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Estimating Uncertain Flow and Transport Parameters Using
a Sequential Uncertainty Fitting Procedure

K. C. Abbaspour,* C. A. Johnson, and M. Th. van Genuchten

ABSTRACT and Erofeeva, 2002), and seawater intrusion (Iribar et
al., 1997).Inversely obtained hydrologic parameters are always uncertain

Inverse modeling has brought new opportunities, but(nonunique) because of errors associated with the measurements and
also new challenges. Some of the advantages are savingsthe invoked conceptual model, among other factors. Quantification of
in time and cost of laboratory and/or field experimentsthis uncertainty in multidimensional parameter space is often difficult
generally needed to obtain the unknown parameters andbecause of complexities in the structure of the objective function. In

this study we describe parameter uncertainties using uniform distribu- attainment of a better fit with available data. Another
tions and fit these distributions iteratively within larger absolute inter- advantage is the usefulness of inverse modeling in the
vals such that two criteria are met: (i) bracketing most of the measured analysis of model structure (the invoked conceptual
data (�90%) within the 95% prediction uncertainty (95PPU) and (ii) model), boundary conditions, and prevailing subsurface
obtaining a small ratio (�1) of the average difference between the flow and contaminant transport processes. One of the
upper and lower 95PPU and the standard deviation of the measured limitations of inverse modeling is that the fitted parame-
data. We define a model as calibrated if, upon reaching these two ters are conditioned on the experimental setup and itscriteria, a significant R2 exists between the observed and simulated

set of measured variables, which is usually limited inresults. A program, SUFI-2, was developed and tested for the calibra-
both time and space. Other conditioning factors includetion of two bottom ash landfills. SUFI-2 performs a combined optimi-
the choice of the parameter estimation routine, the ob-zation and uncertainty analysis using a global search procedure and
jective function, and the weights associated with thecan deal with a large number of parameters through Latin hypercube
different components or parts of the form of objec-sampling. We explain the above concepts using an example in which

two municipal solid waste incinerator bottom ash monofills were suc- tive function.
cessfully calibrated and tested for flow, and one monofill also for The main challenge of inverse modeling is to find that
transport. Because of high levels of heavy metals in the leachate, “unique” set of effective parameters that best describe
monitoring and modeling of such landfills is critical from environmen- the data and envisioned processes. However, many sto-
tal points of view. chastic inverse methods are based on the philosophy

that there is no such unique set of effective parameter
values. Beven and Binley (1992), among others, explain

Inverse modeling is becoming increasingly popular that since the invoked hydrological model structure usu-
in many branches of the earth and environmental ally contains some error, and since all observations and

sciences. One major reason to apply inverse modeling is measurements on which inverse modeling is based are
to estimate parameters that cannot be measured directly also subject to error, no reason exists why any one set
because of a variety of reasons, including scale issues. of parameter values will represent the sought after effec-
What makes inverse modeling attractive is that various tive parameters in a unique way. Hence, the nonunique-
output variables are often much easier to measure than ness problem is an inherent characteristic of inverse
some of the required input parameters. Numerous appli- modeling regardless of the calibration procedure or ex-

perimental setup.cations of inverse modeling now exist in the literature.
Furthermore, with field-scale time series data, as op-These include estimation of soil hydraulic parameters

posed to relatively simple well-defined laboratory solute(e.g., Pan and Wu, 1998; Simunek et al., 1999; Abbas-
breakthrough curves for example (e.g., van Genuchten,pour et al., 2001; Young et al., 2002; Wang et al., 2003),
1981), definition of a good simulation can be very sub-hydrologic parameters (e.g., Duan et al., 1992; Beven
jective because visually different simulations with veryand Binley, 1992; Lahkim et al., 1999; Savenkoff et al.,
different parameter combinations may yield identical2001), and transport parameters (e.g., Schmied et al., 2000;
values of the objective function (Boyle et al., 2000). Invon Gunten and Furrer, 2000; McKenna et al., 2001;
such cases, parameter fitting leads to parameter regionsBell et al., 2002), as well as parameters in many other
with similar values of the objective function. These pa-applications such as flood discharge prediction (Sulzer
rameter regions comprise the uncertainty in the parame-et al., 2002), barotropic ocean tide simulations (Egbert
ters. Quantifying the degree of uncertainty in the param-
eters leads to more reliable models (Cooley, 1993).
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level is obtained, all parameter distributions producing ied in detail by Johnson et al. (1999). Chemical analyses
of leachate from this landfill at discrete time intervalsthis uncertainty are potential solutions. In this paper,

we outline a procedure that uses a stopping rule based between 1994 and 1996 showed average total concentra-
tions of 44.5, 47.1, 11.8, 0.63, 8.2, and 12.4 mM for Na,on a certain definition of the prediction uncertainty.

