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Inverse Analysis of Upward Water Flow in a Groundwater Table Lysimeter

T. J. Kelleners,* R. W. O. Soppe, J. E. Ayars, J. Šimůnek, and T. H. Skaggs

ABSTRACT scale often leads to disappointing results. Soil distur-
bance during sampling and spatial variability in the soilThe accuracy of numerical water flow models for the vadose zone
hydraulic properties play major roles in the failure todepends on the estimation of the soil hydraulic properties. In this

study, the hydraulic parameters for a silty clay soil in a large lysimeter obtain suitable field-scale parameter values for the hy-
were determined through inverse modeling of a fallow period with draulic functions (Kool et al., 1987).
upward water flow from a shallow groundwater table. Parameter Alternatively, soil hydraulic properties may be deter-
uniqueness was studied by simulating a hypothetical soil with known mined in situ. This avoids soil disturbance and provides
hydraulic properties under comparable conditions. Sensitivity analysis an estimate of the hydraulic properties that integrates
showed that the pressure head h(z,t ), the volumetric water content soil heterogeneity. Also, if the soil hydraulic functions
�(z,t ), and the cumulative bottom flux Q(t ) were least sensitive to

are ultimately to be used to analyze field-scale processes,the residual volumetric water content �r and the pore-connectivity
in situ estimation intuitively seems more appropriateparameter � in the van Genuchten–Mualem (VGM) model. Parame-
than laboratory analysis.ter response surfaces showed that least squares fitting with �(z,t ) data

Parameter optimization has emerged as an importantis more likely to result in a unique hydraulic parameter set than
least squares fitting with h(z,t ) or Q(t ) data. With only �(z,t ) in technique for estimating soil hydraulic parameters. Both
the objective function, the least squares minimization algorithm was laboratory and field experiments can now be run and
capable of finding the correct soil hydraulic parameters, provided that analyzed under a large variety of flow conditions. In
�r and � were fixed and that multiple initial parameter estimates were the past, these experiments were restricted to certain
used. The protocol that was developed for the hypothetical soil was well-defined conditions that allow the calculation of the
subsequently applied to the actual groundwater table lysimeter. The hydraulic parameters by solving analytical solutions of
soil hydraulic parameters for the lysimeter for two (x,y ) locations

the relevant flow equations. Today, the hydraulic pa-were determined using �(z,t ) data as measured by capacitance sensors.
rameters can be obtained from flow experiments byThe variability in the optimized inverse of the air-entry value � and
combining a numerical flow model with a parameterthe saturated hydraulic conductivity Ks in the VGM model was rela-
estimation code. Recent advances in the computationaltively high because of the high parameter correlation between these

parameters. The optimized soil hydraulic properties can be used to power of computers have made this method even more
study capillary rise from the groundwater table. attractive.

Numerous studies have been published on the com-
bined use of flow experiments and parameter optimiza-
tion to estimate the soil hydraulic parameters. ReviewsEnvironmental impact and irrigation water manage-
of these studies can be found in Kool et al. (1987),ment studies often rely on numerical models to
Hopmans and Šimůnek (1997), and Hopmans et al.predict water flow and solute transport in the vadose
(2002). A recurring issue is the problem of parameterzone. The predictions of these models are sensitive to
uniqueness. If the objective function to be minimizedthe input of the soil hydraulic properties. The soil hy-
(usually the sum of squared differences between mea-draulic properties are usually described using empirical
sured and calculated flow variables) does not have aor semitheoretical water retention and hydraulic con-
clear global minimum, the inversion will be nonunique.ductivity functions (e.g., Gardner, 1958; Brooks and
The occurrence of local minima in the objective functionCorey, 1964; Mualem, 1976; van Genuchten, 1980; Ko-
may also cause nonuniqueness. The occurrence of unique-sugi, 1999).
ness problems depends on the soil type, the boundaryTraditionally, hydraulic properties have been mea-
conditions, the type of data used in the objective func-sured in the laboratory using soil samples taken from
tion, and the parameter estimation algorithm.the field. Applying the soil hydraulic properties derived

Several investigators have tried to infer soil hydraulicfrom these small-scale experiments to the larger field
properties by applying the inverse modeling technique
to upward infiltration experiments. The experimentsT.J. Kelleners, J. Šimůnek, and T.H. Skaggs, USDA-ARS, George
provide information on the wetting branch of the soilE. Brown, Jr. Salinity Lab., 450 W. Big Springs Road, Riverside, CA

92507; T.J. Kelleners, R.W.O. Soppe, and J.E. Ayars, USDA-ARS, hydraulic properties without the need to account for
Water Management Research Lab., 9611 S. Riverbend Ave., Parlier, the macropore flow that might occur during downward
CA 93648. T.J. Kelleners, presently at Dep. of Plants, Soils, and (gravity) infiltration. So far, several laboratory experi-
Biometeorology, Utah State Univ., Logan, UT 84322; R.W.O. Soppe,

ments on small soil samples have been conducted usingpresently at Alterra-ILRI, P.O. Box 47, 6700 AA Wageningen, The
either a flux condition (Hudson et al., 1996) or a pressureNetherlands; J. Šimůnek, presently at Dep. of Environmental Sciences,

Univ. of California, Riverside, CA 92521. Received 9 Aug. 2004. condition (Šimůnek et al., 2001; Young et al., 2002) at
*Corresponding author (tkelleners@cc.usu.edu). the bottom boundary.

In this work, the hydraulic properties of a silty clayPublished in Vadose Zone Journal 4:558–572 (2005).
Original Research Paper
doi:10.2136/vzj2004.0118 Abbreviations: CV, coefficient of variability; EC, electrical conductiv-

ity; LM, Levenberg–Marquardt; NRMSE, normalized root mean square© Soil Science Society of America
677 S. Segoe Rd., Madison, WI 53711 USA error; VGM, van Genuchten–Mualem.
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soil in a weighing lysimeter are determined by inverse Soil Hydraulic Properties
modeling of a summer fallow period where capillary rise The soil hydraulic properties are described with the
from the groundwater table replenishes the depleted root VGM model (van Genuchten, 1980; Mualem, 1976):
zone. The lysimeter is 4 m long, 2 m wide, and 3 m
deep, and as such, constitutes an intermediate scale be-
tween the sample scale and the field scale. The Hydrus- Se �

� � �r

�s � �r

� � 1
(1 � |�h|n )m

h � 0

1 h � 0

[6]
1D model (Šimůnek et al., 1998a), which includes a
parameter estimation routine, is used to solve the flow
problem. The objectives of the study were (i) to investi- K(Se) � KsS�

e �1 � �1 � S 1/m
e �m�2

[7]
gate the issue of parameter uniqueness for the upward

m � 1 � 1/n n 	 1 [8]infiltration problem by testing the inverse procedure on
a hypothetical soil with known soil hydraulic properties where Se is the effective saturation, �r is the residual
and (ii) to determine the soil hydraulic properties of volumetric water content, �s is the saturated volumetric
the silty clay soil in the lysimeter. water content, � is the inverse of the air-entry value

(L�1), n is a pore-size distribution index, Ks is the satu-
rated hydraulic conductivity (L T�1), and � is a pore-THEORY
connectivity parameter.

