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Profi les of retained colloids in porous media have frequently 
been observed to be hyper-exponential or non-monotonic with 
transport depth under unfavorable attachment conditions, 
whereas fi ltration theory predicts an exponential profi le. In this 
work we present a stochastic model for colloid transport and 
deposition that allows various hypotheses for such deviations 
to be tested. Th e model is based on the conventional advective 
dispersion equation that accounts for fi rst-order kinetic 
deposition and release of colloids. One or two stochastic 
parameters can be considered in this model, including the 
deposition coeffi  cient, the release coeffi  cient, and the average 
pore water velocity. In the case of one stochastic parameter, the 
probability density function (PDF) is characterized using log-
normal, bimodal log-normal, or a simple two species/region 
formulation. When two stochastic parameters are considered, 
then a joint log-normal PDF is employed. Simulation results 
indicated that variations in the deposition coeffi  cient and 
the average pore water velocity can both produce hyper-
exponential deposition profi les. Bimodal formulations 
for the PDF were also able to produce hyper-exponential 
profi les, but with much lower variances in the deposition 
coeffi  cient. Th e shape of the deposition profi le was found to 
be very sensitive to the correlation of deposition and release 
coeffi  cients, and to the correlation of pore water velocity and 
deposition coeffi  cient. Application of the developed stochastic 
model to a particular set of colloid transport and deposition 
data indicated that chemical heterogeneity of the colloid 
population could not fully explain the observed behavior. 
Alternative interpretations were therefore proposed based on 
variability of the pore size and the water velocity distributions.
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Colloid deposition in porous media has typically been quantifi ed 

using clean-bed fi ltration theory (e.g., Logan et al., 1995; 

Tufenkji and Elimelech, 2004a). Th is theory invokes a fi rst-order 

colloid attachment term, which produces an exponential spatial 

distribution of retained colloids. Over the past decade a growing body 

of literature indicates that clean-bed fi ltration theory frequently does 

not provide an accurate characterization of experimental deposition 

profi les under unfavorable (when repulsive electrostatic interactions 

exist between the colloids and grain surfaces) attachment conditions 

(Camesano and Logan, 1998; Bolster et al., 1999; Redman et al., 

2001; Bradford et al., 2002; Tufenkji et al., 2003; Li et al., 2004; 

Tufenkji and Elimelech, 2005a, 2005b). In this case, retained colloids 

frequently exhibit a depth-dependent deposition rate which produces 

hyper-exponential (a decreasing rate of deposition with increasing 

distance) (Albinger et al., 1994; DeFlaun et al., 1997; Baygents et al., 

1998; Simoni et al., 1998; Bolster et al., 2000; Zhang et al., 2001; 

Redman et al., 2001; Bradford et al., 2002; Li et al., 2004; Bradford 

and Bettahar, 2005) or non-monotonic (a peak in retained colloids 

away from the injection source) (Tong et al., 2005; Bradford et al., 

2006b) deposition profi les. Experimental deposition profi les for larger 

colloids and fi ner textured porous media have also been reported to be 

less consistent with exponential profi les that are predicted by fi ltration 

theory (Bradford et al., 2003; Tufenkji and Elimelech, 2005a).

A variety of explanations for the observed deviations from fi ltra-

tion theory predictions have been proposed in the literature. Proposed 

chemical explanations include porous media charge variability (John-

son and Elimelech, 1995), heterogeneity in surface charge character-

istics of colloids (Bolster et al., 1999; Li et al., 2004), deposition of 

colloids in the secondary energy minimum of the Derjaguin-Landau-

Verwey-Overbeek (DLVO) interaction energy curves (Redman et 

al., 2004; Hahn et al., 2004; Tufenkji and Elimelech, 2005a), time-

dependent attachment (Tan et al., 1994; Liu et al., 1995), and colloid 

detachment (Tufenkji et al., 2003). Other researchers have suggested 

that deposition may occur as a result of physical factors that are not 

included in fi ltration theory, such as straining (deposition of colloids 

in small pores such as those formed at grain-grain junctions) (Cushing 

and Lawler, 1998; Bradford et al., 2002, 2003, 2004, 2005, 2006a, 

2006b; Li et al., 2004; Tufenkji et al., 2004; Bradford and Bettahar, 

2005; Foppen et al., 2005), soil surface roughness (Kretzschmar et al., 

1997; Redman et al., 2001), and hydrodynamic drag (Li et al., 2005).

Various mathematical models have been formulated to characterize 

hyper-exponential and non-monotonic deposition profi les and associ-
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ated colloid breakthrough curves (Bradford et al., 2003, 2006b; 

Tufenkji et al., 2003; Tufenkji and Elimelech, 2004b, 2005a, 

2005b; Li et al., 2004). In particular, stochastic models have been 

used to account for chemical heterogeneity of colloid and grain 

surfaces on colloid deposition in column-scale studies (Tufenkji 

et al., 2003; Tufenkji and Elimelech, 2004b, 2005a, 2005b; Li et 

al., 2004). In these works various probability density functions for 

the colloid attachment coeffi  cient have been proposed (Tufenkji 

et al., 2003) and utilized to characterize hyperexponential deposi-

tion profi les. Diff erences in the stochastic modeling approaches 

for colloid deposition include the selected attachment coeffi  cient 

probability density function and the solution technique of the 

governing transport equation (steady-state analytical solution that 

neglects dispersion or using a transient transport particle tracking 

algorithm). Other stochastic models for colloid transport that have 

appeared in the literature have focused on large-scale transport be-

havior in heterogeneous systems (Rehmann et al., 1999; Maxwell 

et al., 2003; Bekhit and Hassan, 2005).