Inverse modeling usually reduces to an optimization Cl, K, Mg, Ca, and SO4, respectively. Many other metals,
such as Cu, Zn, Sb, Cr, Cd, Mo, V, Mn, and Pb, wereproblem in which a vector of unknown parameters is es-

timated by minimizing an assumed goal or objective func- also detected. While the leachate composition was found
to be relatively constant during dry periods, consider-tion. Many procedures have been developed to solve the

resulting nonlinear minimization problem (Brad, 1974; able dilutions occurred during rain events. The relatively
good reproducibility of the experimental observationsBeck and Arnold, 1977; Yeh, 1986; Kool et al., 1987;

Duan et al., 1992; Yapo et al., 1998; Vrugt et al., 2003a,b). in response to rain events motivated us to use transport
modeling to predict heavy metal concentrations.Among soil scientists and vadose zone hydrologists the

gradient approach of Levenberg-Marquardt (Marquardt, Different models have been used to simulate flow
through MSWI bottom ash landfills (Guyonnet et al., 1998;1963) method has become the method of choice (e.g.,

van Genuchten 1981; Kool et al., 1985, 1987), while Hartmann et al., 2001; Johnson et al., 2001). In the study
of Johnson et al. (2001), flow through the Lostorf landfillmodelers of larger-scale problems prefer using more

global approaches and multiobjective optimization func- was modeled using the programs MACRO (Jarvis, 1994),
HYDRUS5 (Vogel et al., 1996), a neural network ap-tions (e.g., Beven and Binley, 1992; Duan et al., 1992,

2003; Yapo et al., 1998; Gupta et al., 1998). proach (Schaap and Bouten, 1996), and a linear storage
model adapted from Huwe et al. (1994). They foundA common problem with gradient methods is that

they are very sensitive to the initial values of the opti- that flow was dominated by preferential paths. The best
simulation results were obtained with the variably satu-mized parameters and often lead to a local minimum.

Also, their application to problems having a large num- rated dual-permeability model MACRO of Jarvis (1994).
We extend the work of Johnson et al. (2001) by simu-ber of parameters is sometimes problematic. Moreover,

gradient methods do not provide a reliable estimate of lating both flow and transport at the Lostorf landfill site.
Solute transport was simulated in terms of the electricalparameter uncertainty and, hence, prediction uncer-

tainty. Global procedures such as the shuffled complex conductivity (EC). A second bottom ash landfill, Seck-
enberg, was also calibrated for flow. This was done by(Duan et al., 1992) and genetic algorithms (Wang, 1997)

generally have the drawback of being inefficient and linking SUFI-2 with MACRO. Our objectives were to
test the SUFI-2 procedure by calibrating and testing therequiring too many iterations. As an example, Gupta

et al. (2003) reported that a complete single-criterion MACRO model using hourly discharge and EC data.
optimization problem using the shuffle complex model
as reported in Sorooshian et al. (1993) would require THEORYas many as 10 000 function calls, while 100 Pareto solu-

Simulation Program MACROtions will require approximately one million function
calls. In a multiobjective formulation, a Pareto solution MACRO is a dual-permeability model based on the concept
is a solution that cannot be improved without disadvan- of having two different domains: a micropore or matrix do-
taging at least one of the objectives. To overcome some main, in which flow is governed by the Richards equation,
of these problems we developed a procedure that con- and a macropore domain that drains by gravity flow. The

Richards equation for one-dimensional isothermal flow in asists of a sequence of steps in which the initial (large)
variably saturated rigid porous medium is given byuncertainty in the model parameters is progressively

reduced until certain calibration criteria for prediction ��

�t
�

�

�z � K ��h
�z

� 1�� � Sw [1]uncertainty are met. The program uses an efficient sam-
pling procedure (Latin hypercube), along with a global
search algorithm that examines the behavior of an objec- where � is the volumetric water content (L3 L�3), K is the

hydraulic conductivity (L T�1), h is the pressure head (L), Swtive function by analyzing the Jacobian and Hessian
is a term signifying a source or a sink (T�1), and z is depthmatrices. The current algorithm is henceforth referred
(L) positive downward. For the macropore region, a simplifiedto as SUFI-2, as it is the second version of a previously
approach is used in which fluxes are predicted by assumingdeveloped Sequential Uncertainty FItting (SUFI) pro-
no change in h with depth (i.e., �h/�z � 0), thus reflectinggram (Abbaspour et al., 1997).
laminar flow under gravity.In this study, the SUFI-2 procedure was applied to The source–sink term Sw in Eq. [1] is used here to account

two municipal solid waste incinerator (MSWI) bottom for water exchange between the micropores and macropores.
ash monofills. Landfills of this type have recently been The flux between the macropores to the micropores is given by
investigated by, among others, Hjelmar (1996), Belevi
et al. (1992), Johnson et al. (1998), and Hartmann et al. Sw � �3Dw�w

d 2 �(�b � �mi) [2]
(2001). Bottom ash in these landfills is typically com-
posed of equal amounts of fine ash material and melted where d is the effective diffusion path length (L), �b is the
components (of which one-half have crystallized) and saturated water content (L3 L�3), �mi is the actual water content
small quantities of metallic components, ceramics, and in the micropores (L3 L�3), Dw is the effective water diffusivity
stones (Kirby and Rimstidt, 1993). The Lostorf landfill, (L2 T�1), and �w is a scaling factor introduced to match the ap-

proximate and exact solutions of the diffusion problem. Thea MSWI bottom ash monofill in Switzerland, was stud-
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��c
�t

�
�

�z �D�
�c
�z

� qc� � U [8]

where c is the solute concentration of the liquid phase (M
L�3), q is the Darcian water flux (L T�1), U is a source–sink
term (M L�3 T�1), and D is the dispersion coefficient (L2 T�1)
given by

