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Abstract

Effective management of the soil resource requires basic information about the spatial distribution
of various attributes. A method widely used for providing spatial information is a combination of
sampling strategies and geostatistics. However, geostatistical methods demand intensive sampling
that is expensive and time-consuming. Geophysical methods, such as electromagnetic (EM) induction,
offer an alternative, more robust, and less expensive approach to gather soil information. In this study,
a methodology is outlined for mapping spatial distribution of bulk soil average clay content to a
depth of 7 m using EM measurements. The study was conducted southeast of Trangie in the lower
Macquarie valley of New South Wales, Australia. Two EM sensors were employed. To provide deep
bulk soil EM measurements, an EM34 was used in the horizontal dipole mode at coil configurations
of 10, 20, and 40 m (respectively, designated EM34-10, EM34-20, and EM34-40). For shallower bulk
soil EM measurements, an EM38 was used in vertical and horizontal modes (EM38-v and EM38-h,
respectively). A total of 755 locations were measured on a grid of approximately 0.5 km. In order to
classify the EM34 data into broad physiographic and hydrogeological units, fuzzyk-means (FKM)
classification was applied. By iterating fuzziness exponents (φ), input parameters, and evaluating
various clustering performance indices, we found optimal classification whenφ = 1.5 and number of
classes (c) = 4. Fuzzyk-means with extragrade (FKMe) classification was subsequently undertaken
to account for Extragrades (i.e., outliers in the data). A spatial response surface sampling (SRSS)
design was invoked to select sampling sites within each of the four regular and one Extragrade class.
From 40 calibration holes (i.e., 8 from each class), soil samples were taken at 1 m intervals from
the soil surface to a depth of 7 m. Each sample was analyzed for clay content then averaged for
a 0–7 m clay content (%clay) for each hole. In order to predict the %clay across the landscape, a
hierarchical spatial regression model (HSR) was developed using a composite signal variable [i.e.,
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ln(EM34-10) + ln(EM34-40) + ln(EM38-h)] and first-order trend surface components (i.e., Easting
and Northing). The final map of %clay generally reflects the known surface clay content and provides
information about the spatial distribution of subsurface %clay variability. We conclude that although
the FKMe analysis did not result in an improved calibration within each class, the approach delineated
similar clusters of signal readings that were useful in providing a framework to determine a soil
sampling design that accounted for variations in physiography and hydrogeology.
Published by Elsevier B.V.
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1. Introduction

In order to manage the soil resource effectively basic information about its spatial dis-
tribution is necessary. One of the most important attributes required by landholders for
effective soil use and management is that of clay content. This is particularly the case in the
topsoil because (i) it greatly effects the water holding capacity and the hydraulic properties
of a soil (Frenkel et al., 1978; Bresler et al., 1984; Jabro, 1992), (ii) it is related to the cation
exchange capacity (Russell, 1973), and (iii) it influences the fertility and hence productivity
(Davey, 1990). From the hydrological perspective knowledge of the subsoil and vadose zone
clay content is also important because large amounts can reduce permeability, inhibit deep
drainage, and potentially lead to waterlogged soil conditions (Triantafilis et al., 2003a).

Over the last 30 years various geostatistical and geophysical methods have been em-
ployed to enhance the mapping of clay content. Geostatistical methods provide a set of
statistical tools for incorporating the spatial coordinates of soil observations in data pro-
cessing. These methods allow for the description and modeling of spatial patterns, pre-
diction at unsampled locations, and assessment of the uncertainty attached to predictions
(Goovaerts, 1999). Various geostatistical approaches have been employed to estimate spatial
variation in topsoil clay content. These include, ordinary- (Voltz and Webster, 1990; Kalivas
and Kollias, 1999), block- (Mapa and Kumaragamage, 1996), intrinsic random function of
order k- (McBratney et al., 1991), indicator- (Oberthur et al., 1999), co- (Vauclin et al.,
1983; Zhang et al., 1992), universal- (Odeh et al., 1995), regression- (Odeh and
McBratney, 2000), and compositional-kriging (Odeh et al., 2003). Several studies have com-
pared methods (Gallichand and Marcotte, 1993; Odeh et al., 1995) to map subsurface clay.

Soil sampling for geostatistical mapping can be time-consuming and costly. This is
particularly the case with respect to identifying and mapping subsurface clay content. In
light of this, many studies have incorporated ancillary variables to enhance prediction. The
most commonly used method is electromagnetic (EM) induction. EM instruments measure
the apparent soil electrical conductivity (ECa), which is a function of various soil properties
including salinity, clay content, moisture content, and mineralogy (Triantafilis et al., 2002;
Corwin et al., 2003). In the Netherlands, EM survey data have been used to identify the
depth to (i) boulder clay (Brus et al., 1992) and (ii) a soft layer in the western marine districts
(Knotters et al., 1995). In the USA, EM data have been used to estimate (i) depth to clay pan
(Sudduth et al., 1995) and (ii) depositional depth of sand after a large flooding event in the
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Midwest of the USA (Kitchen et al., 1996). In Australia, average clay content was mapped
using an EM38 at the field level in the lower Gwydir valley (Triantafilis et al., 2001a), while
Williams and Hoey (1987)used an EM34 to map average clay content to 7 m.

Despite the improved accuracy and representation of the soil continuum, the methods
used to determine sampling locations for calibration are based on subjective judgement
that may introduce bias in the final maps. This is best illustrated in the work byWilliams
and Baker (1982)who found soils of different mineralogy produced different regression
relationships between EM34 and soil salinity (as measured in laboratory analysis). What
would seem appropriate is the division of the landscape into similar mineralogical or phys-
iographical units prior to site selection, thereby ensuring various parts of the landscape are
equally represented in a final calibration model. One approach illustrated byTriantafilis et
al. (2003b)used fuzzyk-means (FKM) analysis of three channels of EM34 signal data. In
effect the method objectively delineated similar physiographical and hydrogeological units
in the lower Namoi valley of Australia.

In the following study, we similarly use FKM algorithms (e.g., FKM with extragrades,
FKMe) to classify EM34 signal data collected in the lower Macquarie valley. From each
of the resulting classes, sampling sites were selected using a model-based spatial response
surface sampling (SRSS) design (Lesch, 2005). Our objective was to test the effectiveness
of the FKMe classification technique for improving the accuracy of a geostatistical model
to predict average clay content (clay%) to a depth of 7 m. A secondary objective was to
compare FKMe classes with Pedoderms (i.e., periods in which soil formation takes place)
identified byMcKenzie (1992)and stratigraphic features of the Trangie district of the lower
Macquarie valley in central west New South Wales.

2. Materials and methods

2.1. Study area

The Macquarie River is a tributary of the Darling, which drains the northern part of the
Murray–Darling Basin. The study area is located in the lower Macquarie valley southeast
of the township of Trangie (Fig. 1). The area includes both irrigated and dryland farms.
The latter is mostly wheat (Triticum aestivumL.) production and native pastures. Irriga-
tion is mostly for cotton (Gossypium hirsutumL.) production. The irrigated infrastructure
(including major water reservoirs) of the area is shown inFig. 1.

McKenzie (1992)identified Pedoderms in the Macquarie valley (Fig. 2). The Trangie
Cowal Pedoderm is predominant and is characterized by (i) duplex red-brown profiles
(Wilga red-brown) developed from silty parent material, which have a distinct clay maxima
between 0.30 and 0.80 m (i.e., 19–35%) and (ii) heavily textured red-brown coloured profiles
(Byron) with distinct clay maximum between 0.30 and 0.80 m (i.e., 28–41%). The Old
Alluvium Meander Plain Pedoderm is characterized by the Mitchell profile class, which
has high coarse sand content that distinguishes it from the other red soil of the alluvial
plains. The Old Alluvium Back Plain is more diverse and includes: Mullah—dark grey to
black cracking clays (i.e., 51% clay), Snake—sodic grey cracking clays (i.e., 50%) closely
related to Mullah, and Buddah profiles characterized by the high clay content (i.e., 48%) of
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Fig. 1. Location of lower Macquarie valley and major infrastructure in the area southeast of Trangie.

Fig. 2. Pedoderms southeast of Trangie in the Macquarie valley (afterMcKenzie, 1992).
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which smectite and kaolinite clay minerals are co-dominant with illite. The Gin Gin profile
class defines the Pedoderm of the same name. The profiles are strongly weathered and have
a uniform to gradational texture profile (e.g., 31–40% clay). The Macquarie class, which
defines the Macquarie Pedoderm, has minimal profile development and is characterized by
considerable fine sand and silt fractions (i.e., median value of 40% at 0.10 m).

