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Abstract
The unsaturated soil hydraulic functions involving the soil–water retention curve (SWRC) and the hydraulic conductivity

provide useful integrated indices of soil quality. Existing and newly devised methods were used to formulate pedotransfer

functions (PTFs) that predict the SWRC from readily available soil data. The PTFs were calibrated using a large soils database

from Hungary. The database contains measured soil–water retention data, the dry bulk density, sand, silt and clay percentages,

and the organic matter content of 305 soil layers from some 80 soil profiles. A three-parameter van Genuchten type function was

fitted to the measured retention data to obtain SWRC parameters for each soil sample in the database. Using a quasi-random

procedure, the database was divided into ‘‘evaluation’’ (EVAL) and ‘‘test’’ (TEST) parts containing 225 and 80 soil samples,

respectively. Linear PTFs for the SWRC parameters were calculated for the EVAL database. The PTFs used for this purpose

particle-size percentages, dry bulk density, organic matter content, and the sand/silt ratio, as well as simple transforms (such as

logarithms and products) of these independent variables. Of the various independent variables, the eight most significant were

used to calculate the different PTFs. A nonlinear (NL) predictive method was obtained by substituting the linear PTFs directly

into the SWRC equation, and subsequently adjusting the PTF parameters to all retention data of the EVAL database. The

estimation error (SSQ) and efficiency (EE) were used to compare the effectiveness of the linear and nonlinearly adjusted PTFs.

We found that EE of the EVAL and the TEST databases increased by 4 and 7%, respectively, using the second nonlinear

optimization approach. To further increase EE, one measured retention data point was used as an additional (concomitant)

variable in the PTFs. Using the 20 kPa water retention data point in the linear PTFs improved the EE by about 25% for the TEST

data set. Nonlinear adjustment of the concomitant variable PTF using the 20 kPa retention data point as concomitant variable

produced the best PTF. This PTF produced EE values of 93 and 88% for the EVAL and TEST soil data sets, respectively.
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1. Introduction

The unsaturated soil hydraulic functions are impor-

tant parameters in many soil, hydrological, ecological

and agricultural studies, are critical input parameters
.
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in models for variably-saturated flow and contaminant

transport, and often serve as integrated indices for soil

quality (e.g., National Research Council, 1993; Lin,

2003). Unfortunately, direct measurement of these

functions is impractical for most applications in

research and management, especially for relatively

large-scale problems. For this reason, many applica-

tions rely on pedotransfer functions (PTFs) to

indirectly estimate the hydraulic properties from more

easily measured or more readily available information

(e.g., soil texture and bulk density). Reviews of studies

of this type are given by Tietje and Tapkenhinrichs,

1993, Bruand et al. (1997) and van Genuchten et al.

(1999).

In this paper, we study how successfully the soil

water retention curve (SWRC) can be predicted with

PTFs that were derived using conventional and

modified statistical approaches. A soil hydraulic

database from Hungary will be used to demonstrate

and test the proposed method. The database for our

study was divided into ‘‘evaluation’’ (EVAL) and

‘‘test’’ (TEST) parts. A three-parameter van Genuch-

ten type function (van Genuchten, 1984) will be used

for the SWRC. We first use relatively standard

approaches to derive PTFs for estimating the retention

parameters. In attempts to improve the SWRC

predictions, and following previous work by Scheinost

et al. (1997), the linear PTFs are substituted directly

into the SWRC, after which the parameters are further

adjusted nonlinearly using all retention data of the

EVAL database. Since the linear PTFs of the three

SWRC parameters each contained nine unknows, this

second nonlinear approach will involve 27 adjustable

parameters. To further improve the accuracy of the

PTFs, additionally one measured retention data point

will be used as a concomitant variable in the PTF

models. The retention data point that most signifi-

cantly improves the SWRC predictions will be used as

concomitant variable for the final PTFs.
Table 1

Selected properties of the evaluation (EVAL) and test (TEST) arts of

the Hungarian soils database

Case Sand Silt Clay OM (%) r (mg/m3) Pressure head (kPa)

1 20 1500 N

EVAL 25.4 47.1 27.5 1.4 1.44 46.6 35.6 17.0 225

TEST 26.8 47.8 26.8 1.6 1.43 47.0 36.9 17.9 80
2. The Hungarian soils database

The Hungarian database contains data from 305

soil samples. Water retention data were measured on

core samples collected in 100 cm3 cylinders having a

height of 5 cm and an outer diameter of 5 cm.