Th e objective of this work is to present the development and 

utilization of a stochastic model for colloid transport and deposi-

tion. Published research has only provided a limited discussion 

of the physical and/or chemical basis for selected probability 

density functions that describe colloid attachment. Furthermore, 

alternative explanations for fi tted deposition coeffi  cient distribu-

tions such as variations in the colloid size, the pore size, and the 

velocity distributions have not been discussed. In this work we 

attempt to utilize deposition coeffi  cient distributions that are 

consistent with measured colloid or porous medium properties. 

Furthermore, stochastic models provide an opportunity to study 

the eff ects of coupling of several stochastic variables on colloid 

transport and deposition processes. Th is includes the potential 

interactions of colloid deposition and release coeffi  cients with 

each other and with water velocity.

Colloid Transport Model
Th e CXTFIT program (Toride et al., 1995) is the foundation 

for our stochastic modeling eff ort. Th is code includes the analyti-

cal solution for the one-dimensional advective dispersion equation 

with one-site kinetic chemical nonequilibrium deposition subject 

to various initial and boundary conditions. Th is model formula-

tion is equivalent to the well-known fi rst-order attachment and 

detachment model that is commonly employed to describe colloid 

transport and deposition (e.g., Harvey and Garabedian, 1991; 

Corapcioglu and Choi, 1996; Bolster et al., 1999; Schijven and 

Hassanizadeh, 2000). Th is analytical solution is used in conjunc-

tion with the stochastic stream tube model in CXTFIT to explore 

colloid transport and deposition. Jury and Roth (1990) provide 

additional information on assumptions that are employed in the 

stochastic stream tube model. Relevant aspects of this code and 

specifi c model adaptations are discussed below.

Deterministic Colloid Transport and Deposition
When the volumetric water content and fl ux remain con-

stant in time (steady-state water fl ow), the aqueous phase 

mass balance equation for colloids can be written as:

2
rb

d2
w

kC C C= D v C + Sk
t zz

ρ∂ ∂∂ − −
∂ ∂∂ θ  [1]

where C (N
c
 L−3; N

c
 and L denotes the number of colloids and 

length, respectively) is the colloid concentration in the aqueous 

phase, t (T) is time, z (L) is depth, D is the hydrodynamic 

dispersion coeffi  cient (L2 T−1), v is the average pore water velocity 

(L T−1), ρ
b
 (M L−3; M denotes mass) is the soil bulk density, S (N

c
 

M −1) is the solid phase concentration of the retained colloids, 

θ
w
 (−) is the volumetric water content, and k

d
 (T−1) and k

r
 (T−1) 

are the fi rst-order colloid deposition and release coeffi  cients, 

respectively. Th e corresponding colloid mass balance equation for 

the solid phase is given as:

rb b
d

w w

S k= C Sk
t

ρ ρ∂
−

∂θ θ  [2]

Clean bed attachment is assumed and fi ltration theory is 

incorporated into the k
d
 term of Equations [1] and [2] when 

k
r
 = 0 (e.g., Yao et al., 1971; Logan et al., 1995) as:

w
d

50

3(1 )
2

= vk
d
−θ ηα

 [3]

where η (−) is the collector (porous medium) effi  ciency, α (−) is 

the colloid sticking effi  ciency, and d
50

 (L) is the median porous 

medium grain diameter. Th e collector effi  ciency accounts for 

the mass fl ux of colloids to the collector surface via diff usion, 

interception, and gravitational sedimentation and is defi ned as 

the ratio of the total colloid fl ux which strikes the collector (grain 

surface) to the rate at which particles fl ow toward the collector 

(Yao et al., 1971). Th e value of η is frequently calculated using 

correlations written in terms of dimensionless variables (e.g., 

Rajagopalan and Tien, 1976; Logan et al., 1995; Tufenkji and 

Elimelech, 2004a). Th e sticking effi  ciency is defi ned as the ratio 

of the deposition fl ux under unfavorable relative to favorable 

conditions. Th e value of α is typically assumed to depend on 

the surface chemistries of the colloids and the grain surfaces 

(Ryan and Elimelech, 1996), and to be independent of the water 

velocity and the size of the colloid and the collector because 

these factors are accounted for by η in Eq. [3]. In practice α is 

usually derived from experimental breakthrough curves, or from 

fi tted values of k
d
 and calculated values of η, although theoretical 

approaches have also been proposed to predict α (Simoni et al., 

1998; Ryan et al., 1999; Dong et al., 2002).

One Stochastic Variable
Th e value of k

d
 that is found in Eq. [1–3] is typically as-

sumed to be constant. In the stochastic modeling approach, 

parameters may be defi ned by probability density functions. 

If k
d
 is considered to be stochastic, we assume a log-normal 

probability density function (PDF) that is defi ned as:

2
d

d
dd

1( ) exp
22
YF =k

k

⎡ ⎤
⎢ ⎥−
⎢ ⎥πσ ⎣ ⎦  [4]

where σ
d
 is the standard deviation of the log-normal 
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probability density function, and Y
d
 is the normalized log-

transformed variable defi ned as:

d d
d

d

ln( )k=Y
−μ

σ  [5]

Here μ
d
 is the mean value of the log-normal probability 

density function defi ned as μ
d
 = ln( < k

d
 > ) − 0.5σ

d
2, where 

< k
d
 > is the ensemble average of k

d
. Th e subscript d is used 

on σ
d
, Y

d
, and μ

d
 to identify parameters associated with the 

deposition coeffi  cient. Subscripts r and v are used in a similar 

fashion to identify parameters associated with the release 

coeffi  cient and the pore water velocity, respectively.

Th e mean aqueous and solid phase colloid concentrations 

at a given depth and time can be determined for various func-

tional forms of F(k
d
) as:

( ) ( ) ( )d d d
0

, , ;C z t C z t k F k dk
∞

= ∫
 [6]

and

( ) ( ) ( )d d d
0

, , ;S z t S z t k F k dk
∞

= ∫
 [7]

where C(z,t; k
d
) and S(z,t; k

d
) are aqueous and solid phase colloid 

concentrations determined from the analytical solution of Eq. 