2.2. Electromagnetic survey

In order to confirm whether an EM survey could discern these Pedoderms and poten-
tially assist with determining the spatial distribution of vadose-zone clay content and strati-
graphic features in the landscape an EM34/38 survey was undertaken across the Trangie
study area. Approximately, 500-m grid spacing was used. The first 300 EM34 measure-
ments were obtained in November 1998 and the remaining 455 were recorded in July
2000. At each site, EM34 signal readings were made in the horizontal dipole mode at
10, 20, and 40 m coil configurations (i.e., EM34-10, EM34-20, and EM34-40, respec-
tively). The theoretical depth of measurement is 7.5, 15, and 30 m, respectively (McNeill,
1980). Coordinates were recorded in the Australian Map Grid (AMG84) using a Magellan
NavPro5000 GPS. The location of the EM survey positions is shown inFig. 3. In December
of 2001, an EM38 survey was carried out with all 755 sites revisited and measured with the
instrument in the vertical (EM38-v) and horizontal (EM38-h) modes of operation. In these
modes, the EM38 theoretically measures 1.50 and 0.75 m, respectively (McNeill, 1990).

2.3. Fuzzy k-mean and FKM with extragrades clustering

Various approaches have been developed to enhance information collected at a given
site from multiple EM34 measurements. For example,Williams and Arunin (1990)were

Fig. 3. Location of EM34/38 survey positions southeast of Trangie (Macquarie valley).
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able to infer groundwater recharge/discharge areas using what they termed EM Slope (i.e.,
average ratio of EM34 measurements taken at EM34-10, -20, and -40 m configurations). The
results suggested that in a salt-degraded landscape in northeast Thailand, EM Slope values
greater or less than 1.0 indicated recharge and discharge areas, respectively. More recently,
Triantafilis et al. (2003b)used FKM to objectively classify EM34 signal data collected in
the lower Namoi valley of Australia. Using local ordinary kriging (OK) and a method (i.e.,
log-ratio transformation) that ensures summation of class membership values to unity, they
found the final composite fuzzy-class map could be related to the known physiography and
geohydrology.

To determine whether equivalent classes could be discerned from FKM analyses of EM34
signal readings (i.e., EM34-10, -20, and -40) collected in the lower Macquarie valley, and
possibly identify units of similar vadose-zone properties (i.e., average clay content 0–7 m)
we used the method used byTriantafilis et al. (2003b). The FKM approach itself is well
described in the literature (McBratney and De Gruijter, 1992; Odeh et al., 1992a; Lagacherie
et al., 1997; Triantafilis et al., 2001b). Briefly, the method calculates a measure of the
similarity between an individual (i) and a cluster (c), determining how much they are alike
in multi-variable space (Bezdek, 1981). The best outcome is the one that minimizes the
objective function:

J1(M ,C) =
n∑
i=1

k∑
c=1

µ
φ
icd

2
ic (1)

where,µic is the membership value of thei individual (i.e., EM survey position) and the
c cluster. The exponentφ determines the degree of fuzziness of the final solution, where
the value ofφ = 1 is equivalent to the hard partition. The distance dependent metric (d2

ic)
is needed to optimize the performance of the objective function (i.e.,J1(M , C)). There are
several choices including Euclidean (same scale) and diagonal (different scales), which give
equal weight to all measured variables, and Mahalanobis, which is dependent on correlated
variables on the same or different scales (McBratney and Moore, 1985).

The FKM algorithms are in accordance with the procedures outlined inBezdek (1981)
andDe Gruijter and McBratney (1988). The implementation ofJ1(M , C) was carried out
using FuzME2 (Minasny and McBratney, 2002). The validity functionals of fuzziness per-
formance index (FPI) and the normalized classification entropy (NCE) (Roubens, 1982)
are used to determine a suitablec andφ. The FPI is a measure of the degree of fuzziness
while the NCE indicates the degree of disorganization in the classification (Triantafilis et
al., 2001b). The least fuzzy and least disorganized number of classes, that is the minimum
values, is considered suitable (Odeh et al., 1992a,b). The derivative ofJ1(M ,C) versusφ can
be used to provide a balance between structure and continuity (Bezdek, 1981; McBratney
and Moore, 1985):

dJ1(M ,C)

dφ
=

n∑
i=1

k∑
c=1

µ
φ
ic log(µic)d

2
ic (2)

Ohashi (1984)introduced the concept of a special extragrade class to account for outliers
(i.e., individuals that lie outside the main body of data points, which are referred to as
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extragrades). As a consequence, the influence of these outliers is reduced and results in
compact and more stable classes.De Gruijter and McBratney (1988)developed Eq.(3) so
that the memberships directly depend upon the distances to the class centroids:

J2(M ,C) = α

n∑
i=1

k∑
c=1

µ
φ
icd

2
ic + (1 − α)

n∑
i=1

µ
φ
i∗

k∑
c=1

d−2
ic (3)

The algorithm for solving the equation is found inDe Gruijter and McBratney (1988)
and is also implemented in the program FuzME2 (Minasny and McBratney, 2002). The
program uses Brent’s algorithm (Press et al., 1992) for searching an optimal value ofa
rather than theregula falsimethod as described inDe Gruijter and McBratney (1988). The
result of FKM clustering is that individual multivariate objects (e.g., a set of EM signal
readings) are assignedµ values to each ofc classes that vary continuously and overlap in
attribute space. Centroids for each class are chosen optimally from the data.

2.4. Spatial response surface sampling designs

Sampling designs for collecting and analyzing remotely sensed survey data can be de-
veloped using either a design-based or model-based sampling approach. The former are
more common, and include simple random sampling, stratified random sampling, multi-
stage sampling, cluster sampling, and network sampling schemes, etc. (Thompson, 1992).
Model-based designs are less common, although some statistical research has been per-
formed in this area (Valliant et al., 2000). Nathan (1988)andValliant et al. (2000)discuss
the merits of design (probability) and model (prediction)-based sampling strategies in de-
tail. Specific model-based sampling approaches, having direct application to agricultural
and environmental survey work, are described byMcBratney and Webster (1981), Lesch et
al. (1995a,b), Van Groenigen et al. (1999), andLesch (2005).

The sampling approach discussed inLesch (2005)andLesch et al. (1995b)is specifically
designed for use with ground-based EM signal readings. In this model-based sampling ap-
proach, a minimum set of calibration samples are selected based on the observed magnitudes
and spatial locations of the ECa data, with the explicit goal of optimizing the estimation
of a regression model (i.e., minimizing the mean square prediction errors produced by the
calibration function). The basis for this sampling approach stems directly from traditional
response surface sampling methodology (Box and Draper, 1987). Due to this direct rela-
tionship,Lesch et al. (1995b), referred to this site selection process as a “spatial response
surface sampling” design.

An SRSS design can be employed to estimate the following empirical regression equa-
tion:

yi = b0 + b1S1i + b2S2i + . . .+ bkSki + ε (4)

whereyi represents the value of the sample variable at theith site, S1i , S2i , . . ., Ski rep-
resent thek sensor readings acquired at this site,b0, b1, . . ., bk representk+ 1 unknown
regression parameters, andε represents the random error component, which is assumed
to exhibit some type of spatial dependence. In the SRSS approach, the goal is to se-
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lect a small set ofn sample sites (n�N) that serve to both: (i) optimize the estima-
tion of the regression parameters when using ordinary least squares estimation methods
and (ii) minimize the effects of the spatially dependent error structure on this estimation
process.

The development of a SRSS design is done via a two-step procedure. In the first step,
the errors associated with the hypothetical regression model are assumed to be spatially
independent, and the regression equation is viewed as a response surface model. The EM34
signal data is de-correlated using a principal component transformation procedure, and the
resultingmprincipal component vectors are then centered and scaled to have 0 means and
unit variance. This principal component data is then directly compared to a suitable response
surface design; for example, a factorial design or first- or second-order central composite
design composed ofndesign level combinations balanced across themprincipal component
vectors (i.e., a design requiringn samples). Then set of principal component scores that
most closely match then response surface design level combinations are then identified and
selected as an “optimal” set of sample sites.

In the second step, the residual errors are assumed to be spatially correlated and an iter-
ative adjustment in the sample site locations is attempted. For example, if the model errors
follow an isotropic spatial error structure with an effective rangeρ, then the algorithm at-
tempts to find substitute sampling locations with minimum separation distances approaching
this value. (Note that the assumed spatial error correlation structure approaches indepen-
dence under these conditions.) In practice, one way this can be achieved is by selectingj
distinct sets of “optimal” sample sites (i.e., Step 1 is repeatedj times), and then invoking an
iterative search routine to identify the best hybrid set of samples out of thenj possible design
level combinations.Lesch (2005)discusses various types of iterative algorithms designed
to approximately optimize this spatial arrangement of sample sites in a computationally
efficient manner.