Retention data were obtained along the main drying
curve at tensions of 0.1, 0.25, 1, 3.2, 10, 20, 50, 250

and 1500 kPa. Retention values between 1 and 50 kPa

were obtained with the hanging water column method

using sand- and kaolin-plate boxes (Várallyay, 1973),

while the higher suction values (250 and 1500 kPa)

were obtained using pressure chambers (Buzás, 1993).

Particle-size fractions were measured with the

conventional pipette method using 0.5 N Na2P2O5

to facilitate dispersion. Particle-size limits were set at

0.002, 0.005, 0.01, 0.02, 0.05 and 0.25 mm. The

coarsest particle fraction between 0.25 and 2 mm was

determined by wet sieving. The dry bulk density of the

soils was measured on core samples, while the soil

organic matter content was obtained using conven-

tional oxidation methods (Buzás, 1989).

The majority of soil samples in the Hungarian

database (225 of 305) are representative of the main

soil types of the Hungarian lowland (Rajkai et al.,

1981), while 75 samples are from hill slope areas.

About 75% of the soils are medium, 15% fine, and

10% coarse textured. The medium-textured soils

formed mostly on loess parent materials. The finer-

textured soils are mostly from the Trans–Tisza area

where loess materials settled into a wet alluvial basin,

and from hill slope areas where clay formation was an

important part of the soil genesis process. The coarse-

textured soils were collected from sandy areas of the

Hungarian Lowland. Table 1 summarizes the main soil

characteristics of the EVAL and TEST subsets of the

Hungarian soils database.
3. Soil–water retention model

The following three-parameter van Genuchten

function was used to the describe water retention

data (van Genuchten, 1984):

u ¼ us

½1 þ ðahÞn�ð1�1=nÞ (1)
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where u is the soil moisture content (m3/m3), h is the