[1] and [2]. Th e variance in aqueous and solid phase colloid 

concentrations can also be calculated using this stochastic 

modeling approach (e.g., Toride et al., 1995). For example, the 

variance of S(z,t) is given as < S(z,t)S(z,t) > − < S(z,t) > 2. If v 

is stochastic and k
d
 is constant, Eq. [4–7] can be rewritten by 

replacing k
d
 with v, σ

d
 with σ

v
, Y

d
 with Y

v
, and μ

d
 with μ

v
.

As an alternative to Eq. [4], bimodal log-normal distribu-

tions may be employed to describe more complex transport 

and deposition behavior (Tufenkji et al., 2003) as:

( )2 2
1d1 d21

d
d1 d2d d

1
( ) exp exp

2 22 2
ff Y YF = +k

k k

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥π πσ σ⎣ ⎦ ⎣ ⎦  [8]

Here f
1
 denotes the fraction of k

d
 that is assigned to log-normal 

distribution 1. Subscripts 1 and 2 are included on σ
d
, Y

d
, and μ

d
 

and < k
d
 > to identify the two log-normal distributions. When σ

d1
 

and σ
d2

 approach zero values, F(k
d
) that is given by Eq. [8] can be 

approximated by the following simple functional form:

( ) ( ) ( ) ( )d 1 d d1 1 d d2F k f k k f k k= δ − + 1− δ −
 [9]

where δ is the Dirac delta function, and k
d1

 and k
d2

 are used to 

distinguish the two deposition coeffi  cients. Equations [8] and [9] 

can both be used in Eq. [6] and [7] to determine < C(z,t) > and < 

S(z,t) >. When using Eq. [9], however, the stochastic model for k
d
 

(Eq. [6–7]) reduces to the following simple equations:

( ) ( ) ( ) ( )1 d1 1 d2, , ; 1 , ;C z t f C z t k f C z t k= + −
 [10]

and

( ) ( ) ( ) ( )1 d1 1 d2, , ; 1 , ;S z t f S z t k f S z t k= + −
 [11]

Two Stochastic Variables
If both k

d
 and k

r
 are assumed to be log-normal stochastic 

parameters that are correlated, then a joint probability density 

function is defi ned as:

( )
2 2

r dr ddr
d r 22

drd r d r dr

21( ) exp
2 12 1

Y +YY YF , =k k
k k

⎡ ⎤− ρ⎢ ⎥−⎢ ⎥
−ρ⎢ ⎥πσ σ −ρ ⎣ ⎦  [12]

Th e parameter ρ
dr
 is the correlation coeffi  cient between Y

d
 and 

Y
r
 and is defi ned as:

dd r dr rdr
0 0

d r= = F( ,k dk dk)Y kY Y Y
∞ ∞

ρ ∫ ∫
 [13]

When Y
d
 and Y

r
 are perfectly correlated then ρ

dr
 = 1, when 

they are uncorrelated ρ
dr
 = 0, and when they are perfectly 

inversely correlated ρ
dr
 = −1.

Th e mean aqueous and solid phase colloid concentrations 

at a given depth and time can also be determined for two log-

normally distributed parameters k
d
 and k

r
 as:

( ) ( ) ( )d r d r d
0 0

r, , ; , ,C z t C z t k k F k k dk dk
∞ ∞

= ∫ ∫
 [14]

and

( ) ( ) ( )d r d r d
0 0

r, , ; , ,S z t S z t k k F k k dk dk
∞ ∞

= ∫ ∫
 [15]

where C(z,t; k
d
, k

r
) and S(z,t; k

d
, k

r
) are again the aqueous 

and solid phase colloid concentrations determined from the 

analytical solution of Eq. [1] and [2]. Th e variance in solid 

phase colloid concentrations is again given as < S(z,t)S(z,t) > 

− < S(z,t) > 2 when using the two parameter stochastic model. 

Alternatively, if k
d
 and v are stochastic and k

r
 is constant, Eq. 

[12–15] can be rewritten by replacing k
r
 and v.

Example Simulations
In this section we present illustrative examples of colloid 

transport and deposition for the various stochastic models. Break-

through curves (at a depth of 10 cm) are plotted herein with the 

relative fl ux concentrations on the y axis and time on the x axis. 

When v is constant, the relative fl ux concentration is equal to < C 
> /C

i
 where C

i
 (N

ic
 L−3; N

ic
 is the number of colloids in a unit vol-

ume of C
i
) is the initial colloid concentration in the infl uent sus-

pension. In contrast, when v is stochastic the relative fl ux concen-

tration is defi ned as < vC > /( < v > C
i
) and the amount of colloids 

added to a given stream tube is dependent on the velocity of the 

stream tube. Additional details are given in Toride et al. (1995) on 

the determination of fl ux concentrations. Final deposition profi les 

(after 250 minutes) are plotted herein with the normalized solid 

phase colloid concentration, defi ned as < S > /N
ic
, on the x axis and 

distance from the column inlet on the y axis. A third-type bound-
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ary condition was used at the inlet, and a concentration gradient of 

zero was fi xed at z equal to infi nity. Th e initial concentration in the 

simulation domain was zero. Th e colloid pulse duration in all cases 

was 75 min. Other input model parameters for the simulations 

presented in this section are provided in the fi gure captions.

