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Success with Geophysics: Stories from the Field
FastTIMES welcomes short articles on applications of geophysics to near-surface engineering or environmental problems. 
In the article below, Dennis Corwin and Scott Lesch provide a glimpse into the world of precision agriculture, where differ-
ences in soil electrical properties can have significant implications for field management and crop yield. 

Application of Geo-referenced Geophysical Measurements 
to Precision Agriculture
by Dennis L. Corwin1 and Scott M. Lesch2

1USDA-ARS, U.S. Salinity Laboratory, 450 West Big Springs Road, Riverside, California  (Dennis.Corwin@ars.usda.gov)
2Department of Environmental Sciences, University of California, Riverside, California (Scott.Lesch@ars.usda.gov)

Introduction
Conventional agriculture treats an entire field uniformly with respect to the application of fertilizer, pes-
ticides, soil amendments, and other inputs. However, soil is spatially heterogeneous, with most soil 
chemical and physical properties varying significantly within just a meter. Soil spatial heterogeneity is 
one of several factors that cause within-field variation in crop yield. Other spatially and/or temporally 
variable factors influencing within-field variation in crop yield include anthropogenic (for example, ir-
rigation management and compaction due to equipment), biological (for example, disease and pests), 
meteorological (for example, humidity, rainfall, and wind), and topographical (for example, slope and 
aspect) factors. The inability of conventional farming to address within-field variations in these factors 
not only has a detrimental economic impact due to reduced yield in certain areas of a field, but also 
detrimentally impacts the environment due to over applications of agrochemicals and wastes finite re-
sources, such as pesticides, fertilizers, and irrigation water.

Site-specific crop management refers to the application of precision agriculture to crop production. Site-
specific crop management has been proposed as a means of managing the spatial variability of edaphic 
(soil related), anthropogenic, topographical, biological, and meteorological factors that influence crop 
yield with the aim of increasing profitability, increasing crop productivity, sustaining the soil-plant envi-
ronment, optimizing inputs, and/or minimizing detrimental environmental impacts. A fundamental aspect 
of site-specific crop management is the delineation of site-specific management units (SSMUs), which 
are spatial domains of soil that can be managed similarly to optimize yield by accounting for spatial 
variability. The spatial variability of edaphic factors is a consequence of pedogenic and anthropogenic 
influences, which produce variation in soil physical and chemical properties within agricultural fields. 
A variety of soil physical and chemical properties are known to influence crop productivity, including 
plant-available water; infiltration; permeability; soil texture and structure; soil depth; restrictive soil lay-
ers; organic matter; chemical constituents such as fertilizers, pesticides, trace elements, and toxic ions; 
meteorology; and landscape features such as microelevation and topography (Black, 1968; Thornley 
and Johnson, 1990; Hanks and Ritchie, 1991; Tanji, 1996). In the arid southwestern USA the primary 
soil properties influencing crop yield are salinity, soil texture and structure, plant-available water, trace 
elements (particularly boron), nutrient deficiency, and ion toxicity from Na+ and Cl- (Tanji, 1996).

Bullock and Bullock (2000) indicate that efficient methods for accurately measuring within-field varia-
tions in soil physical and chemical properties are important for site-specific crop management. Because 
apparent soil electrical conductivity (ECa) is influenced by a variety of soil physical and chemical prop-
erties (for example, salinity, water content, texture, bulk density, organic matter, and temperature) often 
related to yield and is a reliable easy-to-take measurement, geospatial measurements of ECa have 
become one of the most frequently used measurements to characterize field variability for agricultural 
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applications (Corwin and Lesch, 2003). Spatial measurements of ECa have been used to characterize 
soil salinity, nutrients (for example, NO3

-), water content, texture, bulk density, leaching, and organic 
matter (see review paper by Corwin and Lesch, 2005a).

Geo-referenced ECa measurements have been correlated to associated yield-monitoring data with 
mixed results (Jaynes and others, 1993; Sudduth and others, 1995; Kitchen and others, 1999; Johnson 
and others, 2003; Corwin and others, 2003). These mixed results are due, in part, to a misunderstand-
ing of the relationship between ECa measurements and variations in crop yield. As pointed out by Cor-
win and Lesch (2003), crop yield inconsistently correlates with ECa due to the influence of soil proper-
ties (for example, salinity and water content) that are being measured by ECa, which may or may not 
influence yield within a particular field, and because a temporal component of yield variability is poorly 
captured by a state variable such as ECa.

