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Analysis of Soil Water Retention Data Using
Artificial Neural Networks
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Abstract: Many studies of water flow and solute transport in the vadose zone require estimates of the unsaturated soil
properties, including the soil water retention curve~WRC! describing the relationship between soil suction and water content. An ar
neural network~ANN! approach was developed to describe the WRC using observed data from several soils. The ANN appr
found to produce equally or more accurate descriptions of the retention data as compared to several analytical retention
popularly used in the vadose zone hydrology literature. Given sufficient input data, the ANN approach was also found to closel
the hysteretic behavior of a soil, including observed scanning wetting and drying curves.
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Introduction

The soil water retention curve~WRC! describes the ability of
soil to store water at different suctions. This curve, also know
the soil moisture characteristic, is one of the most basic w
properties of a soil relating soil suction~or the matric or pressu
head! h, with the volumetric contentu. As the suction increase
progressively smaller pores lose their water and hence the
content decreases.

The WRC of a soil depends upon both soil texture and
structure. The amount of water retained at relatively low suc
depends primarily upon capillary effects and the soil pore
distribution, and hence is strongly affected by the soil struc
Water retention at higher suctions is increasingly due to ad
tion, and hence is affected more by soil texture and the sp
surface area of a soil, as opposed to soil structure. Co
textured soils generally release their water much quicker
fine-textured soils which often have a much broader pore
distribution so that when suction is increased, the water co
will decrease only gradually. Hence, a coarse-textured~sandy!
soil is able to retain less water as compared to a fine-tex
~clayey! soil.

One complication in the description of the soil hydraulic pr
erties is the hysteretic nature of the water retention function
the curve follows different paths depending upon the drying
wetting history of the soil. During wetting when the suction
gradually lowered, the water content is generally higher tha
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the same suction during drying. Fig. 1 shows the hysteretic n
of the WRC for Caribou silt loam using data determined by T
~1971! as tabulated by Mualem~1974! in his unsaturated so
hydraulic property catalogue. Notice that in addition to the m
hysteretic loop, one also obtains secondary scanning curv
reflected by the smaller loops in Fig. 1.

Several theories have been advanced to explain the hys
nature of soils, including the independent domain theory~Everett
1955! and various modifications thereof~e.g., Topp 1971!. The
main causes of hysteresis~Hillel 1971! are ~1! the ‘‘inkbottle’’
effect due to geometric nonuniformity of individual pores;~2! the
contact angle effect;~3! aggregate impacts of such phenomen
swelling, shrinking, or aging; and~4! the effect of entrapped a
pockets in soils that connect different size pores during we
Water retention data are often conveniently described using
lytical expressions. A large number of equations have been
posed for this purpose~e.g., van Genuchten and Nielsen 19
Leij et al. 1997!, the more popular ones being those by Bro
and Corey~1964! and van Genuchten~1980!. The Brooks an
Corey ~1964! WRC model is given by

u5u r1~us2u r !~ah!2l ah>1

5us ah,1 (1)

where h5pressure head; u5volumetric water conten
us5saturated water content;u r5residual water conten
a5parameter whose inverse (ha5a21) is frequently referred t
as the air entry value; andl is sometimes named the pore-s
distribution index. van Genuchten~1980! proposed an alternati
S-shaped model for the retention curve as follows:

u5u r1~us2u r !@11uahun#2m (2)

wherea, n andm5empirical constants defining the shape of
curve.

Recently, a two-parameter equation for water retention c
was proposed by Assouline et al.~1998!

u5uL1~us2uL!$12exp@2j~h212hL
21!h#% 0<h<hL

(3)

where hL5suction head that corresponds to a very low w

contentuL , where the hydraulic conductivity becomes negligible;
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andj andh5empirical shape parameters. This model was te
on water retention data sets of 12 soils representing a range
textures from sand to clay. Agreement between the fitted cu
and the measured data was reported to be the same or bett
for other models.

