x : 

h ( r , t ;  e)  ~ [ Q ( e ) / 4 7 r e ]  c . [ - l n x  - e - 0 . 6 9 3 e  2 ] c (44) 

COMPARISON EXAMPLE: THE BOUSSINESQ EQUATION 

A l t h o u g h  eqs. 3 4 - - 4 4  are valid for  all n :> 0, if  e is small ,  accurate  results  
are o b t a i n e d  wi th  just  a f e w  terms,  say P~ (x)  and P2 (x) .  A case o f  practical  
i m p o r t a n c e ,  the  B o u s s i n e s q  e q u a t i o n  in radial coord inates ,  is given by n = 1, 
or  e = ½. Fig. 1 c o m p a r e s  graphical ly  the  results  ob ta ined  by the  m e t h o d s  o f  
this paper wi th  t h o s e  generated  by a numer ica l  s c h e m e  appl ied to  the  eqs. 
a--e.  N u m e r i c a l  results  were  o b t a i n e d  wi th  a m o d i f i e d  vers ion  o f  Hermit ian  
f i n i t e - e l e m e n t  c o d e  o f  Van G e n u c h t e n  ( 1 9 7 8 ) .  For  this prob lem,  n was set  
equal  to  1 in the  original eqs. a--e ,  whi le  the  discharge Q was  given the  

P, 
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o PERTURBATION SOLUN EOS (37),(38)8,(44~ 
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Fig. 1. Compar i son  b e t w e e n  analyt ical  perturbat ion so lu t ion  and numerical  f in i te -e lement  
so lu t ion  for the Bouss inesq  equat ion ,  describing radial f l ows  under  cons tant  inject ion  
rates.  All  quant i t ies  are in d imens ionless  form. The  cons tant  inject ion  rate at the origin 
was taken as Q -- 50  in the original eqs. a--e.  The  pressure head h m a y  be d irect ly  asso- 
c ia ted  with  the he ight  o f  the  free surface in this  problem.  Values  o f  h beneath  the p o i n t  A 
in the figure,  where  h ~ 3 .64 ,  x ~> 0.1,  were  c o m p u t e d  using eqs. 37  and 38;  remaining 
higher values o f  h / >  3 .64  were  obta ined  from the a s y m p t o t i c  express ions  in eqs. 4 3 - - 4 4  
appl ied to  the  range 0 ~< x ~< 0.1.  

i 1:25.355 

I ~ ) 1 1  ~ I I l 1 
0 2 4 6 8 I0 12 14 

D IMENSIONLESS RADIAL  DISTANCE r 
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value Q(n) = 50. Two cases were considered, one at t = 25.355, and the 
other  at t = 1.087 so as to give a reasonable spread of  the t ime variable. 
Since the per turbat ion solution is a similarity solution, profiles associated 
with all values of  r and t would be generated through eqs. 24--41. For  small 
values of x, or r, the asymptot ic  approximations (43) and (44) were used, 
thereby eliminating the need for numerical integrations. Gauss--Legendre 
quadrature formulae,  with four  Gaussian points and ten subintervals, were 
sufficient to evaluate all integrals and constants in eqs. 34 and 36. Fig. 1 
shows that  there was excellent agreement between numerical and perturba- 
tion solutions. 
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A P P E N D I X  

When x -~ 0 in eqs. 34 and 36, the following approximations will obviate 
the need for numerical integrations: 

(i) lny " --~ 0 (A-l)  

(ii) I(x) = (lnx)" ~ ( 2 ( 1 - - Y )  + f l  ( 1 - - t ) / t l n t ' d t )  

Io = (lnx) • G(y)dy, say 

Application of L'Hospital 's  rule leads to: 

lira I(x) 
x ~ O  

= lim f~ G(y)dy _ lim G(x) 
x - o  "-'" "(lllnx) x ,o - - l lxOnx}  2 - ' ' "  " 

= lim [2x(1 - - x ) l n x i  -- lim (1 -- t)/tlnt • dt (xlnx) 
x ~ O  x--*O 

= lim [2x(1 - - x ) l n x  + x ( 1  - - x ) ]  