D � Dvv � D0 f* [9]

where D0 is the diffusion coefficient in free water (L2 T�1), f*
is a constant impedance factor, Dv is the dispersivity (L), and
v is the pore water velocity (L T�1). Dispersion in the mac-
ropores is set to zero since solute transport is assumed to be
dominated by advection. The source–sink term U accounts
for diffusive and advective mass transfer between the two flow
domains as follows:

Fig. 1. Water retention and hydraulic conductivity curves as used
in MACRO. U � �3De�mi

d 2 �(cma � cmi) � Swc	 [10]

scaling factor varies somewhat with the initial water content where the prime indicates solute concentration in either the
and hydraulic properties, but not strongly (Gerke and van macropores or micropores depending upon the direction of
Genuchten, 1993). This parameter is set to an average value of flow (the sign of Sw), and De is an effective diffusion coefficient
0.8 in MACRO. The model assumes that water is immediately (L2 T�1) given by
routed from the micropores to the macropores when water

De � D0 f*Sma [11]content exceeds saturation, �b. Dispersion in the macropores
is neglected since advection is assumed to dominate solute Infiltration from the soil surface into the micropores is as-
transport. sumed to be limited by the saturated conductivity, Ks,mi, of the

Different functions are used in MACRO to describe the micropore region. The portion of rain or irrigation exceeding
water retention characteristics of the micropore and mac- Ks,mi flows directly into the macropores. We calculated the
ropore regions, as illustrated in Fig. 1. For the micropores, solute concentration of water infiltrating into the macropores,
the water retention function, hmi(�), is given by the modified cma* , by assuming complete mixing of the infiltrating water with
Brooks and Corey (1964) function: water stored in a shallow “mixing depth,” zd:

hmi(�) � hbS�1/

mi �r � � � �b [3]

c*ma �
Qd(t��t) � Rcr

R � zd�1

[12]
where

where Qd is the amount of solute stored in the mixing depth
Smi �

� � �r

�b � �r

�r � � � �b [4] (M L�2), R is the amount of rain reaching the surface within
time interval �t (L), cr is the concentration in the rain water

and hb is the critical boundary head (L) at which micropores (M L�3), and �1 is the water content in the layer zd. The amount
drain (also known as the air-entry value), �r is the residual of solute added or removed from the micropores in the top
water content, and 
 is the pore size distribution index. The layer within time interval �t, Qmi(l), is calculated as the dif-
hydraulic conductivity function for the micropore region, Kmi, ference:
is derived from the retention curve using Mualem’s (1976)

Qmi(l) � Rcr � Imac*ma [13]model, yielding
where the Ima denotes infiltration in macropores (L).Kmi � Ks,miS n�2�2/�

mi [5]

where Ks,mi is the hydraulic conductivity (L T�1) at the critical Inverse Procedure SUFI-2
boundary head hb, and n is the tortuosity factor of the micro-

We assume that inversely obtained parameters are alwayspore region.
uncertain and that an inverse optimization approach shouldBecause flow in the macropore domain is assumed to be
seek the smallest possible parameter uncertainty or parameterdriven by gravity only, no retention curve is required. The hy-
range that satisfies a desired prediction uncertainty. The SUFI-2draulic conductivity of the macropores, Kma, is given by a
procedure described below uses elements of Generalized Like-simple power function of the degree of saturation in the mac-
lihood Uncertainty Estimation (GLUE) (Beven, 1989, Bevenropores (Sma):
and Binley, 1992) with elements of a gradient approach (Kool

Kma � Ks,maS n*ma [6] and Parker, 1988), modified to enable a global search. Similar
to GLUE, the procedure is applied to parameter sets, ratherwhere �s is the saturated water content, n* is an empirical
than to individual parameter values, so that any interactionsparameter (unit-less) describing the tortuosity in macropores,
between parameters are taken into account explicitly.and Sma is defined as

Also similar to GLUE, our final objective is not necessarily
to find a set of best-fit parameters, even though such a best-

Sma �
�ma

�s � �b

[7] fit parameter set is calculated. Unlike GLUE, however, the
key output of SUFI-2 is a “best range” for each parameter.
Parameter combinations within the parameter ranges are en-where �ma is the water content in macropores.

Solute transport in MACRO is described with the standard sured to produce high quality simulations because of the two
calibration criteria discussed below.advection–dispersion equation for nonsorbing tracers:
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Fig. 2. An example showing the partitioning of a response signal into different compartments: base flow (c1), the recession or rise (c2), intermediate
peaks (c3), and large peaks (c4). The weights are calculated such that each compartment contributes equally to the objective function.

