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Several statistical criteria are available to evaluate and quantify the potential
usefulness of pedotransfer functions (PTFs) in making accurate and reliable estimates
of soil hydraulic properties. In this section we will deal with three closely related terms:
optimization, accuracy, and uncertainty. Optimization criteria are the objective functions
used to calibrate empirical parameters in PTFs. Accuracy criteria relate to the statistical
methods used to test the performance of indirect methods, preferably using data distinct
from those used for calibration. Uncertainty estimates provide information about the
probability distribution of estimated hydraulic quantities. Thus, a PTF can make accurate
estimates (i.e., it produces the correct values on average), but it may not be reliable
when, for example, real-world variability is larger than estimated with the PTF.
Alternatively, a PTF can be deemed inaccurate when it produces estimates that, on
average, differ systematically from observations. Optimization criteria are the objective
functions used to calibrate PTFs. Although optimization criteria are in a strict sense
not measures to independently evaluate PTFs, their discussion in this chapter is
warranted since optimization and accuracy and reliability criteria are closely related.
Because PTF calibration is normally done before evaluation, we will discuss optimization
criteria first.

1. OPTIMIZATION CRITERIA

All indirect methods, whether physically based or empirical, contain parameters that
must be optimized using databases containing both independent data (predictors) and
dependent data (hydraulic properties or parameters in hydraulic functions). Virtually all
indirect methods are optimized by least-squares methods, and define the objective
function as
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where N is the number of data points and b is a parameter vector containing the empirical
PTF coefficients. For point-based methods s and ¢ represent data points for measured and
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estimated water retention or hydraulic conductivity, respectively. In the case of parametric
methods, s and ¢ represent parameters of hydraulic functions, such as those in the
Brooks—Corey (1964, BC) or van Genuchten (1980, VG) relationships. It is often
necessary to transform some of the hydraulic parameters before the optimization of
Equation (1) is carried out. For parametric methods it is common to deal with log-
transformed values of «, n and A in the BC or VG equations (e.g., Rawls and Brakensiek
(1985) and Wosten et al. (1999), among many others). The general rationale for
these transformations is to convert the distribution of the parameters into a more
statistically normal distribution (Carsel and Parrish, 1988). For both point and
parametric PTFs, log-transforms can also be used in conjunction with Equation (1)
to remove a bias towards large conductivity values. For example, depending upon
soil type, the saturated conductivity (K;) can vary by several orders of magnitude.
Optimization according to Equation (1) without a log-transform would yield then
a PTF that is generally more accurate for highly permeable soils than for low
permeability soils.

The optimization of point-based PTFs according to Equation (1) is relatively
straightforward. For parametric methods the situation is more complicated since two
distinct optimizations are necessary. First the parameters in the BC, VG or other hydraulic
functions must be optimized using observed water retention and/or conductivity points by
minimizing the objective function given by Equation (1). This optimization is only
possible if the number of observations exceeds the number of free parameters in the
hydraulic function. For this reason, most parametric methods require rather detailed
retention or unsaturated conductivity data sets. The actual PTFs are constructed in the
second optimization by choosing appropriate functions and minimizing the sum of squares
between estimated and previously fitted hydraulic parameters, again using an objective
function of the type given by Equation (1).

Given a calibration data set, subtle differences may arise when point- or parametric
PTFs are optimized. Being optimized directly to observed — but possibly transformed —
water retention or conductivity points, point-PTFs yield optimal results in terms of those
observed quantities. Parametric PTFs on the other hand estimate derived quantities (i.e.,
hydraulic parameters) and not quantities that are directly observed such as retention points.
Because the hydraulic functions often do not perfectly fit the hydraulic characteristics,
parametric PTFs typically perform slightly worse than point PTFs (Schaap and Bouten,
1996). This fact, combined with the strong non-linearity of the water retention and
hydraulic conductivity equations, means that an optimum SSQ in terms of parameters
values does not guarantee an optimum SSQ in terms of estimated water contents or
conductivities.