Governing Flow Equation
Inverse Procedure

The water flow calculations are conducted with the
The objective function 
 that is minimized duringHydrus-1D model, which numerically solves the Rich-

the parameter estimation process is (e.g., Šimůnek etards equation:
al., 1998a):

��

�t
�

�

�z �K �h
�z

� K� [1]

(b;q) � �

mq

k�1

wk �
nqk

j�1
�
oqjk

i�1

[q*k (zj,ti) � qk (zj,ti,b)]2 [9]

where � is the volumetric water content (L3 L�3), t is where b is the vector of parameters to be optimized
the time (T), z is the vertical coordinate (L) (positive (e.g., b � [�r, �s, �, n, Ks, �]), qk* is the measured value
upward), h is the pressure head (L), and K is the hydrau- for the kth measurement set at depth zj and at time ti,
lic conductivity (L T�1). qk is the corresponding predicted value for parameter

Initial and boundary conditions need to be specified vector b, mq is the total number of measurement sets,
to solve Eq. [1]. The initial condition is specified in nqk is the number of depths z for the kth measurement
terms of pressure head or water content: set, and oqjk is the number of observation times t for

depth z and measurement set k.h(z,t) � hi(z) t � 0 [2] The different measurement sets are weighted using
weighting coefficients wk:�(z,t) � �i(z) t � 0 [3]

The soil surface boundary is described by an atmo- wk �
1

�2
k �

nqk

j�1

oqjk

[10]
spheric boundary condition that switches between a pre-
scribed flux condition and a prescribed head condition,
depending on the prevailing transient pressure head at where �k

2 is the variance of the data in the kth measure-
the soil surface. Whenever the surface pressure head is ment set. The use of wk minimizes unwanted differences
in the range hA � h(0,t) � hS, the atmospheric boundary in weighting among data types caused by differences in
is a prescribed flux condition: magnitude and the number of data points.

Minimization of the objective function 
 is accom-	�K
�h
�z

� K 	 � R z � 0 [4] plished by using the Levenberg–Marquardt (LM) non-
linear minimization method (Marquardt, 1963; Šimůnek
et al., 1998a). The LM method uses the steepest descentwhere R is the potential rate of infiltration or evapora- method when the objective function is far from its mini-tion (L T�1) under the prevailing atmospheric condi- mum and switches to the inverse Hessian method as the

tions, and hA (L) and hS (L) are minimum and maximum minimum is approached (Šimůnek and Hopmans, 2002).
allowed values of the surface pressure head, respec- The LM method is a local gradient-type search algo-
tively. If the surface pressure reaches hA or hS, the sur- rithm, as opposed to global search algorithms that search
face boundary switches to a prescribed pressure head the entire parameter space. Local search algorithms are
condition: h(0,t) � hA or h(0,t) � hS. In this study, we generally sensitive to the initial parameter estimates.
use hA � �105 cm (hypothetical soil), hA � �106 cm Consequently, different initial estimates need to be ex-
(lysimeter soil), and hS � 0 cm. amined.

A pressure head boundary condition is specified at
the bottom of the lysimeter: HYPOTHETICAL SOIL

h(z,t) � h0(t) z � �L [5] Model Setup
where h0 is the prescribed value of the pressure head Inverse estimation procedures for the lysimeter were

investigated by considering a hypothetical soil with known(L) and L is the depth (L) of the lysimeter.
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soil hydraulic properties. Upward flow from a shallow
groundwater table was simulated for conditions closely
resembling the summer fallow period in the lysimeter. A
homogeneous silty clay soil was assumed with a constant
groundwater table at 1 m below the soil surface. The
vertical profile was divided into 200 elements, each with
a thickness of 0.5 cm. The parameters describing the
hydraulic properties of the soil were obtained from the
Rosetta pedotransfer program of Schaap et al. (2001).
Soil texture data (2.6% sand, 43.9% silt, and 53.5%
clay) and dry bulk density data (1.38 g cm�3) were used
as input for Rosetta. These soil data were obtained
during a field experiment at the location where the
lysimeter soil was taken (see Kelleners et al., 2004). The
data were averages for the B1 horizon of this soil (20–75

Fig. 1. Simulated volumetric water content for the 100-d fallow periodcm below soil surface). The Rosetta-predicted soil hy- with hypothetical soil hydraulic properties. The numbers in the
draulic parameter values were: �r � 0.101, �s � 0.492, figure refer to the depth below the soil surface.
� � 0.015 cm�1, n � 1.321, Ks � 3.47 cm d�1, and � �
�1.055. Note that the physical meaning of � as a tortuos- recorded for use in the inverse analysis. This resultedity factor is lost by allowing � � 0. With � � �1.055 the in 1000 data points for �(z,t) and h(z,t) each. As anVGM model should be interpreted as a semitheoretical example, the resulting volumetric water contents as afitting equation (Schaap and Leij, 2000). function of time and depth are shown in Fig. 1. NoteA 100-d fallow period was simulated with an initially that during the 100-d calculation period the upwarddry soil profile. The initial pressure head values were moving wetting front passes all measurement depths, thusassumed to increase linearly over five depth intervals providing a maximum amount of information for the in-
with hi(z � 0 cm) � hA � �100 000 cm, hi(�10) � verse analysis. In addition, the cumulative upward flux
�30 000 cm, hi(�50) � �15 000 cm, hi(�70) � �1000 through the bottom of the soil profile (22.1 cm) was sub-
cm, hi(�90) � �30 cm, and hi(�100) � 0 cm. This initial divided into 1-d intervals, resulting in 100 Q(t) data points.
pressure head distribution was intended to represent a It should be pointed out that the setup for the hypo-
soil profile that is depleted by root water uptake from a thetical soil is relatively favorable for the inverse process
preceding crop. The top 10 cm of the soil was considered as compared with an actual lysimeter soil. First, we
further depleted by continued evaporation from the soil assumed a homogeneous soil profile between 0 and 100
surface after irrigation was halted toward the end of the cm depth. In real-life situations the soil profile will be
growing season. An atmospheric boundary condition heterogeneous and may even encompass completely dif-
was specified at the top boundary with a constant poten- ferent soil layers. Second, we did not consider type I
tial evaporation rate of 0.5 cm d�1 and zero rainfall and model errors (e.g., Neuman, 2003). Flow in a real soil
irrigation. At the bottom boundary a groundwater table will not adhere strictly to the Richards equation. For
condition was specified (h0 � 0 cm). example, preferential flow and vapor transport will

The bottom boundary during the inverse analysis was cause deviations between field reality and the model.
specified as a “time-variable boundary condition” in Also, the hydraulic properties of a real soil might not
Hydrus, albeit with constant zero pressure head. This always fit the VGM model. Third, we did not consider
prevented negative pressure heads at the bottom bound- measurement errors during most of the inverse calcula-
ary when the LM algorithm tested �s values that were tions. In practice, instrument errors and observation errors
higher than the true �s value of 0.492. This problem will result in a certain degree of scatter in the data, as
only occurred because �i was used to specify the initial will be shown during the stability analysis. Fourth, the
condition during the inverse analysis (with �i, each Hy- large range of pressure head values in the initial soil
drus run starts with the conversion of �i into hi using profile is beneficial for the parameter identifiability dur-
the current estimate of the soil hydraulic parameters). ing the inverse process. In the field, the pressure head
The problem is a consequence of the incompatibility gradients may be smaller. Therefore, the hypothetical
between �i(z) and h0(t) at t � 0 and z � �L. Specifying soil constitutes a “best case” scenario with respect to
the bottom boundary as a time-variable boundary condi- inverse analysis.
tion may still result in some artificial redistribution near
the bottom during the first few time steps, but the effect Sensitivity Analysis
of the redistribution on the calculated water flow is neg-