Starting with some initial parameter value ranges, SUFI-2 could be given a larger weight. If two variables such as dis-
charge and concentration are considered simultaneously, thenis iterated until (i) the 95% prediction uncertainty (95PPU) be-

tween the 2.5th and 97.5th percentiles bracket more than 90% a multiobjective, multicompartment formulation with eight
RMSE values is defined, in which case the objective func-of the measured data and (ii) the average distance between

the 2.5th and 97.5th percentiles is smaller than the standard tion becomes
deviation of the measured data. A model is considered cali-
brated if, upon reaching the above two criteria, a significant g(b) � �

I

i�1

wi RMSEi [14]
R2 exists between the best simulation and calibration data.
Further testing of the calibrated parameter ranges, as per- where b is the parameter vector, I (here equal to 8) is the
formed in this study, should increase model confidence. If total number of compartments, and wi is calculated here as
calibration cannot be attained with the above criteria, the
model structure should be reexamined.

wi �
avg(RMSE)1

avg(RMSE)i

i � 1, …, I [15]

Step-by-Step Application of SUFI-2 where the average (avg) is computed for all simulations within
a Latin hypercube sampling round (see Step 5), w1 is alwaysStep 1
equal to 1, and

In this first step an objective function is defined. The litera-
ture shows many different ways of formulating an objective RMSEi � �1

k �
k

j�1
(qo � qs)2

j [16]function (e.g., Legates and McCabe, 1999; Gupta et al., 1998).
Each formulation may lead to a different result; hence, the fi-
nal parameters and parameter ranges are always conditioned where q is a measured variable, k is the number of observations
on the form of the objective function. To overcome this prob- in the ith compartment, and the superscripts “o” and “s” refer
lem, some studies (e.g., Yapo et al., 1998) combine different to observed and simulated values, respectively. Equation [15]
types of statistics together (e.g., RMSE, absolute difference, implies that the weights are different for each sampling round.
logarithm of differences, R2, 
2) to yield a “multicriteria” for-
mulation. The use of multiobjective formulation (Duan et al.,

Step 22003; Gupta et al., 1998), where different variables, includ-
ing different variables at different locations, are embedded in The second step establishes physically meaningful absolute
the objective function, is also important to reduce the non- minimum and maximum ranges for the optimized parameters.
uniqueness. There is no theoretical basis for excluding one specific distribu-

Since there is no unique formulation of the objective func- tion. However, because of lack of information, we assume that
tion that can be applied universally to all situations, the choice all parameters were uniformly distributed within the region
of an objective function must correspond to the goal of the bounded by minimum and maximum values. Because the pa-
project. In this study, we required a good overall simulation of rameter ranges play a constraining role, they should be as
the peaks as well as the base flow; hence, we used the formu- large as possible, yet physically meaningful:
lation of Boyle et al. (2000) and partitioned the response

bj : bj,abs_min � bj � bj,abs_max j � 1.... m [17]function into four compartments, as illustrated in Fig. 2. This
formulation, henceforth referred to as “multicompartment” where bj is the jth parameter and m is the number of parame-
formulation, depicts base flow (c1 in Fig. 2), rise and recession ters to be estimated.
(c2), intermediate peaks (c3), and large peaks (c4). For each
compartment, the RMSE is calculated and weighted so they Step 3have equal contributions to the objective function. This formu-
lation has proven to provide an overall good fit if the model This step involves an optional, yet highly recommended

sensitivity analysis for all parameters. We pose that no auto-has no conceptual limitation to simulating each compartment
of the response function (i.e., not being able to simulate large mated optimization routine can replace the insight from physi-

cal understanding and knowledge of the effects of parameterspeaks due to the absence of a macropore flow component).
If simulation of the large peaks is important, the peak region on system response. The sensitivity analysis is carried out by
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keeping all parameters constant to realistic values, while vary- where b*j is the current best estimate of parameter b (i.e., that
parameter value that produces the smallest value of the objec-ing each parameter within the range assigned in Step 1. For

each parameter, about 10 simulations are conducted by simply tive function), and � is the degrees of freedom (n � m).
Parameter correlations can be assessed using the diagonal anddividing the absolute ranges in equal intervals and allowing the

midpoint of each interval to represent that interval. Plotting off-diagonal terms of the covariance matrix as follows:
results of these simulations along with the observations on
the same graph gives insight into the effects of the parameters Aij �

Cij

√Cii√Cjj

[25]
on observed signals.

It is important to note that the correlation matrix A quanti-Step 4
fies the change in the objective function as a result of a change

Initial uncertainty ranges are assigned to parameters for of parameter i, relative to changes of the other parameters j.
the first round of Latin hypercube sampling; that is, Parameter sensitivities, S, are calculated next by averaging

the columns of the Jacobian matrix as expressed bybj : [bj,min � bj � bj,max] j � 1, m [18]

In general, the above ranges are smaller than the absolute Sj � bj
1

C n
2

�
C n

2

i�1
��gi

�bj
� j � 1,…, m [26]ranges, are subjective, and depend on experience. The sensi-

tivity analysis in Step 3 can provide a valuable guide for select-
ing appropriate ranges. Although important, these initial esti-

where bj is the average value of the jth parameter. We empha-mates are not crucial since they are updated and allowed to
size that the measures of sensitivity given by Eq. [26] arechange within the absolute ranges.
different from the sensitivities calculated in Step 3. The sensi-
tivities given by Eq. [26] are estimates of the average changesStep 5
in the objective function resulting from changes in each param-

A Latin hypercube (McKay et al., 1979) sampling results eter, while all other parameters are changing. Therefore, the
in n parameter combinations, where n is the number of desired sensitivities in Eq. [26] are relative sensitivities. By contrast,
simulations. This number should be relatively large (≈1000– the sensitivities in Step 3 define the absolute sensitivity of a
2000). The simulation program is run n times and the simulated parameter that can change when other parameters take on
output variable(s) of interest, corresponding to the measure- different optimized values.
ments, are saved.