Thus: 

I(x) ~-- -- x(1 -- x)(1 + 21nx) ~ - -x (1  + 21nx), if x is small 

(iii) Similarly: 

/ lim x "  ( 1 - - y ) / y l n y ' d y  = lira ( 1 - - t ) / t l n t ' d t  (x -1) 
x ~ O  x ~ O  

(A-2) 
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l e a d s  t o :  
1 P 

x j~  (1 - - y ) / y l n y  • d y  ~ x ( 1  - - x ) l n x  ~ x / l n x ,  w h e n  x is s m a l l  (A-3 )  

C o m b i n i n g  a p p r o x i m a t i o n s  ( i) ,  (i i)  a n d  ( i i i ) ,  a n d  n o t i n g :  

~o (1 "dx = ln(½) ~ X ) / 1 n x  

l e a d s  t o  a s i m p l i f i e d  v e r s i o n  o f  eq .  3 2 :  

P 2 ( x )  ~-- - - x [ 2  + 21nx + ( l n x )  - l  ] - -  0 . 6 9 3  ( A - 4 )  

REFERENCES 

Babu, D.K., 1976a. Infil tration analysis and perturbat ion methods, 1. Absorption with 
exponential  diffusivity. Water Resour. Res., 12: 89--93. 

Babu, D.K., 1976b. Infil tration analysis and perturbat ion methods, 2. Horizontal absorp- 
tion. Water Resour. Res., 12: 1013--1018. 

Babu, D.K., 1976c. Infi l trat ion analysis and perturbat ion methods,  3. Vertical infiltration. 
Water Resour. Res., 12: 1019--1024. 

Babu, D.K. and Van Genuchten,  M.Th., 1979a. A similarity solution to a nonlinear diffu- 
sion equation of the singular type:  a uniformly valid solution by perturbations. Q. 
Appl. Math., 37: 11--21. 

Babu, D.K. and Van Genuchten, M.Th., 1979b. An initial value problem for the horizontal  
infiltration of  water. Water Resour. Res., 15: 867--872. 

Bear, J., 1972. Dynamics of Fluids in Porous Media, American Elsevier, New York, N.Y., 
764 pp. 

Bear, J., Zaslavsky, D. and Irmay, S., 1968. Physical Principles of Water Percolation and 
Seepage, UNESCO, Paris. 

Dass, R. and Morel-Seytoux, H.J., 1974. Subsurface drainage solutions by Galerkin's 
method.  J. Irrig. Drain. Div., Proc. Am. Soc. Civ. Eng., 100: 1--15. 

Gureghian, A.B., 1978. Solutions of the Boussinesq equation for seepage flow. Water 
Resour. Res., 14: 231--236. 

Maasland, D.E.L. and Bittinger, M.W., 1963. Proceedings of the Symposium on Transient 
Groundwater  Hydraulics. Colorado State University, For t  Collins, Colo. 

Moody, W.T., 1966. Nonlinear differential equations of drain spacing. J. Irrig. Drain. Div., 
Proc. Am. Soc. Civ. Eng., 92: 1--9. 

Skaggs, R.W., 1975. Drawdown solutions for simultaneous drainage and ET. J. Irrig. 
Drain. Div., Proe. Am. Soc. Cir. Eng., 101: 279--291. 

Van Genuchten,  M.Th., 1978. Numerical solutions of the one-dimensional saturated--  
unsaturated flow equation. Civ. Eng., Princeton Univ., Princeton, N.J., Res. Rep. 
78-WR-9. 

Van Schilfgaarde, J., 1963. Design of tile drainage for falling water tables. J. Irrig. Drain 
Div., Proc. Am. Soc. Civ. Eng., 89: 1--11. 

Van Schilfgaarde, J., 1964. Closure to "Design of tile drainage for falling water tables". 
J. Irrig. Drain. Div., Proc. Am. Soc. Cir. Eng., 90: 71--73. 

Zucker, M.B., Remson, I., Ebert,  J. and Aguago, E., 1973. Hydraulic studies using the 
Boussinesq equation with a recharge term. Water Resour. Res., 9: 586--592. 