2.5. Hierarchical spatial regression models

Two of the most common geostatistical modeling techniques for multivariate spatial
data are (i) co-kriging and (ii) kriging with external drift (Wackernagel, 1995; Royle and
Berliner, 1999). Both techniques make use of auxiliary data to improve the estimation of
a primary variable, although via slightly different modeling assumptions. Co-kriging is
generally based on an assumed model for the joint distribution of the variables and can be
used to interpolate new predictions of the primary variable anywhere within the sampling
domain. In contrast, kriging with external drift (KED) is based on an assumed model for the
conditional distribution of the primary variable, given the auxiliary data. Thus, a KED model
essentially works like a regression model (where the errors may be spatially correlated),
but can only be used to generate predictions where auxiliary data exists.

A hierarchical spatial regression (HSR) model, as introduced byRoyle and Berliner
(1999), represents an alternate parameterization of a co-kriging model. Like a KED model,
a HSR model is based on an assumed model for the conditional distribution of the primary
variable, given the auxiliary data. However, the auxiliary data is also assumed to have its
own spatial distribution. This hierarchical approach facilitates the predictions of the primary
variable anywhere within the sampling domain, similar to a co-kriging model.
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It is possible to specify complicated inter-dependence structures in a HSR model; for
examples seeRoyle and Berliner (1999)andRoyle et al. (1998). Much more simple, KED-
like structures can also be readily specified, such:

E(y|z) = µ1 + θz + BX (5.1)

Var(y|z) = �1 (5.2)

E(z) = µ2 (5.3)

Var(z) = �2 (5.4)

whereE(·) and Var(·) represent the expectation and variance of the random variable in
question. In this example,yandzrepresent two spatial variables (i.e., in our casezrepresents
a dense grid of EM signal data andy represents a subset of %clay measurements acquired
at a small co-located set of EM signal sites). The first part of the HSR model specifies that
y (conditional on observedz data) is linearly related to the co-locatedz signal level and a
linear combination of additional regression parameters (such as trend surface parameters).
In standard regression format,y|zmight be specified as

(y|z = z0) = β0 + β1[z0] + β2[x1] + β3[x2] + η (6)

wherez0 represents the observedzsignal reading (i.e., EM data),x1 andx2 represent scaled
location coordinates,β0 throughβ3 represent empirical regression parameters that must be
estimated, andη represents the residual error distribution, which may exhibit some type of
spatial dependence. In practice, this regression component of the HSR model is estimated
using the subset of jointly observed (y, z) data. The second part of the HSR model specifies
thatzalso follows some type of stationary spatial distribution. For example, the covariance
function for zmight be specified to follow an isotropic exponential model, defined by a
set of known hyper-parameters (i.e., nugget, sill, and range parameters). In practice, this
covariance function is generally inferred from the observed variogram structure (derived
from the entire set ofz signal data) and interpolatedz-values are normally calculated via
an OK analysis.When the conditional error term (η) exhibits spatial dependence, Eq.(6)
normally must be estimated using some type of maximum likelihood procedure (Littell
et al., 1996). However, when the residual errors can be considered spatially independent,
the HSR modeling approach simplifies greatly. Specifically, Eq.(6) can be estimated using
ordinary least squares, and then combined with the OK predictions to produce the final
interpolatedyestimates. The estimate(s) of both theŷprediction and variance also simplify
considerably; i.e.,

(i) at a known (observed)z0 signal location:

ŷ = b0 + b1(z0) + b2(x1) + b3(x2) (7.1)

Var(y − ŷ) = σ2(1 + u′(U′U)−1u) (7.2)



212 J. Triantafilis, S.M. Lesch / Computers and Electronics in Agriculture 46 (2005) 203–237

(ii) at an estimated (unobserved) ˆzu signal location:

ŷ = b0 + b1(ẑu) + b2(x1) + b3(x2) (8.1)

Var(y − ŷ) = σ2(1 + v′(U′U)−1v) + b2
1Var(ẑu) (8.2)

whereu andv represents the current values of the predictor variables, i.e.,u= (1, z0, x1,
x2) or v= (1, ẑu, x1, x2), U represents the regression model design matrix (based only on
the observed spatial predictor data),σ2 represents the regression model MSE estimate,b0
throughb3 represents the ordinary least squares regression model parameter estimates, and
Var(ẑu) represents the kriging variance associated with the ˆzu prediction. Note that Eqs.
(8.1) and (8.2) incorporate the prediction and variance results from the OK analysis. A
review of OK modeling techniques is given inWackernagel (1995).

3. Results and discussion

3.1. Exploratory data analysis

Table 1shows the exploratory data summary statistics pertaining to the 755 EM34 and
EM38 signal readings across the Trangie district. Part 1 ofTable 1displays the signal
statistics for all five-signal readings, while Parts 2 and 3 show the calculated Pearson cor-

Table 1
EM34 and EM38 summary data statistics

(1) Basic statistics
Signal N Mean Standard deviation Minimum Maximum

EM34-10 755 89 38 17 187
EM34-20 755 93 39 10 205
EM34-40 755 115 41 28 223
EM-38v 755 88 44 5 256
EM-38h 755 75 34 13 204

(2) Pearson correlation coefficients: raw signal data
Signal EM34-10 EM34-20 EM34-40 EM38-v EM38-h

EM34-10 1.00 0.89 0.75 0.77 0.69
EM34-20 1.00 0.87 0.68 0.60
EM34-40 1.00 0.56 0.49
EM-38v 1.00 0.94
EM-38h 1.00

(3) Pearson correlation coefficients: natural log (ln)transformed signal data
Signal EM34-10 EM34-20 EM34-40 EM38-v EM38-h

EM34-10 1.00 0.89 0.75 0.75 0.71
EM34-20 1.00 0.86 0.66 0.60
EM34-40 1.00 0.55 0.50
EM-38v 1.00 0.94
EM-38h 1.00
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Fig. 4. EM34 signal data (mS/m) in the horizontal dipole and 10 m (EM34-10) configuration: (a) contour plot, (b)
frequency distribution, and (c) calculated variogram structure and exponential model.

relation matrices for the raw and natural log (ln)-transformed signal data, respectively. The
EM34 tended to produce signal readings that were slightly higher than the corresponding
EM38, although both instruments displayed a similar range. The highest average signal read-
ings were recorded by the EM34-40 (115 mS/m), while the lowest average readings were
recorded by the EM38-h (75 mS/m). Overall, the EM38-v exhibited the highest standard
deviation (44 mS/m) and the largest range (5–256 mS/m). The histograms of all five-signal
readings were slightly right-skewed (e.g.,Figs. 4b–6b), and all five distributions failed the
Shapiro–Wilk Normality test (Shapiro and Wilk, 1965) at the 0.0001 significance level.

The Pearson correlation matrices shown inTable 1(Part 2) indicate that all five-signal
readings are strongly correlated with each other. Asymptoticχ2-tests confirm that this
observed correlation structure is significantly different from both the Identity matrix and
an intra-class correlation structure (p< 0.0001). The highest correlation estimate observed
in the ln-transformed matrix occurs between the EM38-h and EM38-v signal readings
(r = 0.94). The next highest estimates tend to be associated with the various EM34 signal
vectors. The EM34 and EM38 cross-correlation estimates generally appear to be the lowest,
but still range from 0.50 to 0.75. The calculated isotropic variograms for some of the signal
vectors are shown inFigs. 4c–6c. Each variogram plot suggests that the corresponding
signal data exhibits strong spatial correlation, but also significant local discontinuity (as
indicated by the apparently large nugget components).