Step 8Step 6
In this step the 95PPUs of all predicted variables are com-As a first step in assessing the simulations, RMSEs are puted using the n Latin hypercube simulations. Distributioncalculated followed by calculation of the weights and the ob- of the predicted variables is not always Gaussian, and couldjective function for each simulation. be highly skewed. Thus, the usual calculation of uncertainty

limits as a function of the variance of the predicted values is
Step 7 not applicable (Beven and Binley, 1992). In this study we

represent the prediction uncertainty as the 2.5th (qL) andIn this step a series of measures is calculated to evaluate
97.5th (qU) percentiles of the cumulative distribution of everyeach sampling round. First, the sensitivity matrix or Jacobian
simulated point.of g(b) is computed using

The goodness of fit is calculated for each variable q from
the percentage of measured data that fall within the 95PPUJij �

�gi

�bj

i � 1,…, C n
2, j � 1,…, m [19]

region (prediction uncertainty), the R2 between the optimized
and observed data, and the average distances d between the

where Cn
2 is the number of rows in the Jacobian (equal to all upper and lower 95PPU as determined from

possible combinations of two simulations), and j is the number
of columns (number of parameters). Following the Gauss–

d �
1
K �

k

l�1

(qU � qL)l [27]Newton method and neglecting the higher-order derivatives
of the Hessian matrix, H, the Hessian matrix of g(b) is calcu-
lated as in which l is a counter, and K is the total number of observa-

tions for variable q. The best outcome is that 100% of theH � JTJ [20]
measurements fall within the 95PPU, R2 is close to 1, and the

According to the Cramer–Rao theorem (Press et al., 1992), d value is close to zero. However, because of measurement
an estimate of the lower bound of the parameter covariance errors and model uncertainties, generally this will not be
matrix, C, is calculated from the case.

We consider a model satisfactorily calibrated if approxi-
C � s2

g(JTJ)�1 [21] mately 90% of the measured data are within the 95PPU when
d is smaller than the standard deviation of the measured datawhere s2

g is the variance of the objective function. The esti-
and when R2 � 0.8.mated standard deviation and 95% confidence interval of a

parameter bj is calculated from the diagonal elements of C
(Press et al., 1992) from Step 9

sj � √Cjj [22] Because in general parameter uncertainties are large ini-
tially, the value of d tends to be quite large in the first sampling

bj,lower � b*j � t�,0.025 sj [23] round when about 100% of the data are within the 95PPU.
Hence, further sampling rounds are needed with updated pa-
rameter ranges calculated from:bj,upper � b*j � t�,0.025 sj [24]
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Table 1. Data periods for calibration and testing.

Landfill Calibration† Testing

(yr-mo-d-h)
Lostorf 1996-04-22-13 to 1996-11-10-20 1995-01-02-00 to 1995-03-31-13
Seckenberg 1998-04-01-00 to 1998-12-03-23 1999-01-01-00 to 1999-05-26-20

† The year with larger amount of data was chosen for calibration.

APPLICATION
b	j,min � bj,lower � Max�(bj,lower � bj,min)

2
,
(bj,max � bj,upper)

2 �
Sites and Data

The SUFI-2 sequential uncertainty fitting procedure wasb	j,max � bj,upper � Max�(bj,lower � bj,min)
2

,
(bj,max � bj,upper)

2 � [28]
applied to the two MSWI landfills in Switzerland. The Lostorf
landfill, a MSWI bottom ash monofill near Buchs AG, Switzer-

where b	 indicates updated values. The above criteria, while land, is situated in an unused gravel pit. The Seckenberg land-
producing smaller parameter ranges, ensure that the updated fill is situated on sandstone and dolomite formations on a
parameter ranges are always centered on the current best hillside above Frick, Switzerland. For the Lostorf landfill, mea-
estimates. If the best estimates are close to their limits, parame- sured discharge and EC data were available for several months
ter ranges are increased while not exceeding the absolute in 1995 and 1996. For the Seckenberg landfill only flow data
boundaries. In the final step, parameters are ranked according were available for a few months in 1997 and 1998. We refer
to their sensitivities, and highly correlated parameters are the reader to Johnson et al. (1999, 2001) for more complete
identified. Of the highly correlated parameters, those with the descriptions of the two landfills.
smaller sensitivities should be fixed to their best estimates and Hourly values of rainfall, global radiation, relative humidity,
removed from additional sampling rounds. air pressure, wind velocity at 2 m, and temperature were ob-

This procedure is continued until the two stopping rules tained from the Swiss Meteorological Institute at the Buchs/
for model prediction uncertainty are satisfied. The resulting Suhr and Frick/Rheinfelden sites for application to Lostorf
parameter ranges are considered the best-fit parameters for and Seckenberg, respectively. Potential evapotranspiration
the problem being investigated. If the stopping rules cannot rates from landfill surfaces were estimated using the hourly
be met (i.e., a small value of d, but too many observed data form of the FAO Penman–Monteith equation (Allen et al.,
are excluded from the 95PPU), the model cannot be calibrated 1994), but modified to obtain actual evaporation rates for both
and the structure of the model and its boundary conditions landfill systems according to procedures described by Johnson

et al. (2001).need to be reexamined.