soil water tension (cm), and us, a, and n are model

parameters. Eq. (1) was fitted to the measured data of

each soil sample using a nonlinear least-squares opti-

misation approach (Marquardt, 1963) that minimized

the sum of squared deviations (SSQ) between

observed and fitted water contents.
4. Pedotransfer functions

The fitted SWRC parameters were correlated with

soil properties in the Hungarian database, as well as

several derived soil properties. For the original

properties we used the bulk density, r, the organic

matter content,OM, the sand fraction, S, the silt

fraction, Si, and the clay fraction, C. As derived soil

properties we selected the logarithm of the clay

fraction, ln (C), the sand/silt ratio, S/Si, the squares of

the original properties (e.g., r2 and C2), and several
Table 2

Linear and nonlinearly adjusted pedotransfer functions obtained for the e

Linear and nonlinearly adjusted PTFs

us = 118.76 � 60.02 � r � 0.25 � OM � 0.0007 � C2 � 1.99 � ln (C

r2 � 0.04 � rS + 0.116 � S/Si + 0.00078 � r2C2

us = 123.76 � 65.37 � r � 0.28 � OM � 0.000048 � C2 � 1.99 � ln

r2 � 0.054 � rS + 0.14 � S/Si + 0.00049 � r2C2

us = 134.88 � 0.127 � FC � 74.4 � r � 0.19 � OM � 0.00027 � C2

14.37 � r2 � 0.053 � rS � 0.0074 � S/Si � 0.00087 � r2C2

us = 107.95 � 51.5 � FC � 0.00008 � r � 0.086 � OM � 0.042 � C2

0.38 � r2 � 2.07 � rS + 7.9 � S/Si + 0.067 � r2C2

ln (a) = 27.18 + 0.15 � rSi + 0.18 � C � 13.32 � ln (Si) � 0.024 � r2

Si � 0.0027 � C2 � 0.75 � S/Si � 0.0013 � r2Si
2

ln (a) = 16.97 + 0.12 � rSi + 0.22 � C � 9.34 � ln (Si) � 0.039 � r2C

Si � 0.0029 � C2 � 0.435 � S/Si � 0.00093 � r2Si
2

ln (a) = �31.74 � 0.26 � FC � 0.37 � rSi + 0.81 � S/Si + 0.157 � C

13.52 � ln (Si) � 0.01 � Si � 0.0016 � C2 + 0.0014 � r2Si
2

ln (a) = �13.89 + 4.67 � FC � 0.0085 � rSi + 0.81 � S/Si + 0.213 �
0.002 � ln (Si) � 0.12 � Si + 0.00048 � C2 + 0.294 � r2Si

2

ln (n) = �0.287 + 0.47 � r � 0.008 � OM � 0.00007 � C2 + 0.06 � l

rS � 0.01 � r2C � 0.0068 � S/Si + 0.00015 � r2C2

ln (n) = �0.069 + 0.32 � r � 0.007 � OM � 0.000009 � C2 + 0.0014

ln (C) � 0.00011 � rS � 0.0064 � r2C + 0.0015 � S/Si + 0.000081

ln (n) = �0.67 + 0.0039 � FC + 0.59 � r � 0.01 � OM � 0.0001 � C

rS + 0.11 � ln (C) � 0.012 � r2C + 0.013 � S/Si + 0.00018 � r2C2

ln (n) = 0.36 + 0.000045 � FC + 0.0116 � r � 0.002 � OM + 0.16 �
rS + 0.0000105 � ln (C) � 0.00046 � r2C � 0.0055 � S/Si � 0.003

r = bulk density (mg/m3); OM = organic matter (%); S = sand fraction (>50

logarithm of silt fraction; ln (C) = logarithm of clay fraction; S/Si = sand
simple products (e.g., (rC)2 and r2C2) as shown in

Table 2 listing the different pedotransfer functions.

Linear regression techniques were subsequently used

to correlate the SWRC parameters with the most

significant soil properties as predictors (Rajkai and

Várallyay, 1992). As dependent variables for the linear

PTF regressions we used us and the log transforms of a

and n.

To make the linear regression approach more

flexible, all eight independent explanatory variables

were entered and maintained in the PTF; this approach

is further referred to as the LR8 predictive model.

Next, the goodness of prediction of the LR8 model

was improved by adding one measured water retention

data point to the PTFs. Rawls and Brakensiek (1989)

among others suggested that the wilting point should

be used for this purpose. We also investigated the

effect of using other measured retention data, and

found that using retention data close to the SWRC

inflection point (at about 20 kPa for most of our soils)
valuation (EVAL) data base

Predictive

R2 method N

) + 9.78 � 0.84 LR8 225

(C) + 12.46 � NLR8 2025

� 2.83 � ln (C) + 0.85 LR8FC 225

+ 0.0003 � ln (C) � NLR8FC 2025

C + 0.314 � 0.23 LR8 225

+ 0.21 � NLR8 2025

+ 0.01 � r2C + 0.64 LR8FC 225

C � 0.033 � r2C � NLR8FC 2025

n (C) � 0.00046 � 0.61 LR8 225

7 �
� r2C2

NLR8 2025

2 � 0.0005 � 0.64 LR8FC 225

C2 � 0.0737 �
5 � r2C2

NLR8FC 2025

mm Si = silt fraction (50�2 mm); C = clay fraction (<2 mm); ln (Si) =

–silt ratio; FC = field capacity retention data.
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Fig. 1. Fitted (VG3) and predicted 3-parameter van Genuchten

functions and measured water retention values at various pressure

heads of a soil sample of the TEST data set.
produced the best predictions (results not further

shown here). The predictive model using an indepen-

dently measured retention point at this 20 kPa tension

(approximately field capacity, FC) will be referred to

as LR8FC.