A solution to this problem is to optimize parametric PTFs directly in terms of the
observable quantities rather than optimizing the parameter values. This, in effect, will
replace the two-step optimization approach for parametric PTFs with a one-step
optimization method. We illustrate this approach using the work of Scheinost et al.
(1997) and Minasny et al. (1999) who developed PTFs to estimate VG water retention
parameters using “extended non-linear regression.” Three steps are necessary in this
approach. Firstly, four simple equations (f; through f;) are selected that express the
four VG retention parameters (6;, 6;, «, n) in terms of predictors (texture parameters,
porosity, organic matter content). Secondly, these equations are substituted in a modified
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van Genuchten (1980) equation, thus yielding (Scheinost et al., 1997)

f2(Clay7 ¢) _fl (clay, 0)
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The functions f; through f; are given by
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where {r|, r,}, {51, 52}, la1, a2}, and {n), n,} are eight unknown parameters associated
with the four VG retention parameters. The predictors d; and o are texture parameters
(according to Shirazi et al., 1988), C is organic carbon content and ¢ is the porosity. In the
third step, the eight unknown parameters are optimized according to Equation (1).

The extended non-linear regression approach has several advantages. Firstly, no fitted
retention parameters are required because f, through f; are not optimized directly.
Therefore, this optimization method can be applied also to databases containing fewer
than four points for each retention characteristic. Secondly, this method still estimates VG
parameters (f; through f£;) thus keeping the flexibility of parametric methods. Thirdly, the
method allows the optimization of a parametric PTF directly on observed water contents.
A potential drawback is that the number of free parameters must be kept to a minimum
otherwise the eight-parameter system is difficult to optimize and may even yield non-
unique solutions. This requires that f; through f; be kept relatively simple, possibly leaving
these inadequate for certain conditions. However, Minasny et al. (1999) showed that this is
not a major problem as this method provided similar results as a neural network approach.
Minasny and McBratney (2002) demonstrated that a similar approach can be used for
artificial neural network-based PTFs.

Although Equation (1) is used for the calibration of almost all PTFs, it is possible to use
alternative objective functions. When calibrating PTFs, one is often confronted with
databases that contain “outlier” points that deviate from the general trend. Outlier points
can be caused by several factors such as undocumented measurement errors, or the
presence of a few soils that have different characteristics from the larger population (e.g.,
some fine-textured soils in a larger dataset of coarse textured soils). Such outlier data
points may have a large contribution to the sum of squares, and may lead to poor
calibrations. Short of deleting outlier points one may use Robust Estimation (Press et al.,
1986), which is relatively insensitive to outliers. Instead of minimizing the sum of squares
(Eq. (1)), some variants of Robust Estimation minimize the sum of the absolute value of
the difference between estimated and observed quantities. We refer to Press et al. (1986)
for more information about robust parameter estimation.
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2. CRITERIA FOR EVALUATING THE ACCURACY OF PTFs

The accuracy of PTFs is commonly tested using independent data sets. That is, the real
value of a PTF can only be evaluated using data that were not used for the calibration of the
PTF in question. When a PTF is developed for a particular data set, this PTF should
perform well on that data set. However, success on other data sets is not guaranteed as
illustrated by Schaap and Leij (1998) who showed that the performance of a PTF depends
on the data set used for calibration and the one used for evaluation. In many cases, soils
databases are organized along local (e.g., case studies), regional, or national boundaries
and may have a bias to agricultural soils. Also, current international databases have a
serious bias towards soils from temperate climates (Imam et al., 1999). For example, very
little data is available for tropical soils (Epebinu and Nwadialo, 1993; Tomasella and
Hodnett, 1997). Because it is difficult to define truly representative soils databases, the
development, calibration and evaluation of PTFs may lead to somewhat arbitrary results, It
is, therefore up to the user of PTFs to decide whether or not a particular PTF - or group of
PTFs - is suitable for a particular application. This means that users should somehow
obtain a data set and test the PTF using accuracy criteria.

Several studies can be found in the literature that compared and evaluated PTFs
(Tietje and Tapkenhinrichs, 1993; Tietje and Hennings, 1995; Kern, 1995). These studies
have used different criteria for evaluating the accuracy of indirect methods. Most
commonly, criteria such as correlation coefficients, mean errors and root mean square
errors are used.