Table 2. Estimated flow and transport parameters for the Lostorf and Seckenberg landfills

Pseudo Initial Optimized Optimized Sensitivity
Parameter† value range range value ranking

ci–1, mS mm�1 0.767 0.1–2 0.57–0.67 0.634 31
ci–2 0.974 0.5–1.5 0.83–1.09 1.06 35
ci–3 1.39 1.4–1.5 1.38–1.40 1.39 1
�i–1, cm3 cm�3 14.23 17–23 14.7–15.3 14.86 3
�i–2 12.14 17–23 13.1–15.4 14.4 16
�i–3 16.56 19–25 16.4–17.6 16.63 8
cr, mS mm�1 0.5 0.2–1 0.47–0.54 0.5 29
Dv, mm 97.4 10–100 95.4–102.3 95.7 14
d-1, mm 111.55 20–100 106.4–114.9 113.5 18
d-2 126.52 20–100 124.7–134.2 129.6 17
d-3 3.70 20–100 2.7–3.9 3.3 37
hb–1, cm 18.92 5–25 18.1–19.2 18.69 11
hb–2 7.13 5–25 6.0–7.0 6.31 30
hb–3 15.28 5–25 14.4–15.5 15.42 19
Ks–1, mm h�1 276.20 150–500 266.7–300.2 280.44 25
Ks–2 476.43 150–500 432.3–468.9 468.7 20
Ks–3 142.31 150–500 138.8–147.6 140.4 12
Ks,mi–1 1.075 0–2 0.99–1.16 1.019 33
Ks,mi–2 0.017 0–1 0.014–0.02 0.019 36
Ks,mi–3 0.132 0–1 0.12–0.154 0.151 34
�r–1, cm3 cm�3 14.23 12–16.5 12.0–14.0 13.2 32
�r–2 12.14 12–16.5 12.1–12.6 12.2 6
�r–3 16.56 12–18.5 16.7–17.8 17.2 13
�s–1 30.34 27–30 29.9–31.3 30.2 7
�s–2 27.92 27–30 27.5–29.9 27.7 21
�s–3 27.66 26–30 27.5–28.3 27.9 2
�b–1, cm3 cm�3 25.84 23–26.9 25.5–26.3 25.62 4
�b–2 22.27 23–26.9 22.1–23.4 22.90 10
�b–3 24.65 23–25.9 24.1–24.9 24.69 5
�-1 0.183 0.1–0.4 0.17–0.20 0.181 26
�-2 0.174 0.1–0.4 0.17–0.20 0.192 28
�-3 0.426 0.1–0.4 0.47–0.51 0.492 15
n-1 0.071 0.01–0.15 0–0.04 0.024 38
n-2 0.152 0.01–0.15 0.15–0.164 0.160 24
n-3 0.097 0.01–0.15 0.084–0.095 0.093 27
n*-1 3.691 1–4 3.5–3.9 3.77 22
n*-2 2.767 1–4 2.7–2.84 2.83 9
n*-3 0.682 1–4 0.62–0.69 0.67 23

† Numbers 1, 2, and 3 refer to soil layers.
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Table 3. Estimated flow and transport parameters for the Lostorf Calibration and Testing of the Flow
and Seckenberg landfills. and Transport Model

Optimized calibration range The Lostorf landfill was calibrated using both discharge
Parameters† Lostorf Seckenberg and EC in the objective function given by Eq. [14] and [15].

The objective function for the Seckenberg landfill includedci–1, mS mm�1 0.6–1.2 –
only discharge data. Time periods used for calibration andci–2 0.6–1.0 –
model testing are given in Table 1.ci–3 1.3–1.4 –

�i–1, cm3 cm�3 0.18–0.20 0.24–0.26 Based on the filling history of the landfills, a three-layer
�i–2 0.16–0.19 0.22–0.25 profile was modeled by treating the parameters listed in Table
�i–3 0.20–0.22 0.22–0.24 2 as unknowns. A common problem of historic landfill data-cr, mS mm�1 0.22–0.52 –

bases is that the initial conditions for both the flow and trans-Dv, mm 57–108 –
port simulations are poorly defined. To determine the initiald-1, mm 84–112 66–74

d-2 94–137 38–50 water content and electrical conductivity profiles, we exam-
d-3 2–27 33–49 ined two options: (i) simulating the flow regime by letting
hb–1, cm 14.8–20.3 19.9–21.8 the landfills drain from a nearly saturated condition until thehb–2 2.9–8.1 10.6–15.3

simulated discharge equaled the observed discharge at timehb–3 13.6–19.1 10.1–13.8
zero (the water content and concentration profiles at this timeKs–1, mm h�1 248–409 318–352

Ks–2 400–510 183–238 were assumed the correct initial water content and solute
Ks–3 135–265 421–494 distributions) and (ii) fitting the initial conditions along with
Ks,mi–1 0.88–1.47 1.1–1.3 the other parameters. Although both options have problems,Ks,mi–2 0.0–0.16 0.0–0.003

we opted for the second option since it was more straightfor-Ks,mi–3, mm h�1 0.08–0.26 0.11–0.26
ward and produced better results. The main problem with the�r–1, cm3 cm�3 0.13–0.15 0.13–0.15

�r–2 0.12–0.13 0.18–0.19 first option was that flow parameters defining flow rates were
�r–3 0.15–0.18 0.16–0.18 still unknown. To reduce the effect of the initial condition,
�s–1 0.29–0.31 0.28–0.29 we started the simulations a few months before time zero.
�s–2 0.28–0.29 0.28–0.30