A sensitivity analysis was performed to study the rela-ligible.
tionship between the measurement data and the model
parameters for the upward flow problem. The higher theData Generation sensitivity of a model parameter to the data, the higher

Simulated pressure heads and volumetric water con- the chance that the parameter is identifiable during the
tents at the end of each day at depths of 5, 15, 25, 35, inverse process. Sensitivity coefficients for the hypothet-

ical soil were calculated from (Šimůnek et al., 1998b):45, 55, 65, 75, 85, and 95 cm below the soil surface were
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Fig. 2. Sensitivity of the pressure head in the hypothetical soil to a Fig. 3. Sensitivity of the cumulative upward bottom flux in the hypo-
thetical soil to a 1% change in the soil hydraulic parameters in the1% change in the soil hydraulic parameters in the van Genuchten–

Mualem model at depths of 5, 15, and 35 cm below the soil surface. van Genuchten–Mualem model.

is not straightforward. The sensitivity value should beskl � 	0.01bl
�qk

�bl
	 � 	0.01bl

qk (b � �bel) � qk (b)
1.01bl � bl

	 [11]
evaluated against the nature of the parameter. For ex-
ample, a 1% change in the value of Ks, which can change

� 
qk (b � �bel) � qk (b)
 several orders of magnitude, is less significant than a
1% change in the value of n, which changes only between

where skl is the change in variable qk corresponding to 1.0 and 3.0 for most natural soils (Šimůnek and van
a 1% change in parameter bl, el is the lth unit vector, Genuchten, 1996). Keeping the above in mind, the sensi-
and �b � 0.01 b. The 0.01bl term in Eq. [11] is included tivities seem to indicate that the upward flow problem
to allow comparison between different parameters, in- is more suitable to identify n, �, �s, and Ks, and less
dependent of their invoked unit or absolute value. suitable to identify � and �r. A flow problem involving

Sensitivities skl of the pressure head h(z,t), the volu- a drying soil will probably be more suitable for the
metric water content �(z,t), and the cumulative bottom identification of � and �r.flux Q(t) were calculated for all six soil hydraulic param-
eters. All three measurement sets showed a decrease in Response Surfacessensitivity according to n 	 � 	 �s 	 Ks 	 � 	 �r, with
n being the most influential parameter and �r being the The uniqueness of the inverse problem was investi-

gated by calculating two-dimensional response surfacesleast influential parameter. As an example, Fig. 2 shows
the sensitivity of the pressure head at the 5-, 15-, and of the objective function 
 as a function of pairs of soil

hydraulic parameters (e.g., Toorman et al., 1992). Each35-cm depths to the six hydraulic parameters. Maximum
sensitivity is observed at times when the upward moving response surface was created by varying the two selected

parameters around their true value using 50 discretewetting front passes a certain depth and large changes
in the pressure head occur. Sensitivities are highest for points, while keeping the other parameters constant.

This resulted in 2500 simulated 
 values for each re-the shallowest depth; this is due primarily to the nonlin-
ear nature of the retention curve (small changes in the sponse surface. The six soil hydraulic parameters could

be paired in 15 different ways, yielding 15 responsewater content of relatively dry soil result in large changes
in the pressure head). By comparison, the differences surfaces for each case considered. Objective functions

were calculated for �(z,t), h(z,t), Q(t), and for all possi-are less pronounced for the sensitivity of the water con-
tents at different depths (data not shown). Figure 2 also ble combinations of these measurement sets. In the cur-

rent work we only present a selection of the results.shows that the duration of elevated sensitivity levels is
longest for the shallowest depth. This is attributed to the We need to stress that two-dimensional response sur-

faces provide only cross sections of the full six-dimen-more diffuse moisture front at this depth, a consequence
of the increased distance from the groundwater table. sional parameter space. As such, these two-dimensional

surfaces do not provide full proof about the uniquenessThe sensitivity of the cumulative bottom flux to the
hydraulic parameters is shown in Fig. 3. Clearly, the of the inverse problem. Nevertheless, the response sur-

faces are useful to study the behavior of the objectivesensitivity increases as the simulation progresses in time.
However, most of the increase in sensitivity occurs dur- function in the parameter space. The inverse parameter

estimation technique is expected to be unsuccessful ifing the first 10 to 30 d. Figures 2 and 3 show that n
is the most influential parameter while �, �s, and Ks response surfaces do not display a clearly defined global

minimum in the two-dimensional parameter planes (Ši-constitute a middle group. The flow variables are least
influenced by � and �r, which describe the dry part of můnek et al., 1998b).

First we studied parameter uniqueness with only �(z,t),the hydraulic conductivity curve and the dry part of the
water retention curve, respectively. However, interpre- h(z,t), or Q(t) in the objective function. Contour plots

of the response surfaces for �–n, �–Ks, and n–Ks aretation of the sensitivities for the different parameters
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Fig. 4. Contour lines of the objective function � for the parameter combinations �–n, �–Ks, and n–Ks using either �(z,t ), h(z,t ), or Q(t ) data
in the objective function.

shown in Fig. 4. Single minima are evident for 
(�,n;�) fying water retention parameters is not possible because
there is no information about the volumetric water con-(Fig. 4a) and 
(n,Ks;�) (Fig. 4g) but not for 
(�,Ks;�)

(Fig. 4d). In contrast, identifiable minima are absent in tent of the soil. Note that some of the local minima in
Fig. 4 are artifacts resulting from the selected discretiza-all response surfaces for h(z,t) and Q(t). From Fig. 4 it

appears that �(z,t) data contain more useful information tion of 50 by 50 points. The lower the resolution, the
more artificial local minima will appear, especially nearfor uniquely identifying �, n, and Ks than h(z,t) or Q(t)

data. Similarly, response surfaces also showed that �r parameter combinations where 
 changes only gradu-
ally, such as near the global minimum.and �s can only be identified with �(z,t) data in the

objective function (comparison not shown). With solely Parameter uniqueness with �(z,t) in the objective
function was investigated further by studying nine moreh(z,t) and Q(t) data in the objective function, identi-
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Fig. 5. Contour lines of the objective function � for nine parameter combinations using �(z,t ) data in the objective function.

response surfaces (Fig. 5). Response surfaces for �r and in the surface plots indicate that �(z,t) alone may not
be sufficient.�s combined with �, n, and Ks all exhibit clear identifiable

minima (Fig. 5a, 5b, 5d, 5e, 5g, and 5h). The response The benefits of combining different measurement sets
in the objective function are explored in Fig. 6. Responsesurfaces for � combined with �, n, and Ks are less conclu-

sive because the shape of the contour plots is more surfaces for �–n, �–Ks, and n–Ks are given for �(z,t)
and Q(t) combined. Comparison with Fig. 4 shows thatelongated and local minima appear to be present (Fig. 5c,

5f, and 5i). Whether �(z,t) alone will suffice to uniquely the contour lines of the response surfaces in Fig. 6 are
more convergent, indicating an increased potential fordefine all soil hydraulic parameters in the inverse pro-

cess can be doubted. The absence of well-defined min- a unique solution during the inverse process. However,

(�,Ks;�,Q) still lacks a single minimum. Apparently,ima in some of the two-dimensional response surfaces

and the divergent shape of some of the contour lines different combinations of � and Ks may result in approx-
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imately the same value of 
. Combining �(z,t) with
h(z,t) and combining �(z,t) with both h(z,t) and Q(t) in
the objective function gave more or less similar response
surfaces as those shown in Fig. 6. In contrast, combining
h(z,t) and Q(t) data in the objective function resulted
in �–n and �–Ks response surfaces that showed a long
elongated region with low 
 values, indicating the ab-
sence of a minimum (results not shown).