One disadvantage of analytical expressions, such as
given by Eqs.~1!–~3!, is that they are essentially empirical a
incorporate certain assumptions about the shape of the WR
cluding, for example the existence of a residual water conten
Eqs.~1! and~2!. For this purpose several investigators have u
alternative approaches to mathematically describe observed
tion data, such as cubic splines~Kastanek and Nielsen 2001! or
other more flexible functions~Prunty and Casey 2002!. An emerg-
ing modeling technique that may be very well suited for
purpose is the artificial neural networks~ANNs!. This empirica
technique is now being applied successfully to a wide rang
applications in hydrology. It is this technique that we will expl
in this paper in an attempt to obtain improved descriptions o
water retention curve.

The main purpose of this paper hence is to use ANNs to
scribe the water retention curve of soils using measured soil
retention and suction data. Results will be compared with t
using Eqs.~1!, ~2!, and ~3!. We also apply the ANN model to
case with hysteresis involving drying and wetting curves
scanning curves. Below we first briefly review the use of ANN
water resources.

Artificial Neural Network Applications in Water
Resources

Artificial neural networks refer to computing systems whose
tral theme is borrowed from the analogy of biological neural
works. They represent highly simplified mathematical mode
biological neural networks. They include the ability to learn
generalize from examples to produce meaningful solution
problems even when input data contain errors or are incom
and to adapt solutions over time to compensate for changin
cumstances and to process information rapidly.

The ANN approach is faster compared to its conventi
counterparts, robust in noisy environments, and flexible in
range of problems it can solve. An ANN has the ability to le
from examples, to recognize a pattern in the data, to adapt
tions, and process information rapidly. Due to these advant
ANNs have been used in numerous real world applications,
as image processing, speech processing, performing genera
ping from input pattern to output pattern, and grouping sim
patterns. Applications of ANNs to hydrology are rapidly gain
popularity due to their power and potential in mapping nonlin

Fig. 1. Hysteretic water retention curves for Caribou silt loam~data
from Topp 1971!
system data.
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A system may be nonlinear and multivariate, and the varia
involved may have complex inter-relationships. Artificial ne
networks are capable of adapting their complexity and thei
curacy increases as more and more input data are made av
to them. They are capable of extracting the relation betwee
input and output of a process without any knowledge of the
derlying principles. Because of the generalizing capabilities o
activation function, one need not make any assumption abo
relationship~linear or nonlinear! between input and output. A
these properties make ANNs an attractive tool for water reso
practitioners.

In the field of water resources, ANNs have been used for
predictions, flow/pollution simulation, parameter identificat
and to model complex nonlinear input–output time series.
et al.~1995! have shown that the ANN approach provides a b
representation of the rainfall–runoff relationship of a med
sized basin than does the ARMAX approach or the Sacram
soil moisture model. Raman and Sunilkumar~1995! investigated
the use of ANNs for synthetic inflow generation and comp
the model performance with that of a multivariate time se
autoregressive moving average model. Minns and Hall~1996!
applied an ANN to rainfall–runoff modeling. Dawson and Wi
~1998! used an ANN for river flow forecasting. Artificial neu
networks were used for reservoir inflow prediction by Jain e
~1999!. Birikundavyi et al.~2002! found that an ANN can achie
accuracy superior to that of ARMAX and deterministic mod
for 7-day ahead forecasting. Kumar et al.~2002! concluded tha
the ANN can predict reference crop evapotranspiration for an
better than the Penman–Monteith method.

A set of two papers published by the ASCE task committe
application of ANNs in hydrology~ASCE 2000a, 2000b! contains
a detailed review of the theory and applications of ANNs in w
resources. Govindaraju and Rao~2000! have described many a
plications of ANNs to water resources.