To further improve the LR8, and LR8FC methods,

we carried out an additional nonlinear adjustment

procedure as outlined by Scheinost et al. (1997) and

Minasny et al. (1999). For this purpose we generalized

the estimated linear PTFs as listed in Table 2 (i.e.,

those for LR8 and LR8FC) by allowing the fitted

coefficients to become unknowns in a new set of

regressions. For example, the LR8 PTF for us was

generalized to (Table 2):

us ¼ a1 þ a2rþ a3OM þ a4C2 þ a5lnðCÞ

þ a6r
2 þ a7rS þ a8ðS=SiÞ þ a9r

2C2 (3)

Linear regression equations of this type for each of

the three unknown retention parameters were sub-

stituted directly into Eq. (1) to yield the following

general equation

u ¼

a1 þ a2rþ a3OM þ a4C2 þ a5lnðCÞ
þ a6r

2 þ a7rS þ a8ðS=SiÞ þ a9r
2C2

f1 þ ½hexpðb1 þ b2rSi þ b3C þ b4lnðSiÞ þ
b5r2C þ b6Si þ b7C2 þ b8ðS=SiÞ þ b9r2S2

i Þ�
lgd

(4a)

where

l ¼ exp½c1 þ c2rþ c3OM þ c4C2 þ c5lnðCÞ

þ c6rS þ c7r
2C þ c8ðS=SiÞ þ c9r

2C2� (4b)

and d = 1 � 1/l. The exponential functions in Eq. (4a)

and Eq. (4b) arise because ln (a) rather than a and

ln (n) rather n were used in the regressions. Applica-

tion of Eq. (4) to the EVAL retention data sets leads to

2025 nonlinear equations (225 data sets each having

nine retention points) involving 3 � 9 = 27 or 3 � (9 +

1) = 30 unknowns (the latter when a concomitant

variable is added). The resulting multivariate non-

linear optimization (inverse) problem may in general

present severe uniqueness and convergence problems.

However, our objective was not to find a unique

inverse solution, but rather to improve (lower) the

sum-of-squares error, SSQ, from the case when the

three unknown retention parameters were regressed

separately (i.e., only the PTF end result is important,
not the individual PTF calibration parameters). SSQ

values decreased substantially when Eq. (4) was used

rather separate linear regressions. We will use the

prefix NL to refer to this improved nonlinear global

optimization approach. The NL-adjusted PTFs for the

LR8 and LR8FC methods are given in Table 2. The

effects of NL global optimization of the different PTFs

are clearly demonstrated in Fig. 1. The mean predic-

tion errors (ME) for the SWRCs of the EVAL and

TEST soil data sets are given in Table 3.
5. Goodness of the model predictions

Following Rajkai et al. (1996), we consider a

SWRC prediction ‘good’ if the mean estimation error

(ME) for all measured retention data is less than 2.5%.

This means that the mean absolute difference between

the estimated and measured retention data values is

less than 2.5%. The residuals are expressed in terms of

volumetric water content percentages. The estimation

efficiency (EE) of the different PTF models is defined

as the percentage of soils for which the predictions are

‘good’.