Geospatial measurements of ECa are a powerful tool in site-specific management when combined with 
GIS, spatial statistics, and crop-yield monitoring. It is hypothesized that in instances where ECa cor-
relates with crop yield, spatial ECa information can be used to direct a soil sampling plan that identifies 
sites that adequately reflect the range and variability of various soil properties thought to influence crop 
yield. The objective is to integrate spatial statistics, GIS, ECa-directed soil sampling, and a crop-yield 
response model (i) to identify edaphic properties that influence cotton yield and (ii) to use this spatial 
information to delineate SSMUs with associated management recommendations for irrigated cotton. 
This article summarizes the previous work conducted and published by Corwin and colleagues (Corwin 
and Lesch, 2003, 2005b; Corwin and others, 2003).

Approach
A 32.4-ha field located in the Broad-
view Water District on the west side 
of California’s San Joaquin Valley 
was used as the study site. Broad-
view Water District is located approx-
imately 100 km west of Fresno, Cali-
fornia. The soil at the site is slightly 
alkaline and has good surface and 
subsurface drainage (Harradine, 
1950). The subsoil is thick, friable, 
calcareous, and easily penetrated by 
roots and water.

Spatial variation of cotton yield was 
measured at the study site in August 
1999 using a four-row cotton picker 
equipped with a yield sensor and 
global positioning system (GPS). A 
total of 7706 cotton yield readings 
were collected (Figure 1a). Each 
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Figure 1. Maps of (a) cotton yield and (b) ECa measurements including the 
locations of the 60 soil core sites. Modified from Corwin and others (2003), 
with permission.
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yield observation represented a total area of approximately 42 m2. From August 1999 to April 2000 the 
field was fallow.

In March 2000 an intensive ECa survey (Figure 1b) was collected using mobile fixed-array electrical 
resistivity (ER, Figure 2) and mobile electromagnetic induction (EMI, Figure 3) equipment developed by 
Rhoades and colleagues at the U. S. Salinity Laboratory (Rhoades, 1992a, 1992b; Carter and others, 
1993).

Corwin and Lesch: Geophysics Applied to Precision Agriculture

Figure 2. Mobile GPS-based electrical resistivity (ER) equipment showing (a) fixed-array tool bar holding four ER electrodes 
and (b) a close-up of one of the ER electrodes.

Figure 3. Mobile GPS-based electromagnetic induction (EMI) equipment showing (a) a side view of the entire rig and (b) a 
close-up of the sled holding the EMI unit.
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The methods and materials used in the ECa survey were those subsequently published as a set of guide-
lines and protocols by Corwin and Lesch (2003, 2005b). The fixed-array ER electrodes were spaced to 
measure ECa to a depth of 1.5 m. Over 4000 ECa measurements were collected (Figure 2b).

Following the ECa survey, soil samples were collected at 60 locations. The data from the ECa survey 
were used to direct the selection of soil sample sites. The ESAP-95 version 2.01 software package 
developed by Lesch and others (1995a, 1995b, 2000) at the U. S. Salinity Laboratory was used to 
establish the locations where soil cores were taken based on the ECa survey data. The software used 
a model-based response-surface sampling strategy to locate the 60 sites. These sites reflected the ob-
served spatial variability in ECa while simultaneously maximizing the spatial uniformity of the sampling 
design across the study area. Figure 1b visually displays the distribution of ECa survey data in relation 
to the locations of the 60 core sites. Soil core samples were taken at each site at 0.3-m increments to a 
depth of 1.8 m: 0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m. The soil samples were analyzed 
for pH, boron (B), nitrate nitrogen (NO3-N), Cl-, salinity (ECe), leaching fraction (LF; defined as the frac-
tion of applied water at the soil surface that drains beyond the root zone), gravimetric water content 
(θg), bulk density (ρb), % clay, and saturation percentage (SP). All samples were stored and analyzed 
for physical and chemical properties following the methods outlined in Agronomy Monograph No. 9 
Part 1 (Blake and Hartage, 1986) and Part 2 (Page and others, 1982).

Statistical analyses were conducted using SAS software (SAS Institute, 1999). The statistical analyses 
consisted of three stages: (i) determination of the correlation between ECa and cotton yield using data 
from the 60 sites, (ii) exploratory statistical analysis to identify the significant soil properties influenc-
ing cotton yield, and (iii) development of a crop-yield response model based on ordinary least squares 
regression adjusted for spatial autocorrelation with restricted maximum likelihood.