Artificial neural networks have also recently found widesp
application to predictions of the water retention curve from
texture and related data using pedotransfer functions~PTFs! ~e.g.,
Pachepsky et al. 1996; Schaap et al. 1998; Koekkoek and B
ink 1999; Minasny and McBratney 2002!. The basic premise
these approaches is to assume the applicability of a certain
tion model@e.g., Eqs.~1! or ~2!#, and then to use ANNs to corr
late several or all of the unknown model parameters to m
readily available or more easily measured data, such as so
ture, bulk density, organic matter content, and/or soil structur
an example, Schaap et al.~1998! used ANNs to estimate the p
rameters in Eq.~2!, as well as the saturated hydraulic conduc
ity. To facilitate the practical use of PTFs, they designed a
archical structure to allow input of both limited and m
extended sets of predictors. They combined their ANNs with
bootstrap method~Efron and Tibshirani 1993! to additionally ob
tain an estimate of the uncertainty in the PTF predictions~Schaap
et al. 1998!. The PTFs were calibrated on some 2,100 soil
draulic data sets, and further tested on more than 47,000 re
from the Natural Resources Conservation Services soil char
ization database. Schaap and Leij~2000! subsequently expand
the hierarchical approach to include unsaturated hydraulic
ductivities. Their work resulted in a windows-based softw
package, Rosettâ http://www.ussl.ars.usda.gov/models/rose
rosetta.htm& that incorporates the different PTFs.

An advantage of the PTF approach is that estimates o
complete retention function are obtained. Still, the predict
always remain somewhat approximate since they are bas

generic, not site-specific data. If site-specific data are available,
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several approaches may be used to obtain accurate descript
the retention data. This includes:~1! fitting the data with one o
the empirical retention functions mentioned earlier;~2! using
cubic splines~Kastanek and Nielsen 2001! or other methods fo
interpolation between measured retention data; and~3! using
ANNs for the interpolation. It is the latter approach that is
lowed in this paper.

Development of Artificial Neural Network Model and
Analysis of Data

A three-layer feed forward ANN was used in this study. Acco
ing to Hsu et al.~1995!, three-layer feed forward ANNs can
used to model real-world functional relationships that may b
unknown or poorly defined form and complexity. Such an AN
shown in Fig. 2. The input to the network is received by
neurons in the input layer. The data passing through the co
tions from one neuron to another are manipulated by we
which control the strength of a passing signal. When t
weights are modified, the data transferred through the net
changes and the network output alters. The neurons in a
share the same input and output connections, but do not inte
nect among themselves. Each layer performs specific func
All the nodes within a layer act synchronously, meaning at
point of time they will be at the same stage of processing.
level of activity generated at the output node~s! is the network’s
response to the inputs presented to it.

In this study, we applied the ANN results to the same data
as used in the recent study by Assouline et al.~1998!. The same
data were also previously used by van Genuchten and Ni
~1985! in their comparisons of the relative accuracy of the Bro
and Corey~1964! and van Genuchten~1980! retention models
All data sets were taken from the hydraulic property catalogu
Mualem~1974!. Details of the data sets are given in Table 1.
Genuchten and Nielsen~1985! and Assouline et al.~1998! both
fitted the WRC model parameters to the data using an iter
nonlinear regression procedure based on the Marqu
Levenburg algorithm~Marquardt 1963!. Following Assouline
et al. ~1998!, we compared the results of different approac
using the norm index~NI! defined as

NI5A(
n

~uoi2uci!
2 (4)

Fig. 2. Three-layer feed forward artificial neural network with o
input node~for matric potential!, four nodes in hidden layer, and o
output node~representing soil moisture content!
i 51
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f

whereuoi and uci5observed and computed values of the w
content for theith observation, respectively.

A three-layer feed-forward ANN was trained for each data
The input layer had one neuron that received matric pote
values as input. The signal from the only neuron in the ou
layer represented the corresponding moisture content. The
ber of neurons in the hidden layer was determined by trial
error; five neurons gave the best results for the data used i
study. The sigmoid transfer function was used. This function

yj51/@11exp~2zi !# (5)

where zi5Swi j xi ; wi j 5weight of the connection from theith
neuron in the previous layer to the current neuron; andxi5input
to ith neuron in the previous layer. The sigmoid function is c
tinuously differentiable. Its derivative isy85y(12y).

The weights of the ANN were estimated using an error b
propagation method. In this algorithm, a set of inputs and ou
was selected from the training set and the network calculate
output based on the inputs. The actual output was compared
the target output to find the output-layer errors. The weights o
neurons were adjusted based on the strength of the signal
connection and the total measure of the error. The total err
the output layer was then reduced by redistributing this
backwards through the hidden layers until the input layer
reached. This process continued for a number of prescribed
tions or until a prescribed error tolerance was reached.