3.2. Spatial distribution of ECa

Fig. 4shows the spatial distribution of EM34-10. The coarser sediments of the Trangie
Cowal, which runs east to west through the midline of the study area, is characterized by
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Fig. 5. EM34 signal data (mS/m) in the horizontal dipole and 40 m (EM34-40) configuration: (a) contour plot, (b)
frequency distribution, and (c) calculated variogram structure and exponential model.

low readings (i.e., <100 mS/m). This is also the case for the Old Alluvium (Meander Plain),
located in the western part of the study area and running parallel to the Mitchell High-
way. The lowest signal readings (i.e., <50 mS/m) were associated with the Contemporary
Macquarie Pedoderm adjacent to the modern-day Macquarie River. Above average signal

Fig. 6. EM38 signal data (mS/m) in the horizontal dipole (EM38-h) configuration: (a) contour plot, (b) frequency
distribution, and (c) calculated variogram structure and exponential model.
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readings (i.e., 100–150 mS/m) were recorded south of the Trangie Cowal near Trangie and
to the east and west of Buddah Lake Road. Here, the soil is associated with the clayier
sediments of the Old Alluvium (Back Plain) along the western margin of the area. Towards
the Macquarie River and to the north and south of the Weemabah Road signal readings were
similarly high in areas associated with the Trangie Cowal Depressions and Alluvial Plain.
The ECa pattern obtained with the EM34-20 m was similar (figure not shown).

Fig. 5 shows the contour plot of signal readings recorded with the EM34-40. Despite
the fact ECa signal readings were generally higher than the EM34-10 readings, the spatial
patterns of the two were similar, with the lowest readings (i.e., <100 mS/m) associated with
the Old Alluvium (Meander Plain) and areas directly adjacent to the Trangie Cowal and
contemporary Macquarie River. Intermediate to higher signal readings (i.e., >100 mS/m)
were associated with the Old Alluvium (Back Plain) in the central southern part of the area
and north of the Weemabah Road underlying the sediments of the Gin Gin Hills and Trangie
Cowal (i.e., Depressions) Pedoderms. This was similarly the case between the Weemabah
and Rocky Point Roads, underlying the Trangie Cowal Alluvial Plains. The higher readings
recorded are consistent with a known saline aquifer that occurs within 13–15 m of the ground
surface in these locals.

Fig. 6shows the pattern of signal readings obtained with the EM38-h. It is evident that
the readings collected in the root zone (i.e., 0–0.75 m) are generally less than 100 mS/m
and that the spatial pattern is similar to that achieved using the EM34-10 (seeFig. 4a). The
major difference in the signal reading is that apart from a few locals, the Trangie Cowal
(Alluvial Plains) Pedoderm is characterized by signal readings of less than 100 mS/m. To
the north of Weemabah Road, the larger readings are associated with clayier soil types.
However, to the south the higher readings are due in some part to the isolated point source
salinization evident in parts of this property. The pattern obtained with the EM38-v was
similar to that shown inFig. 6a.

3.3. FKM and FKMe analysis

In view of the high correlation between the various EM34 signal readings (Table 1),
we used Mahalanobis as the distance metric as it accounts for the differences in variances
and correlations among variables (Bezdek, 1981). At the time of carrying out the FKM
analysis the EM38 data was not available. In deciding the number of classes, we examined
the outcomes ofJ1(M ,C) partitioning of the three signal readings of the EM34 intoc= 2–8
usingφ = 1.1, 1.3, 1.5, 1.7, and 1.9.Fig. 7a and b suggest that the best solution was probably
c= 4, 5, or 6 because both the FPI and NCE were a minimum here. The results ofφ versus
−(dJ1(M , C)/dφ)c0.5 is shown inFig. 8. McBratney and Moore (1985)suggested that
the highest class value of−(dJ1(M , C)/dφ)c0.5 can be considered optimal. In this case, it
wasφ = 1.5 forc= 4–6 classes. On reviewingFig. 7a, we conclude that FPI is a minimum
whenc= 4 and whenφ = 1.5. In order to account for individuals which do not fit in these
four classes, we re-classified the data usingJ2(M , C), so that these individuals would be
accounted for by an Extragrade class.

Table 2shows a portion of the FKMe membership matrix forc= 4 (i.e., A, B, C, D)
regular and the Extragrade class usingφ = 1.5. Because membership sums to unity, this
type of data is referred to as closed or compositional data (Aitchison, 1986). AsPawlowsky
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Fig. 7. Validity functionals (a) fuzziness performance index (FPI) and (b) normalized classification entropy (NCE)
vs. number of classes (c) for fuzziness exponents (φ) = 1.10–1.90.

(1984) points out regionalized compositions are characterized by components that can
be modeled by a spatial random function, are positive definite and sum to a constant.
When interpolating compositional data, the method used should satisfy these criteria (Odeh
et al., 2003). Walvoort and De Gruijter (2001)introduced the method of compositional
kriging that complies with these constraints and is basically an extension of OK. Another
approach is the use of additive log-ratio (ALR) transformation (McBratney et al., 1992),

Fig. 8. Plot of fuzziness exponent (φ) vs.−[(dJ1(M ,C)/dφ)c0.5] for classes (c) = 2, . . ., 8.
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Table 2
A small portion of the fuzzyk-means with Extragrades (FKMe) membership matrix for classes (c) = 4 and an
Extragrade class using a fuzziness exponent (φ) = 1.5

Site ID Class A Class B Class C Class D Extragrades

1 0.034 0.954 0.002 0.008 0.002
2 0.159 0.696 0.013 0.028 0.103
3 0.040 0.875 0.006 0.024 0.055
4 0.048 0.867 0.007 0.024 0.055
5 0.004 0.993 0.000 0.003 0.000
· · · · · ·
· · · · · ·
· · · · · ·

755 0.120 0.075 0.149 0.642 0.015

which briefly involves OK log-ratio-transformed membership values with a non-linear back
transformation.

Fig. 9 shows the composite fuzzy class map forc= 4 regular and the Extragrade class
whenφ = 1.5 using the ALR method. The map shows the union of membership (µ) val-
ues exceeding 0.5. The white areas represent the intergrades, where membership was less
than 0.5. Classes A and B represent the least conductive parts of the landscape. Class A
represented the second lowest signal readings using the EM34-10 and EM34-20 m config-
urations. However, at the 40 m configuration, the readings were on average second highest.
With respect to the Trangie Cowal in the west, this is consistent with the areas where the sur-
face expression of soil salinity is apparent (i.e., saline water tables occur near large earthen

Fig. 9. Map of composite fuzzy classes for (c) = 4 (i.e., Classes A, B, C, and D) plus the Extragrade class when
fuzziness exponent (φ) is 1.5.Note:Centroid values (EM34 signal readings in mS/m) are shown for each class.
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storages and supply channels between Weemabah and Rocky Point Roads). Class A had the
smallest number of members (i.e., 113) and as a consequence of being spread out evenly
across the district, the class was not readily mappable. Where it appeared in contiguous
numbers, the class was associated with the Trangie Cowal (Alluvial Plain) Pedoderm. Class
B had the lowest signal readings across all EM34 configurations and represented the coarse
sediments of the Trangie Cowal and Old Alluvium (Meander Plain) Pedoderms. It had the
largest number of spatially contiguous members (i.e., 173). Two areas were evident. The
first is associated with the Trangie Cowal (Alluvial Plain) and the Contemporary Macquarie
Pedoderms. The second area coincides with the Old Alluvium (Meander Plain) Pedoderm
in the west.

Classes C and D represented the more conductive parts of the Trangie district. Class C
has the second lowest membership (i.e., 124) but is defined by the greatest signal readings,
which progressively increase with depth. The largest contiguous area mapped is located in
the central northern part of the study area, associated with the Gin Gin Hills (Crests and
Slopes, and Depressions) and Trangie Cowal (Alluvial Plain and Depressions) Pedoderms.
In these areas, saline aquifers and water tables are known to exist. Class D had the second
largest number of members (i.e., 161). The class is characterized by uniformly conductive
readings (i.e., 97, 97, and 103 mS/m for EM34-10, -20, and -40, respectively). Most members
were associated with the Old Alluvium (Back Plain) south of the Township of Trangie. A
total of 139 sites were classed as Extragrades. Most of these were found in a large cluster
associated with the Old Alluvium (Back Plain) Pedoderm in the central southern part of the
study area.

In order to identify where there is overlap or uncertainty in the composite fuzzy class
map shown inFig. 9 we calculated and mapped the confusion index (CI). The method
is described inBurrough et al. (1997)and was developed to assist in identifying where
more information may be appropriate in order to better understand the nature of the overlap
between classes.Fig. 10shows the map of CI whenc= 4 + 1Extragrade classes. The white
areas (CI≤ 0.2) indicate where there is little uncertainty in the classification. It is evident
that of all the classes, the area defined by Class B has the least uncertainty associated with
it. Conversely, the darker shaded areas indicate where the CI > 0.6 (i.e., intragrades) and
therefore where uncertainty is greatest. It is evident that the largest contiguous area of
uncertainty (CI > 0.4) coincides with the central part of the district to the north of the area
delineated by the Extragrade class and between Classes C and B.