Correlation coefficients (R) or coefficients of determination (R?) are relatively simple
statistics that provide insight in how well data sets of estimated and measured (fitted)
hydraulic points (parameters) are related. Although the statistical significance of the value
of R or R* depends on the size of the data set being tested they give a quick normalized
impression of how much of the variance between measured and estimated hydraulic data is
explained by the PTF.

Mean errors (ME) and root mean square errors (RMSE) are often used to measure the
match of estimated hydraulic properties to such measurable quantities as water contents
and hydraulic conductivities. General expressions for ME and RMSE are

1
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respectively, where N is the number of datapoints, and — for example - ¢ and s are the
estimated and measured water contents or conductivities, respectively. When parametric
PTFs are used the estimated parameters are first converted to conductivities or water
contents at the pressure head points for which measurements are available. Similar to the
optimization criteria in the pervious section, ¢ and s may pertain to transformed
variables. We note that in the case of log-transformations, the resulting RMSE and ME
values will have dimensionless units (Tietje and Hennings, 1996; Schaap and Leij, 2000).
When no transformations are applied the RMSE and ME values will have the same units as
the measured data.
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The ME and RMSE criteria serve several purposes. For example, mean errors quantify
systematic errors as they reflect the average deviation between estimated and measured
hydraulic data. RMSE values quantify the root of the average bivariate variance between
estimated and measured data. RMSE values can thus be interpreted as a random error (not
unlike a standard deviation). For a truly well-behaved PTF, both ME and RMSE should be
as low as possible. A negative ME indicates that the PTF underestimates the quantity being
evaluated, whereas positive values indicate an overestimation. We note, however, that the
ME pertains to an average over N data points. It may very well be that while the ME is zero
the PTF overestimates hydraulic quantities for fine-textured soils and produces
overestimates for coarse-textured soils. Likewise in the case of water retention
characteristics, it may be that a PTF overestimates water contents near saturation, but
underestimates water contents in the dry range (Figure 1). To partially resolve this
problem, absolute mean errors (AME) may be computed:
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Figure 1. Examples of systematic and relative errors for a typical water retention
characteristic. Shown are “measured” data (thick line) and estimates with three
hypothetical PTFs (PTF 1, PTF 2, PTF 3). PTF 1 shows an overall overestimation, PTF
2 exhibits an overall underestimation, while PTF3 shows an underestimation near
saturation and an overestimation in the dry range. Although the errors produced by PTF 3
at the points R1 and R2 are of similar size (about 0.05 cm® cm™?), the relative errors at
these points are different: 12.5% at R1 and 100% at R2.

1
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AME are always equal to or greater than zero but do not provide information about the
sign of the systematic errors.
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Figure 2. Examples of confidence intervals as generated with the Bootstrap method for
water retention (left) and the unsaturated hydraulic conductivity (right). Shown are
estimates and 90% confidence intervals for a sand (95% sand, 2.5% clay) and a clay (25%
sand, 60% clay); both soils have a bulk density of 1.4 g cm™>.

Occasionally it is useful to provide an impression about the relative size of the
systematic errors. For example, a PTF that produces a systematic error of 0.05 em®em™
for a measured saturated water content of 0.40 cm® cm ™ leads to a relative error of 12.5%
(R1 in Figure 2). However, a PTF that produces the same error for a measured retention
point at 0.05 cm® cm ™3 yields a relative error of 100% (R2 in Figure 2). Such errors can be
quantified using the relative mean errors (RME) (Williams et al., 1992; Kern, 1995)

o d-5s
RME—N%: - (10)

If mean errors are present then the RMSE given by Equation (8) includes both systematic
and random errors. To better separate the systematic from the random errors one may
compute unbiased root mean square errors (Tietje and Hennings, 1996)

_ 1 I
URMSE—\/N%_(;’ s — ME) (11)

where the ME is derived from Eq. (7). Similar as ME, URMSE may still include
systematic errors for particular parts of the data set.