Figure 1 presents colloid breakthrough curves (Fig. 1a) and 

deposition profi les (Fig. 1b) when k
d
 is stochastic and the value of 

σ
d
 from the log-normal probability density function (Eq. [4]) is 0, 

0.5, and 1.0. Trends in Fig. 1 can be explained by diff erences in the 

probability density function. When σ
d
 = 0 the stochastic model re-

duces to the conventional fi rst-order attachment-detachment mod-

el, and the deposition profi le (Fig. 1b) is very close to exponential 

with depth because k
r
 is low (0.001 min−1). In contrast, when σ

d
 

increased, the spread of the log-normal distribution increased and 

the distribution became more asymmetric, with a greater frequency 

of low and high values of k
d
. Th e value of < k

d
 > was always the 

same for the simulations presented in Fig. 1, but μ
d
 decreased 

with increasing σ
d
. Th is produced higher effl  uent concentrations 

(Fig. 1a) and corresponding less deposition (Fig. 1b). Th e deposi-

tion profi les for the σ
d
 > 0 cases exhibited greater curvature near 

the sand surface than the σ
d
 = 0 simulation (Fig. 1b), and were 

therefore increasingly hyperexponential with increasing σ
d
. Th is 

observation can be attributed to the variance of the deposited col-

loids, which was greatest near the column inlet and increased with 

increasing σ
d
 (Fig. 1c) due to higher values of k

d
 in the log-normal 

distribution. Conversely, as the distance of transport increased, the 

remaining colloids in solution were associated with lower values of 

k
d
 in the log-normal distribution that produced a lower variance of 

S/N
ic
 in Fig. 1c. Hence, the shape of the probability density func-

tion of mobile colloids in solution eff ectively became more uni-

form (the variance decreased) with increasing transport distance.

Figure 2 presents similar information as in Fig. 1, but for 

the case of stochastic v and constant k
d
 and k

r
. In Fig. 2a in-

creasing σ
v
 produced earlier breakthrough times, higher effl  u-

ent concentrations, and the breakthrough curves tended to be 

more asymmetric. Th ese observations can be explained by the 

increased spread in the velocity distribution, which produced 

a small fraction of faster stream tubes that transported most of 

the colloids. In Fig. 2b the deposition profi les become more 

hyperexponential (exhibited greater curvature near the surface 

than the exponential, σ
v
 = 0, case) as σ

v
 increased for similar 

reasons. Th e shape and magnitude of the deposition profi les 

in Fig. 1b and 2b were quite similar for identical variations in 

k
d
 or v. Th e variance of deposited colloids, however, was much 

lower for stochastic v (Fig. 2c) than stochastic k
d
 (Fig. 1c).

Figure 3 presents colloid breakthrough curves (Fig. 3a) and 

deposition profi les (Fig. 3b) when k
d
 is stochastic according to 

Eq. [8]. Specifi c parameter values for these simulations were 

σ
d1

 = 0.1, σ
d2

 = 0.1, < k
d1

 > = 0.015 min−1, < k
d2

 > = 0.3 min−1, 

and f
1
 equal to 0, 0.25, 0.5, 0.75, and 1.0. As f

1
 increased the 

effl  uent concentration increased and the amount of deposition 

decreased. Comparison of the simulation results shown in Fig. 

1 and 3 suggest that much lower variances in k
d
 were needed 

to obtain hyperexponential profi les when using F(k
d
) described 

by Eq. [8] than Eq. [4]. In fact, variations in σ
d1

 and σ
d2

 had 

a relatively low impact on measured breakthrough curves and 

deposition profi les compared with changes in f
1
. Th is observa-

tion indicates that Eq. [9–11] may be used as a relatively simple 

means of simulating hyperexponential deposition profi les.

Figure 4 presents colloid breakthrough curve (Fig. 4a) and 

deposition profi les (Fig. 4b) when k
d
 and k

r
 are both log-normal 

stochastic parameters and values of ρ
dr
 = −1, −0.5, 0, 0.5, and 

1. Relevant model parameters for these simulations were < k
d
 

> = 0.03 min−1, < k
r
 > = 0.005 min−1, σ

d
 = 1, and σ

r
 = 1. It is 

Fig. 1. (a) Plot of the relative fl ux concentration, < C > /C
i
, at a depth of 

10 cm as a function of time when k
d
 is stochastic and the value of 

σ
d
 from the log-normal probability density function (Eq. [4]) is 0, 

0.5, and 1.0. (b, c) Corresponding normalized solid phase colloid 
concentration, < S > /N

ic
, and associated variance after 250 min 

with depth, respectively. Model parameters that were employed 
in these simulations were D = 0.0313 cm2 min−1, v = 0.313 cm 
min−1, < k

d
 > = 0.03 min−1, and k

r
 = 0.001 min−1.
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logical to anticipate that negative values of ρ
dr
 are more physi-

cally realistic than positive values, because they imply that sites 

with greater deposition rates retain colloids more strongly (less 

reversibly) than sites with lower deposition rates. Conversely, 

increasingly positive values of ρ
dr
 imply the opposite trend. 

Changes in ρ
dr
 had little infl uence on the early portion of the 

breakthrough curves. Th e concentration tailing portion of the 

breakthrough curves, however, was sensitive to values of ρ
dr
, 

with increased tailing occurring when ρ
dr
 = 1.0 because these 

deposited colloids were retained more weakly. Th e deposition 

profi les were very sensitive to values of ρ
dr
. When ρ

dr
 = −1.0 

the deposition profi les were more hyperexponential because 

retained colloids with the greatest deposition rates occur near 

the column inlet and were more strongly retained than those 

at greater transport distances. As ρ
dr
 increased from −1 to 0.5 

the profi les became less hyperexponential (more uniform with 

depth), and ρ
dr
 = 1 produced a profi le that was nonmonotonic. 

Although the values of σ
d
 and σ

r
 were the same in all the simu-

lations, the variance of the deposited colloids after 250 min was 

highest for decreasing values of ρ
dr
 (Fig. 4c), especially near the 

column inlet. When ρ
dr
 = −1 the variability in the deposition 

profi le was more persistent because these colloids were more 

strongly retained (less reversible) than when ρ
dr
 = 1.

Figure 5 presents colloid breakthrough curves (Fig. 5a) and 

deposition profi les (Fig. 5b) when v and k
d
 are both log-normal 

stochastic parameters and values of ρ
vd

 = −1, −0.5, 0, 0.5, and 1. 