Including the initial water content and concentration distribu-�s–3 0.27–0.28 0.27–0.28
tions produced a total of 33 unknown parameters when only�b–1 0.26–0.27 0.25–0.26

�b–2 0.22–0.24 0.23–0.25 flow is considered, and 38 parameters when transport is mod-
�b–3 0.24–0.25 0.23–0.24 eled (Table 2). Transport simulations were performed by using
�-1 0.15–0.25 0.11–0.13 electrical conductivity as a tracer.
�-2 0.10–0.26 0.29–0.39

The bottom boundary conditions were assumed to have�-3 0.34–0.45 0.30–0.36
constant hydraulic gradients, while the surface boundariesn-1 0.04–0.07 0.07–0.08

n-2 0.15–0.22 0.037–0.59 were assumed to be atmospheric. Rain or irrigation exceeding
n-3 0.08–0.17 0.08–0.09 Ks,mi was allowed to flow directly into the macropores.
n*-1 2.4–3.7 3.1–3.5
n*-2 2.6–3.2 2.4–2.6
n*-3 0.46–1.3 1.1–1.25 RESULTS AND DISCUSSION
† Numbers 1, 2, and 3 refer to soil layers. The absolute parameter ranges and the starting initial

ranges were selected based on our experience with the

Fig. 3. Calibration results for flow and transport at Lostorf. The blue curves represent the 95% prediction uncertainty (95PPU), the red curve
represents the measured data, and the green curve shows the best fit of optimization.
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Table 4. Statistics of measured variables and the corresponding modeling results.

Number of Average and SD of Percent of measured Average width of 95PPU and its
Variable data points measured variables data in the 95PPU† R2‡ ratio over SD of measured data

Lostorf discharge calib. test 4855 0.062 (0.077) 90 0.86 0.06 (0.78)
1600 0.15 (0.14) 91 0.85 0.16 (1.1)

Lostorf EC calib. test 1600 1.15 (0.21) 90 0.88 0.23 (1.1)
2125 1.02 (0.24) 90 0.82 0.40 (1.7)

Seckenberg discharge calib. test 5927 0.105 (0.16) 93 0.94 0.07 (0.44)
3500 0.19 (0.33) 89 0.88 0.12 (0.36)

† 95PPU, 95% prediction uncertainty.
‡ All regressions were significant at P � 0.0001.

parameters, literature review (e.g., Dubus and Brown, used these output data in SUFI-2 to examine how well
we could recover the pseudo parameters. Table 2 sum-2002), and personal communication with the author of

MACRO (Jarvis, 1994). We conducted the sensitivity marizes the list of pseudo parameters, the initial parame-
ter uncertainties, the optimized parameter uncertainties,analysis of Step 3 after the first sampling round. We

concluded that (i) some parameters affected the early the optimized best parameter values, and the relative
sensitivity ranking. In the fourth Latin hypercube sam-stages of the discharge and concentration (e.g., initial

water contents and concentrations), while others af- pling round, 99% of the measured EC and discharge
data were bracketed by the 95PPU, while the ratio offected the later stages (e.g., dispersivity, Dv; effective

diffusion path length, d), (ii) some parameters had a average difference between the upper and the lower
95PPU over the standard deviation of generated mea-strong effect on the peak discharge (e.g., hydraulic con-

ductivities Ks,mi and Ks,ma), while others affected mainly sured data was 0.83 for EC and 0.53 for discharge, indi-
cating excellent fits. As shown in Table 2, however, somebase flow (especially the diffusion path length, d), and

(iii) some parameters affected the recession or timing of the insensitive pseudo parameters (i.e., ci–1) were
outside the optimized range, indicating that parametersof the peak discharges (e.g., the pore size distribution

index, 
, and the macropore tortuosity index n*), while insensitive to the objective function could not be fitted.
Table 3 summarizes the final optimized parameterothers affected all compartments as defined in Eq. [15]

(especially the saturated hydraulic conductivity, Ks,mi). uncertainties for the Lostorf landfill, while Fig. 3 pre-
sents calibration results for flow and transport at Lost-We used this sensitivity analysis to obtain better esti-

mates of the initial parameter ranges and to improve orf. Plots in Fig. 3 show the best simulation results and
the upper and lower limits of the 95PPU of the cali-our understanding of the effect of all parameters on

discharge and EC. brated parameter ranges. Results were obtained after
five sampling rounds for a total of 5000 simulations.On the basis of some preliminary runs we selected a

set of pseudo parameters for the Lostorf landfill and The 95PPU contained 90% of the measured discharge
and EC data (Table 4), while the ratio of the averagegenerated a synthetic set of discharge and EC data. We

Fig. 4. Test results of flow and transport at Lostorf. The blue curves represent the 95% prediction uncertainty (95PPU), the red curve represents
the measured data, and the green curve shows the best fit of optimization.
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Fig. 5. (A) Calibration and (B) test results for flow at Seckenberg. The blue curves represent the 95% prediction uncertainty (95PPU), the red
curve represents the measured data, and the green curve shows the best fit of optimization.

difference between the upper and the lower 95PPU over tion requirements were again satisfied for discharge, but
that the ratio requirement was not met for the EC data.the standard deviation of the measured data was �1 for

discharge and only slightly above 1 for EC. With R2 As will be discussed below, this indicates that the cali-
brated parameter ranges produced several relativelyvalues for discharge and EC of 0.86 and 0.88, respec-

tively, almost all calibration requirements for the cali- poor simulations for EC. This is a strong indication that
a higher degree of multiobjective formulation is neededbration data set of Lostorf were satisfied.

