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1. INTRODUCTION

Electrical conductivity (EM) surveys have become a common technique for the
assessment of various near surface soil properties. Both direct contact and non-invasive
conductivity surveying techniques are now regularly employed in many precision agriculture
applications (Corwin & Lesch, 2003), and these same techniques have been used for many
years in soil salinity assessments (Rhoades et al., 1999). Although large amounts of EM data
can now be readily collected (due to the mobilization of various conductivity sensors), this
data still must be calibrated to the target soil property of interest (such as soil salinity or %
clay content, etc.). In order to calibrate conductivity survey data, a limited set of “reference”
or “ground-truth” soil samples are typically also collected during the survey process. The
target soil properties of interest are measured on these calibration samples and then a suitable
(geo)statistical prediction model is employed, such as a cokriging model or spatial regression
model (Lesch et al., 1995).

The purpose of this research is to review and compare two commonly used spatial
prediction techniques, cokriging and hierarchical spatial regression, specifically with respect
to predicting both soil salinity and soil texture from calibrating regional EM survey data.
The regional survey data that will be discussed in the oral presentation is the 1991 Broadview
water district EM/salinity study (Corwin et al., 1995). This EM-38 grid survey consisted of
2378 locations across 2350 ha of irrigated agricultural land. Forty three adjacent fields were
surveyed during this study and a calibration set of 315 co-located 1.2 m deep soil sample
cores were also acquired (at about 15% of the EM survey sites) and analyzed for soil salinity
(EC,, dS/m), saturation percent (SP, %) and gravimetric soil water content (2g, %). One of
the primary survey goals was to use the acquired EM data to predict the spatial salinity
distribution throughout the district. Note that the modeling of this data set from the
geostatistical perspective has been previously discussed in detail by Vaughan et al., (1995)
and Bourgault et al., (1997).

2. STATISTICAL METHODOLOGY

A brief overview of both ordinary cokriging and hierarchical spatial regression modeling
is presented in this section (for the case of a single covariate).

Cokriging (CoK): using a single covariate

The ordinary cokriging (CoK) estimator can be written as a linear combination of the
neighboring primary (target) and secondary (covariate) data; i.e.,
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Y(s,)= Y, 8¥(s)+ 2. @,X(s,), where), 8,=1and }, @;=0- (1)
j=1

i=1
In matrix formulation, this estimator can be expressed as
Y(s,)= D"y+ W', where 1"D=1and 1"W = 0. (2)

The optimal vector weights D and W are found by solving the following matrix system

Cyy Cix 1 0] D Cyo
Cyy Cxx 0 1* w | Exo (3)
1" 0" 0 0 |-g| |1
0" 1" 0 0| |-u 0

where Cyy and Cxx represent the assumed covariance structures of the primary and secondary
data, Cyx represents the assumed cross-covariance structure, and cyp and exo represent the
primary and secondary covariance vectores between the observed data and new prediction site
(Wackernagel, 1998)

One should note that a fundamental goal in any CoK analysis is to facilitate predictions “off
the grid”; i.e., to make predictions at locations where no covariate data exists. When the
covariate data exists everywhere (or has been acquired on a dense enough grid so that
interpolated predictions are unnecessary) then other kriging techniques such as kriging with
external drift (KED) can typically be used in place of a full CoK analysis (Deutsch & Journel,
1992; Wackernagel, 1998).

Hierarchical Spatial Regression (HSR): using a single covariate

Hierarchical spatial regression (HSR) models have become quite popular within the last 10
years. These models can be used for either classical (frequentist) and bayesian inference and
nearly all linear geostatistical modeling techniques can be equivalently recast into the
hierarchical regression setting (Royle & Berliner, 1999). In its most basic form, the HSR
modeling approach represents a two-stage, conditional regression modeling technique. In the
first stage, the primary (target) variable is modeling as a conditional linear function of the
secondary covariate variable plus a spatially dependent random error component. In matrix
notation, the equation can be expressed as:

Y(S)x=ZB+ 1(s), m(s) ~ MSG(0,%(0)) (4)

where Z represents a suitable design matrix that specifies the postulated y / x relationship, 7
represents the regression model parameters, (s) represents the spatially correlated error



component that is assumed to follow a some form of multi-variate spatial gaussian error
structure, in turn defined (indexed) by the 2 parameter vector (Royle & Berliner, 1999;
Schabenberger & Gotway, 2005) . Strictly speaking, this equation only predicts target data
levels at locations where the covariate data exists; i.e., it represents a conditional model of

ylx. Hence, in the second stage, the covariate (x) data is also assumed to exhibit spatial structure;
for example

x(s) ~ MSG(u, X(7)) (5)