Other relevant model parameters for these simulations were < v > = 

0.313 cm min−1, < k
d
 > = 0.03 min−1, k

r
 = 0.001 min−1, σ

v
 = 1, and 

σ
d
 = 1. Decreasing values of ρ

vd
 imply that higher transport veloci-

Fig. 2. (a) Plot of the relative fl ux concentration, < vC > /( < v > C
i
), at a 

depth of 10 cm as a function of time when v is stochastic and the 
value of σ

v
 from the log-normal probability density function (Eq. 

[4]) is 0, 0.5, and 1.0. (b, c) Corresponding normalized solid phase 
colloid concentration, < S > /N

ic
, and associated variance after 

250 min with depth, respectively. Model parameters that were 
employed in these simulations were D = 0.0313 cm2 min−1, < v > = 
0.313 cm min−1, k

d
 = 0.03 min−1, and k

r
 = 0.001 min−1.

Fig. 3. (a) Plot of the relative fl ux concentration, < C > /C
i
, at a depth of 10 cm 

as a function of time when k
d
 is stochastic, the values of σ

d1
 = 0.1 and 

σ
d2

 = 0.1 from the bimodal log-normal probability density function 
(Eq. [8]), and f

1
 is equal to 0, 0.25, 0.5, 0.75, and 1. (b) Corresponding 

normalized solid phase colloid concentration, < S > /N
ic
, after 250 min 

with depth. Other model parameters that were employed in these 
simulations were D = 0.0313 cm2 min−1, v = 0.313 cm min−1, < k

d1
 > = 

0.015 min−1, < k
d2

 > = 0.3 min−1, and k
r
 = 0.001 min−1.
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ties are associated with lower deposition rates. Negative values of 

ρ
vd

 are believed to be more physically realistic than positive values 

of ρ
vd

 because recent experimental evidence demonstrates that the 

value of α in Eq. [3] deceased with increasing water velocity under 

unfavorable attachment conditions (Tong et al., 2005; Johnson 

et al., 2006). Decreasing ρ
vd

 in Fig. 5a produced higher effl  uent 

concentrations and less concentration tailing. In Fig. 5b when 

ρ
vd

 = −1.0 the deposition profi les were more hyperexponential 

because retained colloids with the greatest deposition rates oc-

curred near the column inlet and were associated with lower fl ow 

rates. Similar to Fig. 4c the variance of deposited colloids in Fig. 5c 

tended to be highest near the column inlet. In this case, however, 

higher variances in the deposited colloids occurred with increasing 

Fig. 4. (a) Plot of the relative fl ux concentration, < C > /C
i
, at a depth 

of 10 cm as a function of time when k
d
 and k

r
 are both stochastic 

parameters and values of ρ
dr

 = −1, −0.5, 0, 0.5, and 1. (b, c) 
Corresponding normalized solid phase colloid concentration, 
< S > /N

ic
, and associated variance after 250 min with depth, 

respectively. Model parameters that were employed in these 
simulations were D = 0.0313 cm2 min−1, v = 0.313 cm min−1, 
< k

d
 > = 0.03 min−1, < k

r
 > = 0.005 min−1, σ

d
 = 1, and σ

r
 = 1.

Fig. 5. (a) Plot of the relative fl ux concentration, < vC > /( < v > C
i
), 

at a depth of 10 cm as a function of time when v and k
d
 are 

both stochastic parameters and values of ρ
vd

 = −1, −0.5, 0, 0.5, 
and 1. (b, c) Corresponding normalized solid phase colloid 
concentration, < S > /N

ic
, and associated variance after 250 min 

with depth, respectively. Model parameters that were employed 
in these simulations were D = 0.0313 cm2 min−1, < v > = 0.313 cm 
min−1, < k

d
 > = 0.03 min−1, k

r
 = 0.001 min−1, σ

v
 = 1, and σ

d
 = 1.
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values of ρ
vd

. Relatively low variances were associated with the ρ
vd

 = 

−1.0 system that produced the most hyperexponential profi le.

Application and Discussion
Previous application of stochastic colloid transport and de-

position models that have appeared in the literature have used 

various functional forms for F(k
d
) to describe measured colloid 

transport and deposition data (Bolster et al., 1999; Tufenkji et al., 

2003; Li et al., 2004; Tufenkji and Elimelech, 2005b). Variations 

in porous media and/or colloid surface charge have frequently 

been invoked as a potential explanation for nonexponential 

deposition profi les. Diff erences in mineralogy and/or the pres-

ence of coatings of metal oxides or organic matter are expected 

to produce variations in surface charge (Davis, 1982; Tipping 

and Cooke, 1982; Song and Elimelech, 1993, 1994). Johnson 

and Li (2005), however, demonstrated that porous media charge 

variability and/or the infl uence of the DLVO secondary energy 

minimum should theoretically be consistent with an exponential 

deposition profi le. Th e hypothesis of colloid charge variability 

has been invoked for a variety of colloids, including microorgan-

isms (Simoni et al., 1998) and latex microspheres (Li et al., 2004; 

Tufenkji and Elimelech, 2005b; Tong and Johnson, 2007). Varia-

tions in surface charge of microorganisms can occur as a result of 

diff erences in growth stage, metabolic activity, and genetic diff er-

ences. In contrast, latex microspheres are typically highly uniform 

and exhibit small variations in zeta potential.