The error measures discussed thus far are well suited for comparison of parametric
PTFs, ie., PTFs that estimate hydraulic parameters that can be converted to water
retention or conductivity points for which measurements are available. A more
complicated situation arises when point-PTFs are evaluated and compared since these
usually estimate different numbers of water retention points at different pressure heads
(Rawis et al., 1982, 1983; Ahuja et al., 1985; Minasny et al., 1999). This may thus lead
to the situation where no measured water retention points are available for a particular
PTF, or vice versa, no PTF estimate is available for pressure heads for which measured
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data are available. The available data is then not used in an optimal way. Also, the error
criteria discussed previously above will be evaluated on a different number of points
for each PTF (3-12 points are estimated by Rawls et al. (1982, 1983), Ahuja et al.
(1985), and Minasny et al. (1999)). Results for different point PTFs may thus be difficult
to compare.

Two approaches can be followed to facilitate a more objective evaluation and
comparison of point PTFs. Saxton et al. (1986) fitted Brooks—Corey (1964) water

' retention curves to the estimates of the point-PTFs of Gupta and Larson (1979) and Rawls
et al. (1982). Such an approach then allows one to evaluate the PTF as a parametric PTF by
computing water contents at pressure heads for which measurements are available. The
drawback of this approach is that curve fitting point PTF estimates invariably introduces
some random errors and perhaps systematic errors as well. Furthermore, this approach is
not suitable for PTFs that estimate a limited number of retention points since curve fitting
such data is not possible or leads to unreliable results.

Tietje and Tapkenhinrichs (1993) followed a somewhat related approach in their
evaluation of point and parametric PTFs. Instead of curve fitting the estimated retention
points, they calculated the estimated water contents at the desired pressure heads by linear
interpolation between the estimated retention points (using log-transformed pressure
heads). Subsequently, they defined the mean errors and root mean square errors by
integration over a certain pressure head range as follows

b
IME = 1 J (¢ — 9)dh (12)
b - a a

b
IRMSE = J—l— j (¢ = ¢)%dn (13)
b_a a

where the integration interval runs form a = log(1 cm) and b = log(15, 000 cm) and A is
the pressure head. The integration was carried out numerically. Instead of evaluating
ME and RMSE at pressures for which measurements are available, Equations (12) and
(13) compute the normalized area between interpolated measured characteristics and
interpolated estimated characteristics. Tietje and Tapkenhinrichs (1993) claim three
advantages of their approach: (i) the method is applicable to all PTFs, thus making it
easier to compare different PTFs objectively, (ii) no specific function is assumed for the
water retention characteristic, and (iii) the method is also possible for a limited
measured retention points. We note, however, that although log-linear interpolation is a
generally very appropriate choice it does make an assumption about the underlying
shape of the water retention characteristic, especially when only a few measured or
estimated points are available. Secondly, though likewise appropriate the integration
interval of Equations (12) and (13) is still somewhat arbitrarily chosen. Thirdly, the
amount of information available is limited to the number of measured retention points.
Interpolation or integration will never extend this information. It seems that
interpolation of estimated points to pressure heads for which measured water
contents are available yields similar information that is easier to access since no
integration is required.
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3. EVALUATING THE UNCERTAINTY OF PTF PREDICTIONS

PTFs generally provide estimates of hydraulic properties with only a modest level of
accuracy. Overconfidence in PTF estimates should be avoided because the random or
systematic errors made by PTFs may for example lead to inaccurate estimates of
contaminant transport through soils and sediments. In some cases it would be worthwhile
to use a probabilistic approach that associates an uncertainty to a PTF estimate, such as a
confidence interval. Three general approaches are possible.

The first approach is the one followed by Wosten and van Genuchten (1988) who
estimated water contents and conductivities at 12 pressure heads for coarse, medium and
fine-textured soils. Using measured data they computed RMSE values (standard
deviations) at each pressure for the three soil groups, and plotted the 90% confidence
interval together with measurements and PTF estimates. The measured and estimated
characteristics were generally situated within the confidence intervals, which were
between 0.05 and 0.20 cm> cm ™2 for water retention, and between one or two orders of
magnitude for the unsaturated conductivity. The advantage of this approach is that it can
easily be implemented for any PTF. Disadvantages are that measured hydraulic data must
be available and — to obtain reliable statistics — that the data must be grouped into classes
(e.g., according to texture, or any other relevant subdivision). Because this approach
requires measured data, different data sets may lead to different confidence intervals. We
note that confidence intervals with this approach are computed from error criteria defined
in Section 2.