There are two possible explanations as to why the large uncertainty in the classification,
in this local, is attributable to land use. In the first instance, the area coincides with a small
pocket of dryland agriculture, which is surrounded on two sides by intensively irrigated
farms. AsVaughan et al. (1995)point out, the effect of management practices (i.e., dryland
and irrigated fields) can significantly influence the moisture content of the soil and hence
potentially measurements made with EM instruments at the district level. This is particu-
larly the case for instruments or configurations that measure the near surface (i.e., EM38).
Secondly, and perhaps more significantly, the area of higher uncertainty lies to the east of
where the Trangie Cowal (Alluvial Plain) Pedoderm narrows between the Old Alluvium
(Back Plain) north of Buddah Lake and the Gin Gin Hills Pedoderm (seeFig. 2). The signif-
icance of this is that these Pedoderms contain surface sediments that are clayier than those
associated with the Trangie Cowal. If these sediments extend to depth, this may produce
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Fig. 10. Map of confusion index (CI) for classes (c) = 4 (i.e., Classes A, B, C, and D) plus the Extragrade class
when fuzziness exponent (φ) is 1.5.

a geohydrological constriction, which will result in water flow being impeded to the west.
This perhaps explains the presence of saline water tables adjacent to the western most fields
of the landholding north of Rocky Point Road.

3.4. Combining FKMe clustering with a SRSS design

From a statistical perspective, the FKMe analysis essentially imposed a “blocking” struc-
ture over the full data set. In turn, this implied that the final, composite SRSS design had
to be compiled together from smaller, individual SRSS designs generated on each fuzzy
class (i.e., Classes A, B, C, D, and one Extragrade class). Therefore, a composite SRSS
design was generated from the EM34 survey data. First, individual SRSS designs were
independently generated within each fuzzy class. Since the EM34 survey data consisted of
three signal readings per site (i.e., EM34-10, -20, and -40 m configurations), a 23 factorial
response surface design was used to generate 8 sampling locations in each sub-region. The
factorial design levels in all designs were set at±1.5, which corresponded to a shift of 1.5
standard deviations above or below the mean level of each principal component vector. The
effective range of the residual error correlation structure was assumed to be arbitrarily large,
and hence the algorithm selected the maximum potential separation distances. Next, after an
initial SRSS design was generated in each of the fuzzy classes, two additional independent
SRSS designs were generated in each of the four regular classes (i.e.,c= A, B, C, and D)
and the Extragrade class. This resulted in a total of 15 individual SRSS designs across the
five classes.
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Fig. 11. Location of 40 soil sampling sites + 8 validation sites.

Any given design within a class could have been selected as the target design for that class
without any significant loss in prediction efficiency. However, the reason for the generation
of multiple designs was that a large number of potential composite SRSS designs could
be assembled and analyzed for their overall spatial uniformity. Specifically, there were a
total of 35 = 243 possible ways to construct the composite design across the five fuzzy-set
classes. The final composite sampling plan was formed by sequentially generating all 243
potential composite designs. The combination (of individual designs) that produced the
maximum spatial uniformity (i.e., greatest average separation between sample sites) across
the entire survey region was selected. Note that this optimization criteria was used in order
to minimize the possibility of spatial dependence in the residual error distribution.

Fig. 11shows the locations of the final 40 sample site locations chosen by the composite
SRSS design, with respect to the entire 755 EM survey sites. The average minimum sep-
aration distance achieved by this design was approximately 1000 m. In addition,Fig. 11
shows the location of eight validation sites. At each calibration site a soil sample was taken
every 1 m from the soil surface to a depth of 7 m. The particle size fraction was determined
on each sample using the hydrometer method (Rayment and Higginson, 1992). An average
clay content value to a depth of 7 m (i.e., %clay) was then determined at each calibration
and validation site.

3.5. Relationship between ECa and average soil clay content to 7m (%clay)

Table 3shows the corresponding data summary statistics pertaining to the EM34 and
EM38 signal readings and %clay calibration data collected at the 40 sample sites within the
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Table 3
EM34 and EM38 versus average clay content to 7 m (%clay) calibration sample data: basic summary statistics
and correlation estimates

(1) Basic statistics
Variable N Mean Standard deviation Minimum Maximum

%clay 40 41 10 15 58
EM34-10 40 90 41 21 162
EM34-20 40 102 44 29 192
EM34-40 40 114 46 28 203
EM38-v 40 83 45 5 159
EM38-h 40 77 40 13 147

(2) Pearson correlation coefficients: ln-transformed signal data vs. %clay
Signal r2

ln EM34-10 0.83
ln EM34-20 0.77
ln EM34-40 0.66
ln EM38-v 0.81
ln EM38-h 0.82

study area. Part 1 ofTable 3shows the basic statistics associated with these calibration data,
while Part 2 shows the calculated correlation estimates between the %clay and each EM
signal reading. The %clay measurements ranged from 15 to 58%, with a mean value of 41%
and a standard deviation of 10%. A histogram of the %clay data revealed a distribution that
appeared to be slightly left-skewed (figure not shown), but not especially asymmetrical.
The mean EM34 (and EM38) signal readings across the 40 calibration sites were quite
close to the global means (shown inTable 1), and the calculated standard deviations were
slightly higher. These results were expected, since the composite SRSS sampling approach
(used to select the 40 sites) is specifically designed to cover the full signal range while
preserving the data “balance” (i.e., this sampling approach constrains the sample means
to be approximately the same as the global means). The Pearson correlation coefficients
between each ln-transformed EM signal and the %clay ranged from 0.66 to 0.83; all five
correlation estimates are statistically significant below the 0.0001 level.

3.6. Testing the usefulness of the FKMe classes

The FKMe selection strategy identified five distinct subsets (i.e., Classes A, B, C, D,
and the Extragrade class) of EM34 data observations. These classes identified different
EM34 data response patterns, and thus supposedly identify distinct sub-regions where the
response variable would be expected to be different.Table 4shows the average %clay
estimates associated with each class. Both the mean levels and corresponding standard
deviations appear to be somewhat different. One-way analysis of variance (ANOVA)
F-tests suggest that these differences are significant below the 0.1 level (common variance
assumption:F= 3.08,p= 0.028; unequal variance assumption:F= 2.37,p= 0.071; Levene
test for the common variance assumption:F= 2.61, p= 0.052). These results are not
especially surprising, given the strong correlation between %clay and the EM34 signal
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Table 4
Average clay content to 7 m (%clay) summary statistics associated with each fuzzyk-mean class

Basic %clay statistics (by fuzzyk-mean class)
Class N Mean Standard deviation Standard error Minimum Maximum

A 8 32.8 12.6 4.4 15.0 44.0
B 8 37.1 9.5 3.4 23.1 51.5
C 8 45.5 8.4 3.0 31.8 58.0
D 8 43.8 5.6 2.0 35.2 50.2
Extragrades 8 44.6 7.1 2.5 28.9 50.9

data. The FKMe procedure essentially stratified the EM34 signal data into classes with
different mean signal levels, etc. However, a more important question is whether the
apparent %clay versus EM relationship changes across classes.

To address this question statistically, the following multiple linear regression model was
first fit to the full %clay versus EM34 calibration data set:
Model 1(Base model):

%clay= β0 + β1(w10) + β2(w20) + β3(w40) + β4(Xs) + β5(Ys) + ε (9)

where w10 = ln(EM34-10), w20 = ln(EM34-20), w40 = ln(EM34-40), Xs = (Easting –
600,000)/10,000,Ys = (Northing – 6,440,000)/10,000, andβ0 throughβ5 represent em-
pirical regression model parameters.