Inverse Solutions
Different inverse procedures were tested for their ability

to retrieve the true soil hydraulic parameters. We used
�(z,t) and Q(t) data, both separately and combined, for
fitting. Pressure head data were not considered for three
reasons. First, pressure head data are not available for
the groundwater table lysimeter. Second, the measure-
ment range of most tensiometers does not go below h �
�800 cm (Young and Sisson, 2002), making it impossible
to obtain a good data set in a depleted soil profile. This
is especially true if the soil is fine textured like the silty
clay soil considered here. Third, the response surfaces
show that soil water content data are more valuable
than pressure head data for the current inverse problem.

Model grid and boundary conditions for the inverse
analysis were the same as for the forward simulation.
However, the initial conditions were specified in terms
of water content �i(z) instead of pressure head hi(z),
consistent with h(z,t) data not being available for the
lysimeter. The LM minimization method was repeated
50 times for each case, using 50 different initial estimates
of the soil hydraulic parameters. Each initial parameter
set was generated by random selection from predeter-
mined parameter intervals ([0–0.13] for �r, [0.3–0.6] for
�s, [0.0005–0.05 cm�1] for �, [1.05–2.0] for n, [0–25 cm
d�1] for Ks, and [�5–10] for �). These intervals were
also used as bounds during the parameter optimizations.
The choice of 50 realizations was a compromise between
statistical considerations (more realizations give more
reliable means) and the computational effort. We omit-
ted LM minimizations that experienced numerical er-
rors during the Hydrus model runs or that did not con-
verge within 20 iterations.

The results of the parameter estimations for the hypo-
thetical soil are summarized in Table 1 [�(z,t) data],
Table 2 [Q(t) data], and Table 3 [�(z,t) and Q(t) data].
Each table shows four different cases. In the first case
all six hydraulic parameters are optimized simultane-
ously. In the other three cases �r, �, and both �r and �
are fixed to their true values while the remaining parame-
ters are optimized. Fixing parameters simplifies the min-
imization process by reducing the degrees of freedom
in the inverse process. We chose to fix �r and � because
of the relatively low sensitivity of �(z,t) and Q(t) to
these two parameters.

The coefficient of variability (CV, %) in Tables 1, 2,
and 3 relates to the variability in the optimized pa-
rameters:

Fig. 6. Contour lines of the objective function � for the parameter CV �
100

bl 
 �

�(bl � bl)2

N � 1
[12]combinations �–n, �–Ks, and n–Ks using �(z,t ) and Q(t ) data in

the objective function.
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Table 1. Results of the hydraulic parameter estimation for the hypothetical soil with volumetric water content �(z,t ) data in the
objective function.†

�r �s � n Ks � SSQ� Success rate

cm�1 cm d�1

Mean 0.118 0.497 0.023 1.409 15.00 2.771 4.00  100 0/20
CV, % 23.2 1.8 40.3 13.5 72.6 156.8
NRMSE, % 32.4 2.1 80.9 15.9 463.1 554.9
�r

Mean 0.101 0.491 0.019 1.320 15.58 4.968 5.95  100 0/23
CV, % – 2.0 44.0 9.5 70.7 94.0
NRMSE, % – 2.0 63.0 9.5 477.5 732.5

�
Mean 0.107 0.492 0.014 1.402 2.99 �1.055 1.25  10�1 0/22
CV, % 35.0 0.3 11.6 8.8 55.6 –
NRMSE, % 37.4 0.3 12.5 11.2 49.9 –

�r and �
Mean 0.101 0.493 0.016 1.317 4.64 �1.055 5.07  10�3 17/35
CV, % – 0.8 31.0 1.7 103.0 –
NRMSE, % – 0.8 34.3 1.8 141.9 –

True values 0.101 0.492 0.015 1.321 3.47 �1.055 – –

† Number of attempted Levenberg–Marquardt minimizations is 50.

where bl is the optimized value of the lth soil hydraulic 31.0%) and Ks (CV � 103.0%) with �r and � fixed. The
parameter, bl is the average optimized value of the lth uncertainty in the � and Ks values is reflected in the
soil hydraulic parameter, and N is the number of con- high parameter correlation of between 0.95 and 0.98
verged LM minimizations. The normalized root mean in the converged minimizations (numbers not shown).
square error (NRMSE, %) in Tables 1, 2, and 3 is a Note that �1 stands for perfect negative correlation, 0
measure of the variability of the optimized parameters for no correlation, and �1 for perfect positive correla-
around the true parameter value: tion. The difficulty of identifying � and Ks separately

was anticipated because the response surface 
(�,Ks;�)
NRMSE �

100

b*l 
 ��(bl � b*l )2

N � 1
[13] (Fig. 4d) lacked a clear minimum. Table 1 also shows

that failure to fix � during the inverse process will lead
to severe errors in the optimized value of Ks (NRMSEwhere bl* is the true value of the lth soil hydraulic param-
of 463.1 and 477.5%).eter. Both CV and NRMSE allow comparisons among

None of the LM minimizations with solely Q(t) datadifferent parameters, irrespective of their invoked unit
in the objective function converged to the true soil hy-or absolute value. The success rate in the last column
draulic parameters (Table 2). The absence of a singleof Tables 1, 2, and 3 refers to the number of minimiza-
minimum in the response surfaces for �–n, �–Ks, andtions for which all optimized parameter values were
n–Ks (Fig. 4c, 4f, and 4i) already suggested that Q(t)within 5% of their true values (number before the slash)
data alone were insufficient to identify uniquely theas a fraction of the total number of converged minimiza-
hydraulic parameters. It is interesting to note that thetions N (number behind the slash).
absence of water content data in the objective functionTable 1 shows that fixing �r and � is essential if only
did not result in large errors in the optimized �s values�(z,t) data are used in the objective function. Even then,
(NRMSE 2.3–15.2%). It appears that the use of wateronly 17 of 35 converged minimizations arrive at the
content data for the initial condition helped in nar-correct soil hydraulic parameters. Also, considerable

variability remains in the optimized values of � (CV � rowing the range of possible values for this parameter.