Because the location of ECa and cotton yield measurements did not exactly overlap, ordinary kriging 
was used to determine the expected cotton yield at the 60 sites. The spatial correlation structure of 
yield was modeled with an isotropic variogram. The following fitted exponential variogram was used to 
describe the spatial structure at the study site:

where D is the lag distance.

All spatial data were compiled, organized, manipulated, and displayed within a geographic information 
system (GIS). Kriging was selected as the preferred method of interpolation because in all cases it out-
performed inverse distance weighting based on comparisons using jackknifing.

Correlation between Cotton Yield and ECa

The fitted variogram model (Eq. [1]) was used in an ordinary kriging approach to estimate cotton yield at 
the 60 sites. The correlation of ECa to yield at the 60 sites was 0.51. The moderate correlation between 
yield and ECa suggests that some soil property(ies) influencing ECa measurements also influence cot-
ton yield making an ECa-directed soil sampling strategy a viable approach at this site. The similarity of 
the spatial distributions of ECa measurements and cotton yield in Figure 1 visually confirms the reason-
ably close relationship of ECa to yield (R2=0.51).

Corwin and Lesch: Geophysics Applied to Precision Agriculture

[1]
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Exploratory Statistical Analysis
Exploratory statistical analysis was conducted to determine the significant soil properties influencing 
cotton yield and to establish the general form of the cotton yield response model. The exploratory sta-
tistical analysis consisted of three stages: (i) a preliminary multiple linear regression (MLR) analysis, 
(ii) a correlation analysis, and (iii) scatter plots of yield versus potentially significant soil properties. The 
preliminary multiple linear regression analysis and correlation analysis were used to establish the sig-
nificant soil properties influencing cotton yield, while the scatter plots were used to formulate the gen-
eral form of the cotton yield response model. Both preliminary MLR and correlation analysis showed 
that the 0-1.5 m depth increment resulted in the best correlations and best fit of the data; consequently, 
the 0-1.5 depth increment was considered to correspond to the active root zone.

The preliminary MLR analysis indicated that the following soil properties were most significantly related 
to cotton yield: ECe, LF, pH, % clay, θg, and ρb. The correlation between cotton yield and soil properties 
indicated the highest correlation occurred with salinity (ECe).

A scatter plot of ECe and yield indicates a quadratic relationship where yield increases up to a salinity 
of 7.17 dS/m and then decreases (Figure 4a). The scatter plot of LF and yield shows a negative, cur-
vilinear relationship (Figure 4b). Yield shows a minimal response to LF below 0.4 and falls off rapidly 
for LF > 0.4. Clay percentage, pH, θg, and ρb appear to be linearly related to yield to various degrees 
(Figures 4c, 4d, 4e, and 4f, respectively). Even though there was clearly no correlation between yield 
and pH (r = -0.01; Figure 4d), pH became significant in the presence of the other variables, which be-
came apparent in both the preliminary multiple linear regression analysis and in the final yield response 
model.

Corwin and Lesch: Geophysics Applied to Precision Agriculture

Figure 4. Scatter plots of soil properties and cotton yield: (a) electrical conductivity of the saturation extract (ECe, dS/m), 
(b) leaching fraction, (c) percentage clay, (d) pH, (e) gravimetric water content, and (f) bulk density (Mg/m3). From Corwin 
and others (2003), with permission.
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Based on the exploratory statistical analysis it became evident that the general form of the cotton yield 
response model was:

where, based on the scatter plots of Figure 4, the relationships between cotton yield (Y) and pH, per-
centage clay, θg, and ρb are assumed linear; the relationship between yield and ECe is assumed to be 
quadratic; the relationship between yield and LF is assumed to be curvilinear; ß0, ß1, ß2, . . . , ß7 are 
the regression model parameters; and e represents the random error component.

Cotton Yield Response Model Development
Ordinary least squares regression based on Eq. [2] resulted in the following response model:

where the non-significant t test for % clay and ρb indicated that these soil properties did not contribute 
to the yield predictions in a statistically meaningful manner and dropped out of the regression model, 
while all other parameters were significant near or below the 0.05 level. The R2 value for Eq. [3] is 0.61, 
indicating that 61% of the estimated spatial yield variation is successfully described by Eq. [3]. How-
ever, the residual variogram plot indicates that the errors are spatially correlated, which implies that 
Eq. [3] must be adjusted for spatial autocorrelation.

Using a restricted maximum likelihood approach to adjust for spatial autocorrelation, the most robust 
and parsimonious yield response model for cotton was Eq. (4):

A comparison of measured and simulated cotton yields at the locations where ECa-directed soil samples 
were taken showed close agreement, with a slope of 1.13, y-intercept of -0.70, and R2 value of 0.57.