Model 1 specifies an additive linear relationship between the %clay and ln-transformed
EM34 signal data (w10, w20, w40), and also adjusts for linear drift in the predicted response
using first-order trend surface components (Xs, Ys). No EM38 data is used in this model,
since the original FKM classification procedure was based solely on the three EM34 signal
vectors. However, trend surface parameters (β4, β5) were added to this base model to
account for a noticeable north–south linear drift in the (non-trend surface adjusted) residual
error pattern. The regression model summary statistics and parameter estimates for this
model are given inTable 5. After this base model had been specified, the following two
additional analysis of covariance (ANOCOVA) models were fit to the same %clay versus
EM34 calibration data set:

Table 5
Regression model summary statistics for EM34 base model (Eq.(9))

(1) Model summary statistics
RMSE 5.06
r2 0.77

(2) Parameter estimates
Variable Parameter estimate Standard error t-test p> |t|
Intercept −17.54 8.39 −2.09 0.044
ln EM34-10 11.63 4.45 2.61 0.013
ln EM34-20 0.24 6.25 0.04 0.969
ln EM34-40 3.41 4.21 0.81 0.422
Xs (scaledX) 0.96 1.61 0.60 0.556
Ys (scaledY) −7.46 2.24 −3.33 0.002
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Model 2(Variable Intercept model):

%clay= β0 + αj(Fc)+ β1(w10) + β2(w20) + β3(w40) + β4(Xs) + β5(Ys) + ε

(10)

Model 3(Variable Intercept and Slope model):

%clay= β0 + αj(Fc)+ δj1(w10) + δj2(w20) + δj3(w40) + β4(Xs) + β5(Ys) + ε

(11)

where Fc represents the fuzzy class (e.g., Class A) andαj , δj1, δj2, andδj3 represent additional
empirical model parameters. Model 2 includes the fuzzy class blocking effect, in addition to
all of the base model (Model 1) parameters. Thus, Model 2 represents an expanded version
of Model 1, where now each fuzzy class is allowed to have a different intercept parameter
estimate. Model 3 represents a more complex version of Model 2; in this latter model the
entire linear relationship [between the %clay and ln(EM34) data] can change across each
fuzzy class.

Models 2 and 3 were then each tested against Model 1 using a GeneralF-testing approach
(Weisberg, 1985). These two generalF-tests corresponded to the following parameter tests:

1. Model 2 versus Model 1
αj = 0, for all j

2. Model 3 versus Model 1
αj = 0, δj1 = β1, δj2 = β2, δj2 = β3, for all j

Neither the first (F= 0.821,p= 0.522) nor second (F= 1.691,p= 0.142) test results were
statistically significant. These results suggest that the functional form of the regression
model does not significantly change across the five fuzzy classes. In other words, the base
model (Model 1) provides the most parsimonious description of the %clay versus ln(EM34)
signal data relationship. Based on these test results, it appears that the additional sampling
stratification (imposed by the FKM algorithm) cannot be used to increase the precision of
the prediction model. A homogeneous regression model appears to be adequate, regardless
of which fuzzy class the EM34 signal data originates from.

3.7. Estimation of the regression equation (used in the HSR Model)

Table 6shows the revised model summary statistics and parameter estimates for the
expanded version of Model 1 that conditions on both EM34 and EM38 signal data. Although
ther2-value is higher (0.79) and the root mean square error (RMSE) estimate is lower (4.95)
for this model (compared to the EM34 only model), none of the individual EM signal
parameter estimates appear to be statistically significant. This apparent lack of significance
is actually due to the fairly high correlation (co-linearity) between the various ln EM signal
vectors, and suggests that a reduced set of prediction vectors should be used instead.

We employed a forward sequential variable selection procedure to help select an optimal
reduced set of signal parameters (Myers, 1986). In this procedure, the two trend surface pa-
rameters were forced into the model; the remaining five signal parameters were sequentially
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Table 6
Regression model summary statistics for full EM34 and EM38 model

(1) Model summary statistics
RMSE 4.947
r2 0.793

(2) Parameter estimates
Variable Parameter estimate Standard error t-test p> |t|
Intercept −16.56 8.92 −1.86 0.073
ln EM34-10 5.48 5.42 1.01 0.320
ln EM34-20 −1.23 6.21 −0.20 0.845
ln EM34-40 5.87 4.37 1.34 0.188
ln EM38-v 1.68 3.51 0.48 0.636
ln EM38-h 3.20 4.54 0.71 0.486
Xs (scaledX) 0.59 1.59 0.37 0.713
Ys (scaledY) −6.70 2.25 −2.98 0.006

entered if and only if they resulted in a significance level of <0.25 (SAS: Reg procedure,
1990). This forward selection procedure identified the ln-transformed EM34-10 and EM34-
40 and EM38-h signal data vectors for inclusion into the model. Additional stepwise and
backwards selection procedures also identified these same three data vectors. The regression
model summary statistics and parameter estimates for this model are given inTable 7. The
forward variable selection procedure successfully identified a more parsimonious parameter
structure, as demonstrated by the slightly reduced MSE estimate (4.82). However, the pa-
rameter estimates shown also suggest that all three signal parameter values (5.16, 5.36, and
4.86) are probably equivalent. AnF-test ofβ1 =β2 =β3 confirms this (F= 0.02,p= 0.99),
and implies that the individual ln(EM34-10), ln(EM34-40), and ln(EM38-h) signal vectors
should be combined together into a single, composite predictor variable.

Given these results, we defined a new composite signal variable (c-ln EM) as c-
ln EM = [ln(EM34-10) + ln(EM34-40) + ln(EM38-h)] and then estimated the following lin-

Table 7
Regression model summary statistics for the reduced EM34 and EM38 model derived using the forward modeling
procedure

(1) Model summary statistics
RMSE 4.821
r2 0.791

(2) Parameter estimates
Variable Parameter estimate Standard error t-test p> |t|
Intercept −18.21 7.99 −2.28 0.029
ln EM34-10 5.16 4.38 1.18 0.247
ln EM34-40 5.36 3.22 1.66 0.106
ln EM38-h 4.86 2.59 1.88 0.069
Xs (scaledX) 0.57 1.54 0.37 0.715
Ys (scaledY) −6.66 2.17 −3.07 0.004
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Table 8
Regression model summary statistics for the final electromagnetic (EM) model using the composite signal variable
c-ln EM (Eq.(12))

(1) Model summary statistics
RMSE 4.687
r2 0.791

(2) Parameter estimates
Variable Parameter estimate Standard error t-test p> |t|
Intercept −17.78 7.18 −2.48 0.018
c-ln EM 5.09 0.48 10.54 0.000
Xs (scaledX) 0.55 1.47 0.37 0.711
Ys (scaledY) −6.52 1.89 −3.45 0.001

ear regression model:

%clay= β0 + β1(c-lnEM) + β2(Xs) + β3(Ys) + ε (12)

The regression model summary statistics and parameter estimates for this model are given in
Table 8. With respect to the model produced by the forward variable selection procedure, the
r2-value remained unchanged (0.79) and the new MSE estimate (4.69) was slightly reduced.
A plot of the predicted versus observed %clay measurements across the 40 calibration sites
is shown inFig. 12.

A complete residual analysis was performed to assess the adequacy of the final %clay
prediction model. This analysis included examining the error structure for outliers and/or
highly influential observations, testing the residual error distribution for normality, and
testing for spatial correlation in the residual error pattern using a modified Moran residual
test statistic (Brandsma and Ketellapper, 1979). Some summary statistics pertaining to

Fig. 12. Observed vs. regression model predicted average clay content to 7 m (%clay) measurements [using Eq.
(12)].
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Table 9
Residual diagnostic and test statistics associated with the final electromagnetic (EM) model (Eq.(12))

(1) Univariate residual summary statistics Mean Standard deviation Minimum Maximum

Residuals 0.00 4.50 -10.95 9.91
Student residuals −0.01 1.05 -2.80 2.37

(2) Maximum observed HAT leverage value 0.2071

(3) Shapiro–Wilk test statistic (test for normality)
W 0.9784
p<W 0.6318

(4) Modified Moran test-statistic (test for spatial correlation)
Im-score −0.070
E[Im] −0.063
Var[Im] 0.006
z-score −0.10
p>z 0.540

this analysis are presented inTable 9. The residual error pattern revealed no outliers or
highly influential observations. Additionally, the error distribution passed the Shapiro–Wilk
Normality test (W= 0.9784,p= 0.6318) and the modified Moran spatial correlation test
(z=−0.10,p= 0.540). These results suggest that the assumptions of residual normality and
spatial independence are valid for this regression model.

3.8. Estimating the spatial covariance structure of the composite signal data

As explained previously, the estimation of a HSR model is a two-step process. The first
step involves the estimation of a suitable regression model describing the response versus
predictor relationship, conditioned on any fixed trend surface and/or blocking parameters
and the known (i.e., observed) spatial predictors. The second step involves the determi-
nation of the spatial covariance structure of the spatial predictor(s). In Eq.(12), there is
only one spatial predictor (the c-ln EM signal term) and hence only one spatial variance
structure needed to be estimated.Fig. 13shows the isotropic variogram calculated from
the c-ln EM data, with an exponential variogram model superimposed. A second-order sta-
tionary, isotropic exponential model produced the most parsimonious fit to the observed
variogram structure (no apparent anisotropic structure was detected). The nugget (σ2

n), total
sill (σ2

n + σ2
s ), and range (υ) parameter estimates for this model were calculated to be 0.51,

1.48, and 2120 m, respectively. Note that this fitted variogram model corresponds to the
following c-ln EM spatial covariance structure:

C(h) =
{

1.48, |h| = 0

0.51 exp
(
− 3|h|

2120

)
, |h| > 0

A cross-validation kriging analysis using this covariance model yielded an approximately
1:1 set of predictions (slope estimate = 1.05, standard error = 0.04), suggesting that this fitted
covariance model adequately described the c-ln EM spatial covariance structure. However,
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Fig. 13. Calculated variogram structure for the composite (c-ln EM) signal data, the best-fit isotropic exponential
variogram model also shown.

the correlation between the observed and jack-knifed (cross-validated) predictions was only
0.69, due to the relatively large nugget effect present in this structure (e.g., about 35% of
the total variability).