Table 2. Results of the hydraulic parameter estimation for the hypothetical soil with cumulative bottom flux Q(t ) data in the objec-
tive function.†

�r �s � n Ks � SSQQ Success rate

cm�1 cm d�1

Mean 0.087 0.492 0.024 1.281 11.05 1.046 2.40  103 0/11
CV, % 50.4 15.2 58.8 11.7 55.1 354.7
NRMSE, % 45.7 15.2 113.9 11.8 288.5 408.9
�r

Mean 0.101 0.485 0.018 1.196 11.83 1.465 7.79  102 0/9
CV, % – 6.7 50.5 5.3 70.6 187.1
NRMSE, % – 6.8 66.8 11.1 350.9 362.8

�
Mean 0.059 0.477 0.017 1.214 11.76 �1.055 3.28  100 0/14
CV, % 70.2 5.4 17.6 7.6 66.5 –
NRMSE, % 59.5 6.1 25.7 11.0 335.1 –

�r and �
Mean 0.101 0.484 0.017 1.259 6.68 �1.055 6.90  10�2 0/11
CV, % – 1.7 9.8 7.1 42.8 –
NRMSE, % – 2.3 15.7 8.4 127.2 –

True values 0.101 0.492 0.015 1.321 3.47 �1.055 – –

† Number of attempted Levenberg–Marquardt minimizations is 50.
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Table 3. Results of the hydraulic parameter estimation for the hypothetical soil with volumetric water content �(z,t ) and cumulative
bottom flux Q(t ) data in the objective function.†

�r �s � n Ks � SSQ� SSQQ Success rate

cm�1 cm d�1

Mean 0.107 0.521 0.021 1.353 11.08 1.104 2.70  100 1.78  102 0/15
CV, % 33.7 6.4 31.4 12.9 81.8 333.2
NRMSE, % 36.2 9.1 59.3 13.5 346.0 408.1
�r

Mean 0.101 0.507 0.018 1.393 8.9 1.146 1.67  100 1.05  102 0/17
CV, % – 6.1 47.3 14.9 90.5 279.6
NRMSE, % – 7.1 60.6 16.7 282.0 372.2

�
Mean 0.095 0.492 0.015 1.341 3.58 �1.055 1.56  10�2 1.04  100 1/22
CV, % 33.6 0.4 11.3 6.8 42.1 –
NRMSE, % 32.2 0.4 11.3 7.1 43.7 –

�r and �
Mean 0.101 0.492 0.015 1.322 3.43 �1.055 4.81  10�5 6.99  10�2 17/20
CV, % – 0.0 0.9 0.2 2.3 –
NRMSE, % – 0.0 0.9 0.2 2.5 –

True values 0.101 0.492 0.015 1.321 3.47 �1.055 – – –

† Number of attempted Levenberg–Marquardt minimizations is 50.

The error in the optimized �r value was larger (NRMSE Stability of the Inverse Solutions
45.7–59.5%) because the lowest �i value of 0.138 at z � The stability of the soil hydraulic parameter estimates
0 was higher than the true �r value of 0.101. Estimation is examined by altering the setup of the inverse process
of �r therefore required extrapolation beyond the mea- in four ways. The computational effort is limited to the
surement range. With pressure head instead of water case where only �(z,t) data are used for fitting, and
content as the initial condition in the inverse analysis it where �r and � are being fixed (success rate of 17/35
would have been impossible to approximate even �s in Table 1). This case is most relevant for the studied
because only the difference �s � �r could have been groundwater table lysimeter, with no useful Q(t) or
optimized with only Q(t) data in the objective function. h(z,t) data available. First, the adequacy of using 50

Combining �(z,t) and Q(t) data in the objective func- replicates is demonstrated by increasing the number of
tion for the upward flow problem (Table 3) reduces the LM minimizations from 50 to 100. Second, the effect of
deviations between the optimized and true values of Ks both underestimating and overestimating the �r value
and � for all cases (judging from the NRMSE values). during the inverse analysis is quantified by fixing �r to
Comparison between Tables 1 and 3 also shows that 0.075 and 0.125, respectively (true �r � 0.101). Third,
the SSQ� is lowered by combining �(z,t) and Q(t) in we assessed the consequences of using � � 0.5, a number
the objective function, signaling a better fit between the suggested by Mualem (1976) for most natural soils, in-
measured and simulated water contents. However, �r stead of � � �1.055. Fourth, we tested the impact of
and � still need to be fixed during the inverse process measurement errors in the water content data by adding
to obtain the true soil hydraulic parameter values (17 normally distributed random errors with zero mean and
of 20 converged minimizations are successful). With �r 0.0025 cm3 cm�3 standard deviation to the �(z,t) data.
and � fixed, the variability in the optimized values of � The results of the stability analysis are summarized
and Ks is now small (NRMSE � 3%), despite the fact in Table 4. Increasing the number of LM minimizations
that the parameter correlation between these parame- from 50 to 100 did not result in significant changes in
ters remains high (≈0.97; numbers not shown). the soil hydraulic parameter estimates (compare Tables

The above results agree with findings of Šimůnek and 1 and 4). The biggest changes occurred in the mean Ks
van Genuchten (1996), who, after studying downward value (increases from 4.64 to 4.98 cm d�1) and in the
infiltration from a tension disc infiltrometer, concluded NRMSE value for Ks (increases from 141.9 to 152.7%).
that cumulative infiltration alone will not provide a These increases are insignificant for a parameter like
unique solution for the inverse problem. In subsequent Ks, which is often found to vary one or two orders of
studies these authors suggested augmenting the cumula- magnitude, even in homogeneous materials. This con-
tive infiltration data with measured final water contents firms that 50 replicates suffice to obtain reliable statistics
(Šimůnek and van Genuchten, 1997) or with �(z,t) data for the inverse solutions.
(Šimůnek et al., 1999) to obtain unique solutions. Šimů- Underestimating or overestimating �r does not vitiate
nek et al. (1999) also noted that augmenting cumulative the parameter estimates. The alterations in �r are offset
flux data with h(z,t) data did not improve the results. by small changes in the optimized mean n and Ks values.
It appears that the upward flux problem (this study) The CV values for all parameters actually decrease,
and the downward infiltration study (Šimůnek and co- indicating that the optimizations have become less sensi-
workers) pose similar challenges for inverse parameter tive to the initial parameter estimates. Also, the SSQ�

estimation. This is not a complete surprise since both values of 1.78  10�3 and 2.67  10�3 are lower than
flow problems involve infiltration into a dry soil from the SSQ� value of 5.07  10�3 found in Table 1. The

effect of fixing � to 0.5 is somewhat detrimental. Thea pressure head boundary condition.
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Table 4. Stability of the hydraulic parameter estimates for the hypothetical soil with volumetric water content �(z,t ) data in the
objective function.†

�r �s � n Ks � SSQ� Success rate

cm�1 cm d�1

100 LM minimizations
Mean 0.101 0.493 0.017 1.315 4.98 �1.055 6.38  10�3 35/66
CV, % – 0.9 33.1 1.9 101.8 –
NRMSE, % – 1.0 38.1 1.9 152.7 –

�r underestimated
Mean 0.075 0.493 0.016 1.280 5.12 �1.055 2.67  10�3 0/39
CV, % – 0.5 21.3 1.1 71.2 –
NRMSE, % – 0.6 24.4 3.3 115.7 –