A visual comparison of the measured and simulated spatial yield distributions of cotton shows a spatial 
association between interpolated measured (Figure 5b) and predicted (Figure 5c) maps.

Sensitivity analysis reveals that LF is 
the single most significant factor influ-
encing cotton yield with the degree of 
predicted yield sensitivity to one stan-
dard deviation change resulting in a 
percentage yield reduction for ECe, 
LF, pH, and θg of 4.6%, 9.6%, 5.8%, 
and 5.1%, respectively.

Corwin and Lesch: Geophysics Applied to Precision Agriculture
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Figure 5. Comparison of (a) measured cotton 
yield based on 7706 yield measurements, 
(b) kriged data at 59 sites for measured 
cotton yield, and (c) kriged data at 59 sites 
for predicted cotton yields based on Eq. [4]. 
From Corwin and others (2003), with permis-
sion.
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Conclusions
Based on Eq. [4], Figure 4, and knowledge of the interaction of the significant factors influencing cotton 
yield in the Broadview Water District, four recommendations can be made to improve cotton productiv-
ity at the study site:

1. reduce the LF in highly leached areas (areas where LF > 0.5),

2. reduce salinity by increased leaching in areas where the average root zone (0-1.5 m) 
salinity is > 7.17 dS/m,

3. increase the plant-available water in coarse-texture areas by more frequent irrigation, 
and

4. reduce the pH where pH > 7.9.

Figure 6 indicates the areas pertaining to the above recommendations. All four recommendations can 
be accomplished by improving water application scheduling and distribution and by site-specific appli-
cation of soil amendments. The use of variable-rate irrigation technology at this site would enable the 
site-specific application of irrigation water at the times and locations needed to optimize yield.

Hypothetically, when crop yield correlates with ECa, then spatial distributions of ECa provide a means 
of determining edaphic properties that influence yield. This hypothesis was evaluated and found to hold 
true. A yield map could potentially provide the same capability as an ECa map, but an ECa map pro-
vides information specific to the spatial distribution of edaphic properties, whereas a yield map reflects 
the influence of numerous additional factors.

Even though ECa-directed soil sampling provides a viable means of identifying some soil properties 
that influence within-field variation of yield, it is only one piece of a complicated puzzle of interacting 
factors that result in observed within-field crop variation. Crop yield is influenced by complex interac-

Corwin and Lesch: Geophysics Applied to Precision Agriculture

Figure 6. Site-specific management units for a 32.4-ha cotton field in the Broadview Water District of central California’s 
San Joaquin Valley. Recommendations are associated with the SSMUs for (a) leaching fraction, (b) salinity, (c) texture, and 
(d) pH. From Corwin and Lesch (2005a), with permission.
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tions of meteorological (for example, temperature, humidity, and wind), biological (for example, pests 
and earthworms), anthropogenic (management related), and edaphic (for example, salinity, soil pH, 
and water content) factors. Furthermore, precision agriculture requires more than just a myopic look 
at crop productivity. It must balance sustainability, profitability, crop productivity, optimization of inputs, 
and minimization of environmental impacts. Nevertheless, the presented approach is a step forward 
that provides valuable spatial information for use in site-specific crop management.

Acknowledgments
The authors acknowledge the assistance of Peter Shouse, Richard Soppe, and Jim Ayars. The authors 
also acknowledge the exemplary work of Jack Jobes and JoAn Fargerlund, who performed the field soil 
sample collection and laboratory analyses, respectively.

References
Black, C. A., 1968, Soil-Plant Relationships: 2nd edition, John Wiley & Sons, Inc., New York, NY.

Blake, G. R., and Hartge, K. H., 1986, Bulk density: In: Klute, A. (Ed.) Methods of Soil Analysis, Part 1, Physical and Miner-
alogical Methods, 2nd Edition, Agronomy Monograph No. 9, ASA-CSSA-SSSA, Madison, WI, p. 363–375.

Bullock, D. S., and Bullock, D. G., 2000, Economic optimality of input application rates in precision farming: Prec. Agric., 2, 
p. 71–101.

Carter, L. M., Rhoades, J. D., and Chesson, J. H., 1993, Mechanization of soil salinity assessment for mapping: Proc. 1993 
ASAE Winter Meetings, Chicago, IL, 12-17 Dec. 1993, ASAE, St. Joseph, MI.