The accuracy of a prediction can also be expressed

using the mean prediction error PEh at a particular

tension h for the databases as a whole:

PEh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSSQ=NÞ

p
(4)
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Table 3

Model selection criteria and statistical data of the predictive water retention models

Statistical Predictive models

Factors Fitted model LR8 LR8FC NLR8 NLR8FC

EVAL TEST EVAL TEST EVAL TEST EVAL TEST EVAL TEST

Residual SSQ 2814 1062 21893 11453 14601 6190 19540 10186 9284 4348

Model DF 675 240 27 27 30 30 27 27 30 30

N 2025 720 2025 720 2025 720 1810 720 1810 720

ME 0.39 0.40 1.10 1.33 0.90 0.98 1.04 1.25 0.71 0.82

AIC 2016 760 4875 2046 3839 1609 4644 1962 3019 1355

SBC 5805 1859 5026 2170 4004 1746 4796 2085 3184 1492

SSQ: the sum of square error; model DF: the total number of degrees of freedom of the optimization (number of models or equations � number of

model parameters); N: the total number of water retention data (number of soil samples � number of retention data per sample); AIC: the Akaike

information criteria and SBC: the Schwartz and Bayes information criteria.
where SSQ is the sum of square error and N the

number of data sets in the database. In addition we

calculated the mean prediction error, ME, for a reten-

tion curve as follows

ME ¼
X PEh

n
(5)

where n is now the number of retention data points.

The form of the regression model is

yi ¼ f ðxi;bÞ þ ei; i ¼ 1; :::;N (6)

where yi and xi are known measured values of the

independent and dependent variables, respectively, b

is the unknown parameter vector, and ei is an inde-

pendent zero-mean Gaussian error term. The log-like-

lihood function for this model (without the negligible

constants, ei) is

�2ln LðbÞ ¼ N ln
1

N

XN

i¼1

ðyi � ŷiÞ2

 !
(7)

where L(b) is the Gaussian likelihood function and

ŷi ¼ f (xi, ML-estimator of b).

The usual goodness-of-fit measure, R2, and the F-

test of significance have a drawback in that they are

relatively insensitive to the number of parameters (i.e.,

the dimension of the parameter vector b) involved in

the regression equation. While numerous criteria have

been proposed to remedy this drawback, we use in this

study Akaike’s information criterion (AIC) and the

Schwarz and Bayesian criterion (SBC) as follows
(Kass and Raftery, 1995)

AIC ¼ Nln
1

N

XN

i¼1

ðyiŷiÞ2

" #
þ 2P (8)

and

SBC ¼ Nln
1

N

XN

i¼1

ðyi � ŷiÞ2

" #
þ PlnðNÞ (9)

where P is the number of parameters used. According

to Akaike (1973) the AIC is based on a predictive

point of view, which makes the predictive distribution

conditional on a model and its estimated parameters

using the maximum likelihood method (Linhart and

Zucchini, 1986). The SBC model-selection criterion

above is that of Schwarz and Bayes (Schwarz, 1976)

which places more emphasis on the number of para-

meters in a model. Schwarz (1976) introduced this

criterion to select the model with the highest posterior

probability using the asymptotic normality of the

estimator of b with the maximum likelihood estimator

as its mean, and using Fisher-information as inverse of

the variance. When models are compared in terms of

their AIC and SBC, the better model is that model

which has a smaller value of the invoked criterion.

Values for AIC and SBC were calculated using the

SPSS statistical software package (SPSS, 1998).
6. Results and discussion

Fig. 1 shows that the nonlinear (NL) global

optimization approach did not improve the predicted
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Fig. 2. Estimation efficiency (EE) of the SWRC predictive methods

for the TEST data set.
SWRC close to the measured retention value at h =

1500 kPa in case of the NLR8FC PTF, but that the

predictions are close to the other retention data. Fig. 1

also shows the performance of the individually fitted

SWRCs.

Fig. 2 shows that the estimation efficiency, EE, is

between 53 and 78% for the TEST soils for the LR8

and the LR8FC PTFs. Results indicate that the NLR8

and NLR8FC PTFs for the TEST soils have a 7–10%

higher EE than their linear versions (LR8 and

LR8FC).

The mean SWRC prediction error, ME, is plotted in

Fig. 3 for the different predictive models. Notice that

the LR8FC model performed better for the TEST soil
Fig. 3. Mean errors of the SWRC predictive methods and the fitted

van Genuchten function (VG3).
database, and that NL optimization did improve the

results somewhat further for the TEST data set as well.