�r overestimated
Mean 0.125 0.491 0.014 1.373 2.58 �1.055 1.78  10�3 0/32
CV, % – 0.1 1.8 0.2 3.8 –
NRMSE, % – 0.2 6.2 4.0 26.3 –

� fixed to 0.5
Mean 0.101 0.499 0.020 1.470 8.84 0.5 1.40  10�1 0/31
CV, % – 2.6 44.4 8.7 94.1 –
NRMSE, % – 3.1 67.1 15.0 286.6 –

Random errors in water content data
Mean 0.101 0.493 0.016 1.318 4.68 �1.055 1.25  10�2 5/37
CV, % – 0.9 32.8 1.9 106.8 –
NRMSE, % – 0.9 35.9 1.9 148.3 –
True values 0.101 0.492 0.015 1.321 3.47 �1.055 – –

† Number of attempted Levenberg–Marquardt minimizations is 50, except for the case with 100 minimizations.

mean values of all four optimized parameters change We would like to stress that the failure to consistently
recover the true parameters during the inverse solutionsto offset the alteration in the � value. The CV values

for �s, �, and n all increase, as well as the SSQ� value is not due to the LM algorithm itself. There is simply
no distinct global minimum in the objective function.(to 1.40  10�1). However, the changes in the mean

parameter values remain relatively small and are un- The use of a global search algorithm (e.g., Abbaspour
et al., 1997; Lambot et al., 2002), which examines thelikely to affect the calculated upward water flow in a

significant manner. For example, the calculated cumula- complete parameter space, would probably not help
under these circumstances. A global search algorithmtive upward bottom flux changes only from 22.1 cm

(using the true parameter values) to 22.9 cm with � � 0.5. would only help if the LM minimization was frequently
ending up in a local minimum that is distinctly differentThe incorporation of random measurement errors in

the water content data does not significantly change the from the global minimum. Inspection of the individual
minimization results showed that this is seldom the case.outcome of the inverse solutions. The mean parameter

values remain about the same, the CV and NRMSE The nonuniqueness problem implies that we cannot
expect to find a unique set of soil hydraulic parametersvalues increase slightly, and the SSQ� values increase

to 1.25  10�2. Furthermore, the success rate is still 5/37, for the groundwater table lysimeter. We can only expect
to find a collection of parameter sets that describe thedespite the erroneous water contents. Note that a stan-

dard deviation for the water content measurement error data equally well. Analysis of the CV values will provide
important information about the reliability of the calcu-of 0.0025 cm3 cm�3 is representative of certain electro-

magnetic techniques like time domain reflectometry (e.g., lated mean parameter values. The stability analysis indi-
cated that 50 LM minimization runs will suffice forHeimovaara and Bouten, 1990; Lambot et al., 2002). The

use of other, less consistent sampling techniques might this purpose.
The failure to consistently find the true soil hydraulicincrease the standard deviation and thereby the uncer-

tainty in the estimated soil hydraulic parameters. The parameters for the upward flow problem introduces un-
certainty into the modeled soil water fluxes for theoccurrence of persistent instrument errors might in-

crease the uncertainty even more. groundwater table lysimeter. Calculated state variables
like water content and pressure head will be a function
of the chosen parameter set, which may be nonunique.Implications
However, the use of nonunique parameter sets mayThe response surfaces already indicated that the up-
still yield valuable information on spatial and temporalward flow problem might suffer from nonuniqueness
trends in the state variables and in the water balanceproblems, even when �(z,t) and Q(t) data are combined.
components.Different combinations of parameter values may lead

to equally small values of the objective function. This
is especially true for the � and Ks parameters. The LM MATERIALS AND METHODS
minimization method will not always find the exact

Experimental Setupglobal minimum under these circumstances. It is there-
fore not surprising that the inverse solutions yield a collec- The groundwater table lysimeter (2 m width, 4 m long, and

3 m deep) was installed in 1995 at the USDA-ARS facility intion of parameter sets that perform about equally well.
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Parlier, CA. The top 1.7 m of the lysimeter consisted of an sent single locations, could be used, provided that the horizontal
soil water fluxes at these locations were negligible comparedundisturbed soil monolith from the west side of the San Joa-

quin Valley, CA. The soil was a saline silty clay (fine, smectitic, with the vertical (upward) fluxes. Alternatively, the lysimeter
could be described with a complete three-dimensional model.thermic Sodic Haploxerert). The bottom 1.3 m of the lysimeter

consisted of disturbed soil from the same location, hand This was not attempted because of the lack of spatial data (e.g.,
initial water contents for only two [x,y] locations) and becausepacked to a dry bulk density of 1.3 to 1.35 g cm�3 (Schneider

et al., 1996). A truck scale measured changes in soil water of the large computational requirements.
Thus, only water content data derived from the capacitancecontent with time. A mariotte bottle was used to maintain the

groundwater table at about 1.0 m below soil surface. Over sensors were used in the inverse analysis. However, not all
capacitance data were included in the objective function. Thethe years, the lysimeter was planted with cotton (Gossypium

hirsutum L.), safflower (Carthamus tinctorius L.), and alfalfa top two L1 sensors (at the 5.5- and 15.5-cm depths) and the
top three L2 sensors (at depths of 7 to 27 cm) were excluded(Medicago sativa L.), and was irrigated with good quality water

(electrical conductivity, EC � 0.4 dS m�1) by subsurface drip, because the upward moving wetting front never reached these
sensors. In fact, these sensors recorded a decrease in the watersurface drip, and sprinkler systems. The EC of the groundwa-

ter in the lysimeter was about 14 dS m�1. content during the 79-d calculation period as a result of contin-
ued evaporation to the atmosphere. Elimination of the “dry-All components of the lysimeter water balance were mea-

sured directly except evapotranspiration, which was calculated ing” sensors enabled a pure estimate of the soil hydraulic
properties during wetting. These wetting soil hydraulic proper-by difference on an hourly basis. The depth of the groundwater

table was measured with an observation well in the center of ties might be different from the drying soil hydraulic properties
because of hysteresis (e.g., Dane and Wierenga, 1975). Thethe lysimeter using a pressure transducer. The distribution of
problem of “drying” sensors did not occur for the hypotheticalsoil water content with depth was monitored at two locations
soil because of the extremely dry initial conditions in thatin the lysimeter with multisensor EnviroSCAN capacitance
case. The bottom L1 sensor (at the 105.5-cm depth) and theprobes (Sentek Pty Ltd., Kent Town, South Australia).1 The
bottom L2 sensor (at the 107-cm depth) were excluded be-capacitance probes each held 11 sensors at 10-cm intervals
cause they were always below the groundwater table andstarting at 5.5 cm (Location L1) and 7.0 cm (Location L2)
therefore added little information for the parameter estima-below the soil surface. The frequency readings of the capaci-
tion process. The water content data used for fitting weretance sensors were converted into volumetric water contents
restricted to eight L1 sensors (25.5–95.5 cm depth) and sevenby the procedure of Kelleners et al. (2004). In this procedure,
L2 sensors (37–97 cm depth).the frequency was related to the soil permittivity by an equa-