3.9. Generating the HSR model prediction map

Given the estimated covariance structure, the estimation of the hierarchical spatial model
was complete. Specifically, the full model was specified as:

(y|z = z0) = β0 + β1(z0) + β2(Xs) + β3(Ys) + ε (13)

with ε∼ iid N(0,σ2I); z∼ MVN(z, σ2
k") and wherey= %clay,z= c-ln EM, and the remain-

ing variables are defined as before. To generate the map of the %clay estimates, we first
interpolated theZ(c-ln EM) signal data onto a 100 by 100-m grid using an OK analysis. We
then passed the resultingzk predictions through the regression model in order to calculate
the finalŷ and Var(y− ŷ) estimates, using Eqs.(8.1)and(8.2). A map of the final predicted
%clay pattern for the Trangie district is shown inFig. 14. The coarsest sediments (i.e.,
%clay≤ 35%) are for the most part located along the eastern margin of the district adjacent
to the Macquarie River. Isolated patches of clay≤ 35% can also be seen adjacent to the
Trangie Cowal. Typically, the %clay ranges between 35 and 40% next to the Cowal. This is
similarly the case with the Old Alluvium (Meander Plain) Pedoderm, which runs parallel
with the Mitchell Highway in the western part of the district. With respect to the landhold-
ings located on the Trangie Cowal average clay% was slightly higher (i.e., 40–50%). The
largest values of average %clay (i.e.,≥50%) are associated with the Old Alluvium (Meander
Plain) and to the east and southeast of Buddah Lake. The area adjacent to Buddah Lake has
the highest clay content. This is consistent with the contiguous area of Extragrades mapped
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Fig. 14. Predicted average clay content to 7 m (%clay) map for the Trangie district of the lower Macquarie valley
generated by the hierarchical spatial regression (HSR) model.

in Fig. 9, which sets apart this part of the landscape from the rest of the Old Alluvium
(Meander Plain). It is also evident fromFigs. 1 and 14that most of the irrigated fields have
been developed on the clayier sediments (i.e., clay content≥ 40%). The major exceptions
are some of the fields between the Weemabah and Rocky Point Roads. This is similarly the
case with respect to the large earthen water reservoirs.

A map of the calculated standard deviation associated with these predictions is shown
in Fig. 15. The white and darkest grey shaded areas indicate where the standard deviation
was lowest (i.e.,≤6.5) and highest (i.e., >6.9), respectively. The highest standard deviations
are associated with the south- and north-eastern margins of the study area is due to “edge
effect” generally well known in the geostatistics community. The “edge effect” is caused by
insufficient data at or close to the edge. Conversely, the standard deviation is lowest (≤6.5)
in the central parts of the Trangie district.

3.10. Assessment of the HSR model accuracy and reliability

The reliability of the HSR model predictions were analyzed by (i) generating the %clay
predictions at the eight independent validation sites and (ii) assessing the prediction ac-
curacy at the 40 calibration sites using a cross-validation technique.Table 10displays the
measured and two types of predicted %clay estimates at the eight independent validation
sites, respectively (seeFig. 11). The first column of predicted %clay values was generated
using known c-ln EM signal data, while the second column of values was generated using
estimated c-ln EM signal data (calculated via the OK analysis). The corresponding 95%
confidence intervals were derived using the conditional [c-ln EM known, Eq.(7.2)] and un-
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Fig. 15. Calculated standard deviation map (associated with average clay content to 7 m (%clay) predictions)
generated by the hierarchical spatial regression (HSR) model.

conditional [c-ln EM estimated, Eq.(8.2)] hierarchical regression model variance formulas,
respectively.

The first set of (conditional) %clay predictions agree reasonably well with the measured
%clay values. The average predicted %clay level of 47.7% is close to the observed (true)

Table 10
Predicted average clay content to 7 m (%clay) estimates at eight validation sites (seeFig. 11for locations), generated
using known and estimated composite (c-ln EM) electromagnetic (EM) signal data

Validation ID Measured (M) Using known c-ln EM signal
data, predicted (P)

Using estimated c-ln EM
signal data, predicted (P)

%clay %clay 95% CI %clay 95% CI

(1) Measured vs. predicted
41 57.4 49.9 (40.1, 59.7) 47.2 (34.1, 60.3)
42 59.9 54.5 (44.5, 64.4) 50.1 (36.9, 63.3)
43 44.4 45.1 (35.1, 55.0) 41.0 (27.9, 54.1)
44 37.2 39.1 (29.3, 48.9) 41.4 (28.3, 54.5)
45 40.4 42.3 (32.5, 52.1) 43.6 (30.3, 56.9)
46 46.2 50.6 (40.5, 60.6) 42.3 (29.2, 55.4)
47 57.6 54.9 (44.9, 64.9) 48.6 (35.5, 61.6)
48 36.0 45.3 (35.4, 55.2) 41.2 (28.1, 54.3)

(2) Root mean square error (RMSE)
Average %clay 47.38 47.71 44.33
Difference (M−P) −0.34 2.95
RMSE 5.08 6.73
Corr(M, P) 0.88 0.92

95% confidence limits for both sets of predictions also shown.
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Table 11
Summary statistics for the conditional and unconditional average clay content to 7 m (%clay) predictions generated
at the 40 calibration sample sites (Z= c-ln EM)

Variable Mean Standard deviation

y= %clay 40.76 9.84
u1 = prd %clay|Z known 40.76 8.75
u2 = prd %clay|Z estimated 41.18 4.71
y – u1 0.000 4.503
y – u2 −0.420 8.726
Corr(y, u1) = 0.89
Corr(y, u2) = 0.46

average of 47.4%, and the observed versus prediction correlation estimate (r = 0.88) is very
close to the square root of the regression modelr2-value (0.90). The second set of (uncondi-
tional) %clay predictions do not appear to agree as well with the measured data. The average
predicted %clay level of 44.4% is farther away from the observed value, and the uncorrected
root mean square error estimate is higher than the corresponding conditional estimate (6.73
versus 5.08). Interestingly, the observed versus unconditional predicted correlation estimate
is quite high (r = 0.92). This latter result is atypical, and probably an artifact of the small
validation sample size (n= 8).

Table 11displays some basic results pertaining to both the conditional and uncondi-
tional predictions generated at the 40 calibration sites. In this table, the conditional (c-ln EM
known) predictions are simply the predictions generated by Eq.(12). In contrast, the un-
conditional predictions were generated by replacing the known c-ln EM signal values in Eq.
(12) with their corresponding cross-validation estimates. These results more clearly show
the effect of using estimated (rather than known) signal data in the hierarchical regression
model; the observed variance of the prediction distribution shrinks and the correspond-
ing error variance increases. The expected correlation between the observed and predicted
%clay must also decrease; in this cross-validation analysis the decrease is substantial (0.89
versus 0.46).

The significant reduction in the observed versus predicted %clay correlation estimate
using estimated signal data is due to the increased uncertainty in these signal data estimates
(seeFigs. 4c–6c). This uncertainty is compounded by the large relative nugget effect seen in
the c-ln EM variogram model (Fig. 13). This large nugget effect implies that the signal data
is locally discontinuous, and thus precise interpolated signal readings (off the survey grid)
cannot be generated using the kriging model. In contrast, the regression model appears to
be reasonably accurate; the observed versus predicted %clay correlation estimate is 0.89.
Hence, these results imply that the sampling density of the EM signal data needs to be
increased (as opposed to increasing the number of %clay calibration samples) if more
precise interpolated predictions are required.