Figures 6a and 6b present observed and simulated break-

through curves and deposition profi les, respectively, for 3 μm 

carboxyl modifi ed latex colloids in quartz sands having me-

dian grain sizes of 360, 240, and 150 μm. A short summary 

of relevant experimental conditions and protocols is provided 

below before discussing this transport data. Th e ionic strength 

of the colloid suspension was 6 mM and the pH was buff -

ered to 10 using 1.7 mM NaHCO
3
 and 1.7 mM Na

2
CO

3
 to 

minimize the potential for colloid and porous media charge 

variability. Th e zeta potential of these colloids was measured 

with a ZetaPals instrument (Brookhaven Instruments Corpo-

ration, Holtsville, NY) to be −76.3 ± 3.48 mV (± 2 standard 

deviations). Th e zeta potential for quartz sands in low ionic 

strength solution at a pH of 10 has been reported to be ap-

proximately −80 mV (Elimelech et al., 2000).

Th e colloid suspension was pumped upward through the ver-

tically oriented saturated columns (4.8 cm inside diameter and 

13 cm in length) at a steady pore water velocity of around 0.3 

cm min−1; after 75 min a three-way valve was used to switch to 

eluant solution of the same solution chemistry for an additional 

175 min (total of 250 minutes). Effl  uent samples were collected 

and analyzed for colloid concentration using a Turner Quantech 

Fluorometer (Barnstead/Th ermolyne, Dubuque, IA). Following 

completion of the colloid transport experiments, the spatial dis-

tribution of retained colloids in each packed column was deter-

mined by excavating the sand into tubes containing excess eluant 

solution, slowly shaking the tubes for 15 min, and measuring the 

concentration of the colloids in the excess solution with the fl uo-

rometer. A detailed discussion of the experimental conditions and 

protocols is given in Bradford et al. (2002, 2007).

Simulations shown in Fig. 6a and 6b considered log-normal 

(Eq. [4]) and bimodal (Eq. [9]) formations for F(k
d
). Figure 6c 

presents a plot of the fi tted values of the log normal F(k
d
) for 

these systems. Table 1 provides the fi tted stochastic model param-

eters < k
d
 > and σ

d
 from Eq. [4], and the coeffi  cient of linear re-

gression to effl  uent (r
eff 

2) and deposition (r
sand

2) data. Observe that 

both breakthrough curves and deposition profi les are fairly well 

Fig. 6. (a) Plot of the observed and simulated relative fl ux concentration, 
< C > /C

i
, at a depth of 12 cm for 3 μm carboxyl modifi ed latex 

colloids in quartz sands having median grain sizes of 360, 240, and 
150 μm. (b) Corresponding observed and simulated normalized 
solid phase colloid concentration, < S > /N

ic
, after 250 min with 

depth. Simulations considered log-normal (Eq. [4]) and bimodal 
(Eq. [9]) formations for F(k

d
). (c) Log-normal values of F(k

d
). Table 1 

provides a summary of measured and/or fi tted model parameters.
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described using the stochastic model with the log-normal prob-

ability density function, but values of σ
d
 are very high (Table 1).

In case of unfavorable attachment conditions (experiments 

were conducted at pH = 10) an upper limit on the value of α can 

be estimated using the following expression (Simoni et al., 1998):

( )
( )

2 0.5
i 2

kb k kbb0

1.5,2 exp
1.5

E E= dE=
kk T kT T

−Φ ⎛ ⎞ ⎛ ⎞ −Γ Φ⎟⎜ ⎟⎜⎟α − ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜⎟⎜π Γ⎝ ⎠⎝ ⎠∫
 [16]

where E (M L2 T−2) is the kinetic energy of diff using colloids that 

follow a Maxwell distribution, T
k
 (°K; where °K is temperature 

in degrees Kelvin) is the temperature, k
b
 (M L2 T-2 oK−1) is the 

Boltzmann constant, Φ
2
 (−) is the depth of the secondary energy 

minimum of the DLVO interaction energy profi le (normalized 

by k
b
T

k
), Γ

i
 is the incomplete gamma function, and Γ is the 

gamma function. Th e above analysis neglects the potential role 

of hydrodynamics on colloid deposition and is therefore only an 

upper limit on α. Dong et al. (2002) reported, however, that Eq. 

[16] provided a good prediction of measured values of α.

Th e value of Φ
2
 in Eq. [16] can be determined from measured 

values of zeta potential for a given colloid suspension and porous 

medium using DLVO theory (Derjaguin and Landau, 1941; 

Verwey and Overbeek, 1948; Hogg et al., 1966; Gregory, 1981). 

A value of 4.04 × 10−21 J for the Hamaker constant was assumed 

to represent our polystyrene latex-water-quartz system in these 

calculations (Bergendahl and Grasso, 1999). If the 95% confi dence 

interval is known for colloid and/or porous media zeta potentials, 

then the corresponding 95% confi dence interval on Φ
2
, α (Eq. 

[16]), and k
d
 (Eq. [3]) can be determined. When using measured 

values of the colloid zeta potential (−76.3 ± 3.48 mV) and litera-

ture values (Elimelech et al., 2000) for the quartz zeta potential 

(−80 mV), the calculated upper and lower limits on k
d
 for the 360, 

240, and 150 μm sands were 0.0174 to 0.0171, 0.0413 to 0.0404, 

and 0.0734 to 0.0718 min−1, respectively. If we also consider a 

conservative estimate for the variation on the quartz zeta potential 

of −80 ± 10 mV (Redman et al., 2004), then the calculated upper 

and lower limits on k
d
 for the 360, 240, and 150 μm sands were 

only slightly changed to 0.0180 to 0.0166, 0.0426 to 0.0392, 

and 0.0759 to 0.0698 min−1, respectively. In Fig. 6c it is apparent 

that values of k
d
 encompass a much larger range than 

predicted by either analysis. Th is observation indicates 

that heterogeneity of the colloid surface charge char-

acteristics cannot fully account for the largest values of 

k
d
 that were shown in Fig. 6c and that were primarily 

responsible for deposition near the column inlet. Also, 

the fi tted values of σ
d
 were dependent on the sand size 

(Table 1), with increasing values observed for the larger 

sands. If colloid heterogeneity was truly controlling the 

deposition behavior of the colloids, then the value of σ
d
 

would be expected to be independent of the sand size.