Only the top 100 cm of the lysimeter was modeled withtion that described the electromagnetic properties of the sen-
Hydrus-1D. The soil profile was divided into 109 elementssor–plastic access tube–soil system. The permittivity was then
that varied in size from 0.1 cm at the soil surface to 1.0 cmrelated to the volumetric water content using the empirical
at depth. An atmospheric boundary condition was used at themodel of Malicki et al. (1996).
top, and a variable pressure head boundary was used at the
bottom. The capacitance probe data from 9 July 2001 wereModel Setup
used to specify the initial �i(z) condition. In the objective

A summer fallow period (10 July 2001–26 Sept. 2001) was function, simulated water contents were averaged over 6-cm
selected for the inverse analysis. During this period the root depth intervals to be consistent with the vertical zone of influ-
zone, which was depleted of water by the preceding safflower ence of the capacitance sensors (e.g., Paltineanu and Starr,
crop, was gradually replenished by capillary rise from the 1997). The value of hA was decreased from �105 to �106 cm
groundwater table. Daily rainfall (practically none) and refer- after trial calculations showed that maintaining hA � �105

ence evapotranspiration for the simulation period were taken sometimes caused unrealistically high water contents in the
from a California Irrigation Management Information System topsoil.
weather station located about 500 m from the lysimeter. The Note that a homogeneous soil profile was assumed in the
reference evapotranspiration was converted to potential evap- model while the lysimeter soil actually contained three hori-
oration for bare soil using the dual crop coefficient procedure zons (silty clay Ap, 0–20 cm; silty clay B1, 20–75 cm; and clay
of Allen et al. (1998). For two 4-d periods (3–6 Aug. 2001 and B2, 75–120 cm). This means that the optimized soil hydraulic
14–17 Sept. 2001), the lysimeter was covered with a plastic parameters constitute a compromise between the hydraulic

properties of the B1 horizon and the B2 horizon (water contentsheet during sprinkler irrigation of the surrounding (fallow)
data from shallow depths were not included in the objectivefield. Potential evaporation during these times was set to zero.
function). The hydraulic properties should therefore be viewedThe depth of the groundwater table as measured in the obser-
as effective properties for the subsoil. In practice, the parame-vation well varied between 88 and 100 cm below the soil
ters will mainly represent the B1 horizon, since the hydraulicsurface during the calculation period.
parameters are most sensitive to the water content changesThe safflower crop preceding the fallow period was drip
at shallow depths where the soil is initially relatively dry.irrigated and planted in rows. This resulted in a horizontally
Simultaneous optimization of the soil hydraulic properties forand vertically heterogeneous soil moisture pattern. The het-
the individual soil horizons was not attempted because oferogeneous pattern persisted after the crop was harvested and
the nonuniqueness problems discussed above, and becausethe irrigation was halted. During the inverse analysis of the
previous studies indicated that this requires not only �(z,t)fallow period only one-dimensional vertical flow was assumed
data, but also h(z,t) and Q(t) data (e.g., Jacques et al., 2002;for a single (x,y) location. Thus, the water balance fluxes
Ritter et al., 2003).measured with the lysimeter could not be used in the inverse

analysis because they represent an areal average for the com-
plete lysimeter. In contrast, the capacitance probes, which repre- RESULTS AND DISCUSSION

Inverse Solutions
1 The mention of trade or manufacturer names is made for informa-

The earlier results showed that the parameters �r andtion only and does not imply an endorsement, recommendation, or
exclusion by the USDA-ARS. � need to be fixed to obtain unique soil hydraulic param-
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Table 5. Results of the soil hydraulic parameter estimation for the water content monitoring locations L1 and L2 in the groundwater
table lysimeter.†

Number
�r �s � n Ks � SSQ� converged

cm�1 cm d�1

L1
Mean 0.078 0.483 0.002 1.320 0.10 0.5 2.98  10�1 6
CV, % – 0.0 29.1 1.1 34.3 –

L1
Mean 0.078 0.483 0.002 1.215 0.15 �1.055 2.99  10�1 2
CV, % – 0.0 8.1 0.2 6.9 –

L2
Mean 0.078 0.487 0.004 1.241 0.26 0.5 1.31  10�1 11
CV, % – 0.0 13.0 0.6 17.4 –

L2
Mean 0.078 0.487 0.004 1.178 0.32 �1.055 1.31  10�1 6‡
CV, % – 0.0 7.5 0.2 9.0 –

† Number of attempted Levenberg–Marquardt minimizations is 50.
‡ One solution was rejected because the minimization converged in to a local minimum (SSQ� of 1.90 as compared with an average SSQ� of 1.31  10�1).

eter sets. Even then, not all optimizations for the hypo- hydraulic parameters. Table 5 also shows that the value
thetical soil arrived at the true parameter values; with for � has only a limited influence on the value of the
�(z,t) data in the objective function, only 17 out of 35 other parameters and on the value of the objective func-
converged optimizations resulted in parameter sets that tion SSQ�.
were �5% from the true parameter values. The problem It is important to note that the converged LM minimi-
now is to estimate �r and � for the lysimeter soil. The zations generally end up at approximately the same
value of �r was fixed to 0.078, which is an estimate of the values for � and Ks, despite the high parameter correla-
hygroscopic water content based on thermogravimetric tion between these parameters. The sole exception is
measurements on undisturbed samples from a soil simi- one solution for L2 with � � �1.055 that yielded Ks �
lar to that of the lysimeter (Kelleners et al., 2004). The 17.52 cm d�1 and � � 0.022 cm�1. However, the SSQ�
stability analysis for the hypothetical soil showed that value of 1.90 for this solution was clearly out of line
the estimation of � is more critical, so two different with all other solutions, and was therefore not included
values were selected. The value of � was fixed to 0.5, in Table 5. Apparently, the LM minimization ended up
as suggested by Mualem (1976), and to �1.055, as pre- in a local minimum in this case. It appears that high
dicted by Rosetta. Each of the LM minimizations was parameter correlation does not prevent the LM algo-
repeated 50 times with 50 initial parameter estimates rithm from finding the approximate solution, provided
selected randomly from the same predetermined param- multiple initial parameter estimates are used. However,
eter intervals as for the hypothetical soil. These parame- parameter correlation slows down the minimization pro-
ter intervals were also used as bounds during the minimi- cess in the sense that more iterations are required to
zation process. arrive at a solution. This is probably the reason why

The results of the parameter estimation for L1 and several of the attempted minimizations did not converge
L2 in the lysimeter soil are shown in Table 5. The opti- within 20 iterations, both for the hypothetical soil and
mized �s and n values of 0.483 to 0.487 and 1.178 to the lysimeter soil.
1.320, respectively, fall within the expected range for a
silty clay soil. The low CV values for �s and n indicate Soil Hydraulic Propertiesthat these parameters were reliably identified. The opti-

The soil hydraulic parameter estimates for � � 0.5mized values for � and Ks were 0.002 to 0.004 cm�1

were selected for further analysis. We preferred the � �and 0.1 to 0.32 cm d�1, respectively. These values are
0.5 estimates over the � � �1.055 estimates because ofrelatively low but not unrealistic. The elevated CV val-
the higher number of converged minimizations (Tableues for � and Ks show that there is more uncertainty
5). The calculated soil hydraulic properties for L1 andin these parameters. Also, there is strong correlation
L2 are depicted in Fig. 7, together with the Rosettabetween � and Ks (correlation coefficient 	 0.99). Low
prediction based on soil texture and dry bulk densityCV values for �s and n, high CV values for � and Ks,
data. Two water retention curves and two hydraulicand high parameter correlation between � and Ks were
conductivity curves are calculated for each location, rep-also found for the hypothetical soil when �(z,t) data
resenting the upper and lower bounds according to thewere used for fitting (Table 1, �r and � fixed).
hydraulic parameter estimates.The differences between the optimized soil hydraulic