Corwin, D. L., and Lesch, S. M., 2003, Application of soil electrical conductivity to precision agriculture: Theory, principles, 
and guidelines: Agron. J., 95, p. 455–471.

Corwin, D. L., and Lesch, S. M., 2005a, Apparent soil electrical conductivity measurements in agriculture: Comput. Electron. 
Agric., 46 (1-3), p. 11–43.

Corwin, D. L., and Lesch, S. M., 2005b, Characterizing soil spatial variability with apparent soil electrical conductivity: I. 
Survey protocols, Comput. Electron. Agric., 46 (1-3), p. 103–133.

Corwin, D. L., Lesch, S. M., Shouse, P. J., Soppe, R., and Ayars, J. E., 2003, Identifying soil properties that influence cotton 
yield using soil sampling directed by apparent soil electrical conductivity: Agron. J., 95, p. 352–364.

Hanks, J., and Ritchie, J. T. (eds.), 1991, Modeling Plant and Soil Systems: Agronomy Monograph No. 31, ASA-CSSA-
SSSA, Madison, WI.

Harradine, F. F., 1950, Soils of western Fresno County California: University of California, Berkeley, CA.

Jaynes, D. B., Colvin, T. S., and Ambuel, J., 1993, Soil type and crop yield determinations from ground conductivity surveys: 
ASAE Paper No. 933552, 1993 ASAE Winter Meetings, 14-17 Dec. 1993, Chicago, IL, ASAE, St. Joseph, MI.

Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., and Doran, J. W., 2003, Site-specific management 
zones based upon soil electrical conductivity in a semiarid cropping system: Agron. J. 95, p. 303–315.

Kitchen, N. R., Sudduth, K. A., and Drummond, S. T., 1999, Soil electrical conductivity as a crop productivity measure for 
claypan soils: J. Prod. Agric., 12, p. 607–617.

Lesch, S. M., Rhoades, J. D., and Corwin, D. L., 2000, ESAP-95 Version 2.01R: User manual and tutorial guide: Research 
Rpt. 146, USDA-ARS George E. Brown, Jr. Salinity Laboratory, Riverside, CA.

Lesch, S. M., Strauss, D. J., and Rhoades, J. D., 1995a, Spatial prediction of soil salinity using electromagnetic induction 
techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging: Water Resour. 
Res., 31, p. 373–386.

Corwin and Lesch: Geophysics Applied to Precision Agriculture

www.eegs.org


FastTIMES  v. 13, no. 2, July 2008 37

Corwin and Lesch: Geophysics Applied to Precision Agriculture

Lesch, S. M., Strauss, D. J., and Rhoades, J. D., 1995b, Spatial prediction of soil salinity using electromagnetic induction 
techniques: 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identification and 
estimation: Water Resour. Res., 31, p. 387–398.

Page, A. L., Miller, R. H., and Kenney, D. R. (Eds.), 1982, Methods of Soil Analysis, Part 2 - Chemical and Microbiological 
Properties: 2nd Ed., Agron. Monogr. No. 9, ASA-CSSA-SSSA, Madison, WI.

Rhoades, J. D., 1992a, Instrumental field methods of salinity appraisal: In: Topp, G. C., Reynolds, W. D., and Green, R. 
E. (Eds.), Advances in Measurement of Soil Physical Properties: Bring Theory into Practice, SSSA Special Publ. 
No. 30, Soil Science Society of America, Madison, WI, p. 231–248.

Rhoades, J. D., 1992b, Recent advances in the methodology for measuring and mapping soil salinity: Proc. Int’l. Sympo-
sium on Strategies for Utilizing Salt-Affected Lands, ISSS Meeting, Bangkok, Thailand, 17-25 Feb. 1992.

SAS Institute, 1999, SAS Software, Version 8.2, SAS Institute, Cary, NC.

Sudduth, K. A., Kitchen, N. R., Hughes, D. F., and Drummond, S. T., 1995, Electromagnetic induction sensing as an indica-
tor or productivity on claypan soils: In: Robert, P. C., Rust, R. H., and Larson, W. E. (Eds.), Proc. 2nd International 
Conference on Site-specific Management for Agricultural Systems, ASA-CSSA-SSSA, Madison, WI, p. 671–681.

Tanji, K. K. (ed.), 1996, Agricultural Salinity Assessment and Management, ASCE, New York, NY.

Thornley, J. H. M., and Johnson, I. R., 1990, Plant and Crop Modeling - A Mathematical Approach to Plant and Crop Physiol-
ogy: Clarendon Press, Oxford, UK.

www.eegs.org