We tested the above calibration parameters using in the objective function to limit the number of bad sim-
ulations.data from a previous year; results are shown in Fig. 4.

The statistics in Table 4 indicate that the three calibra- To test the SUFI-2 procedure against previous results

Fig. 6. The d-3–hb-3 response surface obtained after 2000 simulations. All other parameters were kept constant.
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Fig. 7. The d-3–�b-3 response surface obtained after 2000 simulations. All other parameters were kept constant.

by Johnson et al. (2001) for this same landfill, we com- results for flow through the Seckenberg landfill. The
plots show both the best simulation results and the 95PPUpared the sum of square errors (SSQ) between the mea-

sured and simulated results for both calibration and test based on the calibrated parameter ranges of Table 3.
The results were obtained after four sampling rounds.cases. A direct comparison is not possible because the

objective function previously did not include a transport The 95PPU contained 93 and 89% of the measured dis-
charge data for calibration and testing, respectively (Ta-component. The previously obtained SSQs for discharge

calibration and test results were 10.1 and 41.1, respec- ble 4). The ratios of the average difference between the
upper and the lower 95PPU over the standard deviationtively. The values obtained with SUFI-2 were 4.1 and

7.5, respectively. This shows a significant improvement of the measured data were substantially less than one for
both the calibration and test data seta. The R2 require-in best-fit simulations obtained with our new sequential

uncertainty fitting procedure. ment was also met with highly significant values. One
reason for the better calibration results for the Secken-Figure 5 presents the calibration (A) and test (B)

Fig. 8. The d-3–n* response surface obtained after 2000 simulations. All other parameters were kept constant.
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Fig. 9. The d-3–n* response surface obtained after 10 000 simulations. All other parameters were kept constant.

berg case is that the objective function contained only To investigate the progression toward convergence
and limitations of the calibrated parameter ranges, wedischarge data.

A comparison of the parameters for both landfills plotted the response surfaces for some of the most sensi-
tive parameters. In doing so, all parameters of the Seck-(Table 3) shows substantial overlaps, with the parame-

ters for Seckenberg generally having smaller ranges. enberg example were fixed at their final best values.
In the first example diffusion path length, d, and theApplying the Lostorf parameter ranges to Seckenberg

(except for the initial values which were those of the boundary soil water tension hb of the third layer were
varied by drawing 2000 samples using the Latin hyper-Seckenberg calibration) and vice versa produced rela-

tively good simulation results, even though not all three cube procedure. The response surface of the objective
function is plotted in Fig. 6. Superimposed on the re-calibration criteria were met. This suggests that it may

be possible to use identical parameters for similar appli- sponse surface are the parameter ranges from the last
three sampling rounds, delineated by three boxes num-cations.

Fig. 10. The d-3–�b response surface obtained after 10 000 simulations. Parameters d-3, �b-3, hb-3, and n* were varied simultaneously, while all
others were kept constant.
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bered 1, 2, and 3. The two-parameter d–hb response in terms of the number of function calls, and it is easy
to implement.surface shows a clear valley of small objective func-

Finally, we recall that one of the main purposes oftion values.
inverse modeling is to use easily measurable model out-The results in Fig. 6 reflect an apparent limitation of
puts to obtain parameters that are much more difficultexpressing the parameters in terms of ranges. The two-
and time-consuming to measure directly. In other words,parameter surface plot suggests that the uncertainty
we prefer to feed our inverse optimization procedureranges of both parameters could be much larger, albeit
with data of relatively low value to obtain data of higherlocated along a narrow valley. However, if the size of
value. Unfortunately, the notion of getting much forthe parameter ranges is increased, the prediction uncer-
little is inherently problematic. Despite the attractions,tainty may include many poor simulations as was the
nature does not allow for such easy transformations.case with the EC of Lostorf, leading to a high value of
For this reason one must accept that our SUFI-2 proce-the second criterion. For this reason, several (e.g., Yapo
dure, or similar Bayesian inverse methods, will onlyet al., 1998) have used the concept of Pareto optimality,
produce a certain solution space, rather than a singlein which the simulations are divided into sets of rela-
unique solution. Hence, one may very well have to livetively good and poor simulations. The final solution
with the idea that inverse methods will lead to manyis then not specified by means of a set of parameter
solutions regardless of the type of the objective functiondistributions, but in terms of parameter combinations
used in the optimization. To limit the nonuniqueness,that produce good simulations. Still, this approach also
however, a step forward would be to make the descrip-does not guarantee that all good simulations can be
tion of the objective function as constraining to parame-captured by means of a limited number of function calls.
ters as possible by using a combination of multicriteria,Additional calculations showed that the two-parame-
multiobjective, and multicompartment formulation.ter response surface may be somewhat misleading when

assessing the region with minimum values in a multidi-
ACKNOWLEDGMENTSmensional parameter system. Figure 7 shows the re-
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