An alternative approach to characterize the 

experimental data shown in Fig. 6a and 6b is to 

use the bimodal log-normal distribution for F(k
d
) 

according to Eq. [8] or [9]. Figures 6a and 6b also 

present simulated (Eq. [14–16]) breakthrough 

curves and deposition profi les, respectively, using 

this approach. To minimize the number of fi tting parameters, 

these simulations employed Eq. [9–11] and the value of k
d2

 

was set to a high value (0.3 min−1) that produced no colloid 

transport at the depth of 12 cm. Table 1 provides the fi tted 

values of f
1
 and k

d1
, as well as a statistical parameters for the 

goodness of model fi ts. Th e simplifi ed “stochastic” model pro-

vides a good description of both effl  uent and deposition data. 

Note in Table 1 that values of k
d1

 increased with decreasing 

sand size, and that values of f
1
 decreased with decreasing sand 

size.

Previous researchers who have utilized bimodal formulations 

for F(k
d
) have attributed this distribution to charge variability 

of the colloids and/or porous media (Tufenkji and Elimelech, 

2005a, 2005b). Th e calculated upper and lower limits on k
d
 

discussed above, however, indicate that colloid charge heteroge-

neity cannot explain the observed hyperexponential deposition 

profi les for these experimental conditions. Alternative explana-

tions for the hyperexponential deposition profi les shown in Fig. 

6a and 6b include variability in the colloid size distribution, the 

pore-scale velocity distribution, and the pore size distribution. 

Th ese topics will be discussed below.

If the colloids are not completely monodispersed, then colloids 

in the distribution are expected to have diff erent deposition rates. 

Attachment (Tufenkji and Elimelech, 2004a) and straining (Brad-

ford et al., 2003) of colloids are both predicted to increase with 

increasing size. If two size classes of colloids (monodispersed and 

aggregated species) are considered, and k
d1

 and k
d2

 correspond to 

deposition coeffi  cients for monodispersed and aggregated species, 

then f
1
 is equal to the ratio of monodispersed colloids to total col-

loids (in terms of monodispersed colloids) in the infl uent solution. 

According to this hypothesis the value of f
1
 should be the same for 

the various sands in Fig. 6a and 6b. Table 1, however, indicates 

that the value of f
1
 changes with the sand size and suggests that 

variations in the colloid size distribution cannot fully explain the 

observed transport and deposition behavior of these colloids. Fur-

thermore, the colloid size distribution was experimentally verifi ed 

using a laser particle size distribution analyzer to be monodispersed.

Figures 2 and 5 indicate that variations in the pore water 

velocity provide an alternative explanation for hyperexponen-

Table 1. Experimental and simulated model parameters for the data shown in Fig. 
6a–c, as well as statistical parameters for the goodness of model fi t. The value 
of k

r
 was set to 0.0001 min−1 in all cases.

Model d
50

† ε v D < k
d
 > σ

d
r

eff 
2 r

sand
2 f

1
k

d1
k

d2

μm cm min−1 cm2 min−1 min−1 ––min−1––
Log-normal 360 0.35 0.274 0.197 0.045 2.0 0.90 0.82

Log-normal 240 0.32 0.325 0.085 0.085 1.0 0.94 0.89

Log-normal 150 0.35 0.274 0.079 0.120 0.8 0.87 0.87

Bimodal 360 0.35 0.274 0.197 0.90 0.90 0.90 0.007 0.30

Bimodal 240 0.32 0.325 0.085 0.94 0.98 0.57 0.027 0.30

Bimodal 150 0.35 0.274 0.079 0.86 0.99 0.37 0.032 0.30

† d
50

, median porous medium grain diameter (L); ε, denotes porosity; v, average pore 

water velocity (L T−1); D, hydrodynamic dispersion coeffi  cient (L2 T−1); k
d
, deposition 

coeffi  cient (T−1); σ
d
, standard deviation for the deposition coeffi  cient of the log-normal 

probability density function; r
eff 

2, coeffi  cient of linear regression to effl  uent data; r
sand

2, 

coeffi  cient of linear regression to deposition data; f
1
, fraction of k

d
 that is assigned to 

log-normal distribution 1; k
d1

, deposition coeffi  cient in distribution 1 when σ
d1

 =0; k
d2

, 

deposition coeffi  cients in distribution 2 when σ
d2

 =0.
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tial profi les than solely chemical heterogeneity. Th e stochastic 

stream tube model represents the complex three-dimensional 

fl ow fi eld in porous media by a bundle of one-dimensional 

stream tubes of equal length. In homogeneous porous media 

it may be possible to estimate a pore water velocity distribu-

tion from measuring capillary pressure curves by assuming 

LaPlace’s equation of capillarity and Poiseuille fl ow in the 

capillary tubes (Dullien, 1992). Although large variations 

in pore sizes are frequently measured in porous media (e.g., 

Dane and Hopmans, 2002), this analysis is likely to be based 

on assumptions that may be violated. For example, the stream 

tube model does not account for mixing of colloids among 

the stream tubes, and soil pores have more complex shapes 

than capillary tubes. Hence, consideration of only pore-scale 

velocity variations is likely to have limited utility.