The second approach is to quantify parameter uncertainty and co-variance in the PTFs
during the calibration process. Many statistical optimization methods allow the analytical
or numerical quantification of the variance and co-variance matrices of the optimized
parameters (Press et al., 1988). Assuming the underlying model is correct, this type of
parameter uncertainty relates to random measurement errors in the actual calibration
database. Uncertainty in the calibration parameters subsequently leads to uncertainty in
the PTF estimates. Unfortunately, this type of parameter uncertainty is often not reported
for PTFs.

A third related approach quantifies parameter uncertainty or the parameter confidence
intervals associated with sampling effects in the calibration database. In general, the
available calibration database is assumed to be a representative sample of the natural
population of soils. In reality, however, the calibration data set is just one sample of this
somewhat hard to define population. Calibration of a PTF on another calibration database
taken from the same population, will likely lead to a slight variation in the calibration
parameters and hence translate into uncertainty in PTF estimates. In most cases, however,
only one calibration database making it impossible to directly compute parameter
confidence intervals. However, by using Monte Carlo analysis (Press et al., 1986) or the
Bootstrap Method (Efron and Tibshirani, 1993) one may gain insight into the parameter
confidence intervals without having to collect large quantities of additional data. By using
these methods it is also possible to provide uncertainty estimates for each individual PTF
estimate (Schaap et al., 2001).

Monte Carlo approaches were used by Carsel and Parrish (1988). In general Monte
Carlo approaches involve the generation of many synthetic data sets from a calibrated
model. The model is re-calibrated on each synthetic data set and the distributions of the
resulting parameters are converted to co-variance matrices. Carsel and Parrish (1988)
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developed joint probability distributions of saturated conductivity and van Genuchten
(1980) water retention parameters for the 12 USDA soil textural classes. Besides
providing uncertainty estimates for the VG parameters for each textural class, Carsel and
Parrish (1988) also accounted for correlations among the hydraulic parameters. Results of
this type can subsequently be used to generate sets of correlated hydraulic parameters for
use in for example Monte-Carlo studies for developing uncertainty estimates of solute
transport (Carsel and Parrish, 1988) or Bayesian analyses (Meyer et al., 1999). Minasny
et al. (1999) also used a Monte Carlo approach to study the effects of uncertainty in
textural data on estimated hydraulic parameters. Depending on how texture was
determined (either from imprecise field estimates or more detailed lab measurements)
different effects of input data uncertainty were found.

The Bootstrap method is a non-parametric approach that assumes that multiple
alternative realizations of a population can be simulated from a single (calibration) data set
that is available. Thus, contrary to using synthetic data such as the Monte Carlo method,
real data are used that is re-ordered in new datasets. The Bootstrap method accomplishes
this by repeated random resampling with replacement of the original data set of size N to
obtain B alternative data sets, also of size N. The PTF is calibrated B times and, because of
slight variations in the alternative data sets, the bootstrap method, therefore leads to B
alternative PTFs, resulting in a distribution of estimated hydraulic parameters. These
distributions can be further manipulated for confidence intervals and co-variances. The
non-parametric nature of the Bootstrap method allows it to be used for a wider range of
PTFs than Monte Carlo analysis, such as neural networks which do not have easily
identifiable calibration parameters.

Figure 2 shows confidence intervals as generated with the Bootstrap method. Shown
are estimated retention and unsaturated hydraulic conductivity characteristics for a coarse
textured soil (a sand with 95% sand, 2.5% clay, bulk density 1.4 gcm™>) and a fine
textured soil (a clay soil with 25% sand, 60% clay, bulk density 1.4 gcm™>). The
estimated characteristics are surrounded by an area that delineates the 90% confidence
intervals. For water retention the 90% confidence area for the sand is smaller than that for
the clay, indicating that the PTF estimate for the sand is more reliable (0.03-
0.05 cm® cm™? for the sand and 0.05-0.10 cm® cm™ for the clay). For unsaturated
hydraulic conductivity there is little difference between the confidence intervals for the
clay and the sand; in both cases the confidence interval is approximately one to two orders
of magnitude. We note that these confidence intervals can be generated without external
data and are specific for each individual estimate (i.e., the confidence intervals change with
the estimated parameters).
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