Using field capacity as a concomitant variable

significantly improved the results; furthermore, NL

adjustment did lead to substantial reductions in the

Mean Error, ME.

The two model selection criteria (AIC and SBC) for

the different predictive methods are listed in Table 3.

As expected, the individually fitted retention data sets

produced the smallest AIC values. However, while the

AIC values suggest that all PTFs generate results that

are worse than the individually fitted models, the SBC

criterion qualifies almost all PTFs as being more

effective than the individually fitted SWRCs in terms

of Akaike’s statistical stability criterion. The biggest

difference between the AIC and SBC criteria is their

sensitivity to the degrees of freedom (DF) of the PTF.

When the SBCs of the predicted SWRCs are

compared to each other, a rank from weak to good

can be established. This shows that the nonlinearly

(NL) adjusted models performed better than their

linear versions.

The NL adjusted PTFs in Table 3, using FC as

concomitant variable, for the EVAL and TEST data

sets suggest that the predictive PTFs are fairly general.

The best predictive model (NLR8FC) produces very

reasonable results, giving ME values for the TEST

soils that are only about two times higher than those

for the individually fitted SWRCs (VG3) in Fig. 3.

The prediction efficiency (EE) represents the ratio

of ‘‘good" predictions to the total number of data sets

in the database. ME, together with EE, demonstrates

the power of a particular PTF (Fig. 2). The relatively

high ME and low EE values associated with the LR8

model indicate limited flexibility and accuracy of this

model. The use of one measured retention data point

(FC) in the PTF significantly decreased ME and

increased EE. Using the field capacity in the LR8

model increased the EE by about 20% as compared to

the LR8 (Fig. 2). Nonlinear adjustment of the LR8FC

model improved the EE up to 95% for the EVAL soils,

and 88% for the TEST database. This means that

nonlinear adjustment leads to almost identical

performance of the predictive model for the EVAL

and TEST data sets. We conclude from this that the

water retention data of the Hungarian soils are best

predicted using the LR8FC PTF. However, the ME of

the best PTF is still two times larger than the ME of the
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fitted SWRC model. It seems that this is probably the

best result that can be achieved using the traditional

statistical methods we have used. Recently several

neural-network based methods have been used to

derive pedotransfer functions (Pachepskij et al., 1996;

Schaap et al., 1998). It would be interesting to make a

detailed comparison of the prediction accuracy of

those neural networks with the PTFs derived in this

study.
7. Summary and conclusions

A three-parameter van Genuchten type model was

used to describe the water retention curves of

Hungarian soils. Fitted SWRC parameters were

regressed linearly with a large number of soil physical

properties in the database. To increase the flexibility of

the linear PTFs we used not only the statistically most

significant original soil properties, but also several

derived properties (e.g., the logarithms, squares, and

products of the original soil properties). Altogether we

used eight measured and transformed soil properties,

as well as one measured retention point to construct

PTF’s for the three retention parameters.

The linear PTFs were substituted into the SWRC

and further adjusted nonlinearly using all measured

retention data of the EVAL soil database. The

estimation efficiency (EE), being the number of good

estimations as a percentage of all data sets in the entire

database, improved with this nonlinear adjustment

from 4 to 7%. The EE further improved when one

retention data point was added as a concomitant

variable in the PTF analysis. Using the 20 kPa (near

field capacity) retention point for this purpose in the

nonlinear analysis increased the EE up to 88% of the

independent TEST data set, and produced a mean

estimation error of less than 1% for the TEST

database. The applied techniques significantly

improved the PTF prediction accuracies, and should

be applicable to a much wider array of soils than only

the Hungarian database. The PTFs derived in this

paper provide improved relationships for estimating

the soil water retention curve from soil texture and

related properties, and as such may prove useful in

studies dealing with assessments of physical soil

quality, as well as for application to many other larger-

scale soil, hydrological and agricultural problems.
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