The optimized (Hydrus) water retention curves pointparameters for L1 and L2 are small. This is encouraging
toward a finer textured soil than the predicted (Rosetta)because it indicates that the assumption of strictly verti-
curve. Also, the optimized hydraulic conductivity iscal flow is not unreasonable. The water contents at the
roughly one order of magnitude lower than the pre-start of the calculation period were different for L1 and
dicted hydraulic conductivity for �100 � h � 0. TheL2. If significant horizontal fluxes would have occurred
optimized soil hydraulic properties should only be usedin the lysimeter, these different initial conditions would

probably have translated into different optimized soil for the conditions under which they were determined.
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Fig. 8. Measured (symbols) and calculated (lines) volumetric waterFig. 7. Optimized (a) soil water retention and (b) hydraulic conductiv-
content for the 79-d fallow period in the groundwater table lysime-ity functions for the groundwater table lysimeter for Locations 1
ter for (a) Location 1 and (b) Location 2. The numbers in theand 2 compared with the Rosetta predicted soil hydraulic functions
figures refer to the depth below the soil surface of the center offor a silty clay soil.
the sensors.

Thus, the parameters can be used to study capillary rise
from the groundwater table. Flow problems involving front remains unknown, no further conclusions are war-
the drying of soil or flow problems involving downward ranted.
infiltration should not be studied using the present pa- Figure 9 shows the measured and calculated water
rameters. The first category demands a separate study contents with depth for the initial and final day of the
of the soil hydraulic properties during drying while the calculation period. Again, both the lowest and highest
second category requires the inclusion of preferential calculated water contents are included and found to beflow phenomena through macropores.

practically the same. Measured and calculated water
contents compare reasonably well, except in the topsoilMeasured vs. Calculated Water Content
at L2, where the measured values show a clear decrease

Measured vs. calculated water contents with time for in water content with time while the calculated values
all depths included in the objective function are shown hardly changed. This discrepancy could be due to several
in Fig. 8. The effect of uncertainty on the soil hydraulic factors. First, the “wetting” soil hydraulic properties
parameter estimates is assessed by showing both the may be unsuitable to describe the drying process in
lowest and highest calculated water contents at each the topsoil due to the effect of hysteresis. Second, the
depth. The speed of the upward moving wetting front hydraulic properties of the topsoil may differ from theis described reasonable well at both locations and does

hydraulic properties of the subsoil. Third, vapor flow,not differ much for the range of parameter estimates.
which is not included in Hydrus, could be the mainHowever, the rate at which the water content increases
driving force behind the drying of the topsoil. Finally,at individual depths is generally overestimated. This
formation of cracks may result in a loss of contact be-may be related to the measurement volume of the capac-
tween the soil and the plastic access tube of the capaci-itance sensor, which was approximated by a vertical zone
tance probe, resulting in an underestimation of the wa-of influence of 6 cm. Increasing or decreasing the zone
ter content. The true reason for the discrepancy in theof influence in Hydrus did not result in significant im-
topsoil of L2 is probably due to a combination of theseprovements (results not shown). Since the measurement

volume of the sensor in the presence of a sharp wetting factors.
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in Hydrus resulted in an overestimation of the increase
in water content for the 100-cm profile. The 27-mm
increase in the water content of the entire lysimeter
is considerably smaller than the capacitance-measured
increase in water content at L1 (112 mm) and L2 (50
mm). Also, the cumulative upward bottom flux for the
lysimeter (58 mm) was lower than the Hydrus-calculated
mean upward flux (125 and 93 mm for L1 and L2, respec-
tively). This indicates that both L1 and L2 represented
relatively dry locations in the lysimeter at the start of
the calculation period. This is probably due to the fact
that both capacitance probes were located inside a crop
row where root water uptake from the preceding saf-
flower crop was highest. If horizontal soil water fluxes
occurred in the lysimeter, they would have probably
added water to locations L1 and L2. This may have
resulted in an overestimation of the hydraulic conductiv-
ity in this study.

CONCLUSIONS
Results for the hypothetical soil showed that the flow

variables �(z,t), h(z,t), and Q(t) for the upward flow
problem were most sensitive to the n parameter in the
VGM model and least sensitive to the �r and � parame-
ters. The response surfaces showed that the inclusion
of �(z,t) data in the objective function is essential for
parameter identifiability. With only h(z,t) or Q(t) data
in the objective function, there is insufficient informa-
tion about the water retention �(h) of the soil. The
inverse analysis showed that the �r and � parameters
needed to be fixed during parameter estimation, even
if �(z,t) and Q(t) data were combined in the objective
function. Fixing the parameters that were least sensitive
to the flow variables decreased the degrees of freedom
in the parameter optimization in the most efficient man-

Fig. 9. Initial and final measured (symbols) and calculated (lines) ner. With only �(z,t) in the objective function, the LM
volumetric water content with depth for the 79-d fallow period in algorithm was capable of finding the correct soil hydraulic
the groundwater lysimeter for (a) Location 1 and (b) Location 2. parameters, provided that �r and � were fixed, and pro-

vided that multiple initial parameter estimates were used.
Water Balance The hydraulic properties of the silty clay lysimeter

soil were determined for two (x,y) locations using �(z,t)The cumulative water balances for L1 and L2 and for
data and multiple initial parameter estimates. The �rthe entire lysimeter are summarized in Table 6. Ideally,
parameter was fixed to 0.078, and the � parameter wasthe Hydrus-simulated change in water content should
fixed to �1.055 or 0.5. The results of the parameterbe the same as the capacitance-measured change in wa-
estimation showed that consistent sets of soil hydraulicter content at each location. This is not the case for L2,
parameters could be determined for both locations. Dif-where the underestimation of the drying of the topsoil
ferences in the hydraulic parameters for the two loca-
tions were limited. The variability in the optimized �Table 6. Cumulative water balance terms for the summer fallow

period for the groundwater table lysimeter. Results for Hydrus and Ks values was higher than the variability in the �s
are averages using all converged soil hydraulic parameter esti- and n values because of the high parameter correlation
mates. Values in parentheses denote coefficient of variability between � and Ks. The optimized parameters were not(CV).

very sensitive to the value of �. Measured and calculated
Upward Change in �(z,t) values agreed reasonably well, although the model

Precipitation Runoff Evaporation bottom flux water content generally overestimated the rate at which the water con-
mm tent increased at individual depths. The optimized soil
L1 hydraulic properties can be used to study capillary rise

Hydrus 0 0 (0) 0 (4.6) 125 (0.4) 125 (0.4) from the groundwater table.
Cap. probe 112

L2
REFERENCESHydrus 0 0 (0) 3 (5.9) 93 (0.3) 91 (0.3)

Cap. probe 50 Abbaspour, K.C., M.Th. van Genuchten, R. Schulin, and E. Schläppi.
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