This second stage (or hierarchical) assumption allows one to make predictions across the entire
domain of interest; i.e., one uses Eqn. (5) to generate the best unbiased linear predictor of x(s¢) at
the non-surveyed location sy and then this predictor is substituted into Eqn. (4) to generate the
corresponding y(so) prediction. If predictions are only needed where known covariate data is
available, then the second stage of the analysis need not be performed. In other words, Eqn. (5)
only enters into the HSR model when predictions are made “off the grid”, otherwise the HSR
model functions just like an ordinary spatial regression model (i.e., similar to a geostatistical
KED equation).

Royle & Berliner (1999) give an excellent overview of the HSR modeling approach,
including how this approach can be adapted to mimic either KED and CoK models or
additionally provide for a more comprehensive class of regression model structures in the first
stage of the analysis.

3. DISCUSSION & CONCLUSION

In general, the following four features make the HSR modeling approach a more attractive
alternative to an ordinary CoK analysis when modeling regional EM survey data:

Flexibility in modeling the covariate relationship.

It is well known that the ordinary CoK model assumes a simple linear relationship between
the target and covariate data; i.e., y = b0 + b1[x]. However, in many EM surveys the true y/x
relationship may often be (a) curve-linear, (b) contaminated by global trend and/or, (c)
contaminated by between-field (blocking) effects. This latter issue of systematic, between-field
variation in the EM data represents a particularly important issue in regional surveys. Global
trends, blocking effects, and/or curve-linear response patterns can all be easily incorporated into
HSR models (using standard software packages), while modifying CoK models to handle these
effects tends to be much more mathematically and computationally demanding.

Morve efficient parameter estimation.

Both the mean and covariance parameters in an HSR model are commonly estimated using
either maximum likelihood (ML) or restricted maximum likelihood (REML) techniques (for
example, using the SAS MIXED procedure). Although in theory the same type of estimation
techniques can be applied to the CoK model, few commercial or share-ware CoK software
packages support ML or REML techniques. Note that ML (or REML) estimation techniques are
more efficient than weighted least squares procedures when the joint (spatial) multivariate
Normality assumption holds.

Parameter tests can be easily carried out within the HSR modeling framework.

In many surveys explicit parameter estimates (of the y/x relationship) may be desired,



and/or one may wish to explicitly test for statistically significant between-field blocking
effects or global trend, etc. HSR models facilitate such tests, via either asymptotic likelihood
ratio test statistics or conditionally specified F-tests. In contrast, CoK equations (regardless
of how they might be specified) do not facilitate any type of formal parameter testing
methodologies.

The hierarchical approach to model specification is more succinct.

In regional EM surveys, the spatial density of the EM covariate(s) may be sufficient to
preclude the need of covariate interpolation. Hence, from the geostatistical perspective one
would naturally be inclined to employ some type of simpler KED model in place of the CoK
model. However, such a decision must be made before the data modeling begins and if the
KED approach is adopted then no interpolation can be performed (i.e., no predictions off the
EM grid can be computed). In contrast, such problems do not arise within the HSR
framework. If one wishes to restrict attention to just locations having known covariate
information, then only the first stage of the HSR modeling approach needs to be carried out.
If the need for interpolation arises later on, then the second stage of the modeling approach
can be performed. No modification to the (stage 1) conditional regression model is necessary
in this latter scenario, thus no analysis effort is wasted.

An analysis of the Broadview EM survey and soil sample calibration data will be given in
the oral presentation. Some of the key results from this analysis show that (a) the magnitude
of the 1991 EM survey data changes substantially from field to field, (b) due to this fact,
there is significant between-field variation that must be accounted for when modeling these
data, and (c) spatial analysis of covariance (ANOCOVA) models can be used to adjust out
these block effects and accurately predict both the soil SP and log salinity levels from the
(log transformed) EM survey data. Spatial ANOCOVA models represent one type of model
structure that is available within the HSR modeling framework; our results suggest that these
models may be especially well suited for calibrating regional EM survey data.
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