3.11. Relationship between EM34 signal data, FKMe classes, and clay%

In order to better appreciate the relationship between the EM34 and EM38 signal data,
%clay, FKMe classes and the clay stratigraphy of the Trangie district we describe the results
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Fig. 16. Spatial distribution of: (a) %clay (i.e., average clay content to a depth of 7 m); (b) interpolated signal
readings of the EM34 and EM38 (i.e., EM34-10, -20, and -40 m configurations and horizontal, respectively); (c)
interpolated memberships (µ) for c= 4 + 1Extragrade class; and (d) clay content with depth vs. Eastings (m).

along a detailed transect.Fig. 16shows the data and results collected along an east–west
transect situated at an approximate Northing of 6,452,000. Its location is shown inFig. 3.
With respect toFig. 16d the clay % data comes from calibration profiles 22, 38, 20, 27, 28,
17, 47, 42, 11, 9, 32, and 1. Their approximate location along the traverse is also shown.

In order to understand the significance of the results we systematically describe them
from east to west. Southeast of Trangie (Easting – 595,000) the EM34 signal readings
(i.e., EM34-10, -20, and -40) are similar and generally range from 80 to 110 mS/m. These
readings are equivalent to the centroids of Class D (i.e., 97, 97, and 103) and as shown
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in Fig. 16c this portion of the traverse had the highestµ (i.e., 0.5–0.7) to this class. With
respect to %clay, we would anticipate that the soil to a depth of 7 m would be about 42%.
This is confirmed visually by the data presented inFig. 16d. It indicates that the soil is
medium clay (i.e., >45%) textured at depths of 0–2, 3–5, and at 7 m, while at 2 and 6 m it
is generally a light to sandy clay (i.e., 30–40%). At an Easting of 60,000, %clay decreases
slightly to 35%. This coincides with lower EM34 signal readings (i.e., 50, 50, and 70) that
are consistent with the centroids of Class B. As shown inFig. 16c this part of the traverse
has highµ to this class (i.e., >0.8). From here until the middle portion of this traverse the
signal readings could not be placed sufficiently well into any of the four regular classes
although there is partialµ to Classes A and C.

At an Easting of 607,000, the EM34 signal readings were the highest recorded along the
traverse and the Trangie district in general (seeFigs. 4 and 5). With respect to the EM34-10
and EM34-20, the signal readings ranged between 130 and 150 mS/m, while the EM34-40
was greater than 150 mS/m. As shown in the legend ofFig. 16c, none of the class centroids
coincide with these values. This is particularly the case with respect to the EM34-10 and
EM34-20 readings. As a result the EM signal readings recorded across this part of the
landscape could not be placed into any of the four regular classes (i.e., A, B, C, or D). This
explains the largeµ to the Extragrade class. This is consistent with the fact that this part
of the district also had the highest %clay, which exceeds 45% (seeFigs. 14 and 16a). The
reason for the classification of this portion of the landscape to the Extragrade class becomes
self-evident when considering results shown inFig. 16d. Along this portion of the traverse
the clay content to a depth of 15 m, generally exceeds 50%. In comparison to the rest of the
traverse, and for that matter the Trangie district, this is atypical.

To the east of this clay dominated landscape there is some uncertainty in the FKMe
classification. This is most likely attributable to the fact that all EM34 signal readings
decrease quite markedly (100 mS/m) over a relatively short distance (i.e., 3 km) to values of
50–100 mS/m. The EM34 signal readings generally persist across most of the remainder of
the traverse and are consistent with the centroids of Class B and to a lesser extent D. Here,
the %clay is about 35% and is consistent with the %clay estimated along the eastern part of
the transect where this class was represented. In terms of changes in clay content with depth
there is much less stratification in this part of the landscape. What is worth noting is that at
a depth of about 2 m there is a heavy clay layer underlying sandier sediments.Triantafilis
et al. (2004)showed that deep drainage risk was high with respect to the sandier sediments.
This is particularly the case when large earthen water reservoirs or conveyance channels,
associated with irrigated agriculture, were constructed upon them. The higher underlying
clay content goes some way in explaining why perched water tables can be problematic in
this part of the landscape.

4. Summary and conclusions

The predominantly irrigated cotton-growing district located southeast of Trangie in the
lower Macquarie valley of New South Wales was surveyed using EM38 and EM34 in-
struments. The EM38 survey (i.e., vertical EM38-v and horizontal EM38-h) generally re-
flected the known surface sediments of the Trangie district (i.e., Pedoderms –McKenzie,
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1992). This was similarly the case with the EM34 at 10 m (EM34-10) and 20 m (EM34-20)
configurations, although in some areas (e.g., Trangie Cowal between Weemabah and Rocky
Point Roads) higher signal readings were consistent with isolated instances of point source
soil salinization. With respect to the signal readings recorded with the EM34 in the 40 m
(EM34-40) configuration, the results suggest that the instrument is influenced by deeper
conductive anomalies including saline groundwater aquifers beneath the Gin Gin Hills (i.e.,
north of Weemabah Road) and water tables underlying the Trangie Cowal Pedoderm.

The FKMe analysis of the EM34 signal data (i.e., EM34-10, -20, and -40) confirmed these
patterns by clustering similar signal readings into four regular and one Extragrade class. The
use of the confusion index to map uncertainty in the clusters (FKMe) indicated areas where
more information could be collected in order to improve the classification and understanding
of the surface and subsurface hydrogeology. This is particularly the case in the central part
of the study area where the CI was highest. We concluded that the most likely explanation
for the higher uncertainty (i.e., CI > 0.4) is attributable to land use. In the first instance,
dryland fields produce lower signal readings in the near surface (EM34-10) as compared
with adjacent irrigated areas. Secondly groundwater recharge from irrigated areas cause
soluble salts to accumulate beneath dryland areas. This results in higher signal readings in
the deeper measurements (EM34-40). This situation is unique to the area and more detailed
information is required to better understand the hydrology and best management.

Nevertheless, the FKMe classes produced generally reflect the known Pedoderms and
hydrogeology of the Trangie district. The FKMe classification, therefore, provided a useful
blocking strategy for site selection. However, the combined FKMe and SSRS design did
not lead to different regression relationships for each class. We conclude that mineralogical
differences do not influence the EM34. As a result, we developed a homogeneous regression
model to estimate %clay across the Trangie district. This was achieved by determining a
hierarchical spatial regression model, which included two trend surface parameters (i.e.,
Eastings and Northings) and testing significance of five-signal readings by using a forward
sequential selection procedure. We found that the natural log (ln) of the sum of the EM38-
h, EM34-10, and EM34-40 signal readings, along with the Easting and Northing would
provide the most parsimonious combination. We conclude that the EM38-h best accounts
for the variation in the surface sediments (0–1 m), while the EM34-10 and EM34-40 provide
information relating to the vadose zone (1–7 m).

The HSR modeling approach used in this analysis has two advantages over co-kriging.
The first of these is that the HSR approach avoids the task of developing cross-covariance
models that can be time-consuming. Secondly, the approach allows one to model and test
multiple inter-dependence structures (i.e., as illustrated during FKMe analysis) between
the predictor variables. Like co-kriging, the final result is still an interpolated map that
describes the spatial distribution of average clay content to 7 m (%clay). The %clay map
compliments the results achieved byMcKenzie (1992)using a more conventional approach
(i.e., using broad scale ecological and geomorphological information, monochrome aerial
photographs, and geological and topographic maps).

In terms of decreasing the prediction variance there are several choices. The first is de-
creasing the ground-based EM survey interval from 500 to 250 or even 125 m. Although this
would be a time-consuming proposition, the information would be useful in improving the
cause and management of soil and water salinization in the irrigated cotton-growing areas
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associated with the Trangie Cowal (Alluvial Plain). Alternatively, airborne EM systems
could be deployed to increase the EM survey resolution, or other types of ancillary infor-
mation (i.e., gamma radiometric, LANDSAT, RADARSAT, etc.) that might be incorporated
into the modeling process. For example, a combined FKM analysis of the EM34, EM38, and
remotely sensed information might provide better distinction of surface sediments and de-
lineation of robust soil management units using a quantitative approach as described herein.
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Appendix A. List of abbreviations

clay% average clay content to 7 m depth
ECa apparent soil electrical conductivity
EM electromagnetic (EM) induction
EM34-10 EM34 signal reading at 10 m coil configuration (horizontal dipole mode)
EM34-20 EM34 signal reading at 20 m coil configuration (horizontal dipole mode)
EM34-40 EM34 signal reading at 40 m coil configuration (horizontal dipole mode)
EM38-v EM38 signal reading in vertical dipole mode
EM38-h EM38 signal reading horizontal dipole mode
c-ln EM ln(EM34-10) + ln(EM34-40) + ln(EM38-h)
FKM fuzzy k-means
FKMe fuzzyk-means with extragrades
OK ordinary kriging
SRSS spatial response surface sampling
HSR hierarchical spatial regression
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