Recent experimental evidence indicates that the deposition rates 

(under unfavorable attachment conditions) in the smallest regions 

of the pore space are signifi cantly higher than in the larger regions 

of the pore space because these locations are associated with lower 

fl ow velocities (regions of relative fl ow stagnation that are associat-

ed with less fl uid drag forces) (Johnson et al., 2007), greater DLVO 

forces (Hoek and Agarwal, 2006), and the presence of multiple 

solid-water interfaces (small pore spaces) that impose a physical 

restriction on colloid transport and enhance deposition (i.e., strain-

ing) in these locations (Bradford et al., 2006a). According to this 

conceptual picture, variations in the stochastic model parameters 

can be given a diff erent interpretation then solely chemical hetero-

geneity or variations in the pore water velocity. For example, fi tted 

values of F(k
d
) can be viewed as representing a complex coupling of 

pore-scale colloid mass transfer, hydrodynamics, and DLVO inter-

actions within the pore space. Th e log-normal probability density 

function for F(k
d
) suggests a trend of gradually increasing retention 

of colloids in the largest (highly conductive pore bodies) to the 

smallest (lower conductivity pore corners formed at grain to grain 

contacts) regions of the pore space. In contrast, the bimodal forma-

tion for F(k
d
) suggests an abrupt increase in deposition behavior in 

the smaller regions of the pore space. Th e rapid change in shape of 

the deposition profi les near the column entrance shown in Fig. 6b 

suggests that the bimodal formation for F(k
d
) was more consistent 

with this data than the log-normal F(k
d
). Th e values of r

s
2 in Table 

1 also support this hypothesis.

Physically realistic functional forms for F(k
d
) are expected 

to be dependent on a balance of DLVO and fl uid drag forces 

(Cushing and Lawler, 1998), as well as the ratio of the colloid 

to the median grain size of a porous medium (Bradford et al., 

2006a). Increasing the DLVO forces will increase this “favorable” 

deposition region for given hydrodynamic conditions. Increasing 

the colloid size or decreasing the median grain size of a porous 

medium will also increase the fraction of the pore space that is 

similar in size to a given colloid, and where colloids can be physi-

cally retained via straining. Conversely, increasing the fl uid drag 

forces (velocity) decreases the low velocity region of the pore 

space that is “favorable” for deposition for given DLVO forces.

Th e stochastic model presented herein is intended to provide 

a tool to better understand and to test hypotheses concerning 

colloid transport and deposition under unfavorable attachment 

conditions. Th e simulations presented in this manuscript sug-

gest that various explanations can account for hyperexponential 

deposition profi les, including variations in the colloid surface 

charge, colloid size distribution, pore water velocity distribu-

tion, and pore size distribution. It is plausible that all of these 

factors infl uence the development of colloid deposition profi les 

under unfavorable attachment conditions. Specifi c tests can be 

performed to assess the relative importance of some of these 

factors. For example, charge heterogeneity can be assessed 

by measuring colloid zeta potential distributions, and/or by 

measuring diff erences in the colloid zeta potential distribution 

before and after passage through porous media. Colloid size 

distributions can also be measured using conventional particle 

size distribution analyzers and/or by microscopic examination 

of suspensions. Pore size and velocities distribution for porous 

media may be inferred from measured capillary pressure-satura-

tion curves (Bradford et al., 2006a). To better predict values of 

F(k
d
) in porous media, all of this information likely needs to be 

coupled with DLVO and fl uid drag force balances.
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Appendix 
C colloid concentration in the aqueous phase (N

c
 L−3)

C
i

initial colloid concentration in the infl uent suspension (N
ic
 L−3)

d
50

median porous medium grain diameter (L)

D hydrodynamic dispersion coeffi  cient (L2 T−1)

E kinetic energy of diff using colloids that follow a Maxwell distribution (M L2 T−2)

f
1

fraction of k
d
 that is assigned to log-normal distribution 1

F(x) log-normal probability density function for dummy variable x

F(x,y) joint probability density function for dummy variables x and y

k
b
 Boltzmann constant (M L2 T−2 oK−1)

k
d
 deposition coeffi  cient (T−1)

k
d1

deposition coeffi  cient in distribution 1 when σ
d1

 =0 (T−1)

k
d2

deposition coeffi  cients in distribution 2 when σ
d2

 =0 (T−1)

k
r
 release coeffi  cient (T−1)

L denotes units of length

M denotes units of mass

N
c

number of colloids

N
ic

number of colloids in a unit volume of C
i

S solid phase concentration of the retained colloids (N
c
 M−1)

t time (T)

T
k

temperature in degrees Kelvin (oK)

v average pore water velocity (L T−1)

Y
d

normalized log-transformed variable for the deposition coeffi  cient

Y
d1

normalized log-transformed variable for the distribution 1 deposition coeffi  cient of the bimodal log-normal probability density function

Y
d2

normalized log-transformed variable for the distribution 2 deposition coeffi  cient of the bimodal log-normal probability density function

Y
r

normalized log-transformed variable for the release coeffi  cient

Y
v

normalized log-transformed variable for the pore water velocity

z depth (L)

α colloid sticking effi  ciency

Γ gamma function

Γ
i

incomplete gamma function

δ Dirac delta function

η collector (porous medium) effi  ciency

θ
w

volumetric water content

μ
d

mean value for the deposition coeffi  cient of the log-normal probability density function

μ
r

mean value for the release coeffi  cient of the log-normal probability density function

μ
v

mean value for the pore water velocity of the log-normal probability density function 

μ
d1

mean value of the distribution 1 deposition coeffi  cient of the bimodal log-normal probability density function

μ
d2

mean value of the distribution 2 deposition coeffi  cient of the bimodal log-normal probability density function

ρ
b

soil bulk density (M L−3)

ρ
dr

correlation coeffi  cient between Y
d
 and Y

r

ρ
vd

correlation coeffi  cient between Y
v
 and Y

d

σ
d
 standard deviation for the deposition coeffi  cient of the log-normal probability density function

σ
d1

standard deviation for the distribution 1 deposition coeffi  cient of the bimodal log-normal probability density function

σ
d2

standard deviation for the distribution 2 deposition coeffi  cient of the bimodal log-normal probability density function

σ
r

standard deviation for the release coeffi  cient of the log-normal probability density function

σ
v

standard deviation for the pore water velocity of the log-normal probability density function 

Φ
2

depth of the secondary energy minimum of the DLVO interaction energy profi le that is normalized by k
b
T

k
 

<x> ensemble average of a dummy variable x