The mean square error~MSE! over the training samples is
typical objective function and can be expressed as

E5 (
p51

N

(
n51

m

~Tpn2Opn!2 (6)

whereTpn5target~or observed! value of thenth neuron for the
pth pattern;Opn5output value of thenth neuron for thepth pat-
tern;N5total number of training patterns~sets of matric potentia
and soil moisture content values!; andm5total number of outpu
neurons. About 10,000 iterations were performed to train
ANN for each data set.

The number of water retentionu –h data pairs for the ma
drying curves of the soil used in this study ranged from 14 to
Before training, theu values were normalized by using the f
lowing formula:

uN5~u2umin!/Du (7)

whereumin5value slightly less than the minimum of theu values
andDu5difference between the minimum and the maximum
ues. A different formula will be more suitable for a variable
varies within a certain range. Minns and Hall~1996! have rightly
emphasized the importance of the correct standardization.

The suction values were normalized by dividing by the m

Table 1. Soil Data Sets and Mualem~1974! Curve Types Used in Th
Study

Soil type Catalog number Curve type

Beit Netofa clay soil 1006 First drying
Rideau clay loam 3101 Main drying
Touchet silt loam 3304 First drying
Pachappa loam 3403 Main drying
Rubicon sandy loam 3501 Main drying
Pachappa fine sandy clay 3503 Main dryin
Sable de riviere 4118 Main drying
mumh value. This, however, caused a problem in the ANN train-

OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2004 / 417



and
nce,
the
e
axi-
ange
over-
t log
0–1.
s.
com

in an

are

n
en
tly
ne
hat

with
l the
sion

ois-
are
s
d
tion
sured
f
etter
e

ntire
t al.
eads
n

the

and
NN
ously

Eq.
the

es
and

ugh
r
soil
ed of
g
but

was

ite
the
re-
by a
n in

using
t al.
ing for soils for which the difference between the maximum
the minimum values of suction was extremely large. For insta
the maximum and minimum values of the matric potential for
Pachappa loam soil were 3193104 cm and 10 cm of water. If th
suction values were normalized by merely dividing by the m
mum value for such data, most values in the lower suction r
clustered close to zero and this resulted in poor training. To
come this problem, the suction values for such soils were firs
transformed and then standardized to fall within the range of
All available pairs ofu –h values were used to train the ANN
These days, a number of software packages are available,
mercially as well as in public domain, that can be used to tra
ANN.

Results and Discussion

The values of the norm index obtained by Assouline et al.~1998!
and in this study are given in Table 2. Also included in Table 2
norm values obtained by applying the van Genuchten~1980!
model assuming both independentm and n values, or the ofte
assumed relationshipm5121/n ~van Genuchten and Niels
1985!. Notice that the NI obtained using ANNs is significan
smaller ~except for one soil! than those obtained by Assouli
et al. ~1998!, with the results of van Genuchten being somew
better than those by Assouline et al.~1998!, especially whenm
and n are kept independent. These results are consistent
many other studies in which ANNs have been found to mode
behavior of real-world data better than the empirical/regres
models.

Fig. 3 graphs observed values of soil suction versus the m
ture content for Rideau clay loam. Also shown in the figure
plots of the WRC curve obtained by using Eq.~3! ~the parameter
as given by Assouline et al. 1998 were used! and the ANN-base
curve. Note that the input to the ANN model was only the suc
head. It can be seen that the ANN curve is closer to the mea
data points than the curve obtained using Eq.~3!. The results o
Table 2 also show that the performance of ANN is much b
than the model of Assouline et al.~1998! and is comparable to th
model of van Genuchten~1980! and Brooks and Corey~1964!.
Note that application of ANN requires that the data over the e
water retention range is available. Also, the Assouline e
~1998! model cannot be extrapolated to lower pressure h
~higher suctions! without risking physically unrealistic retentio
values.

Modeling of Hysteresis

The second part of this study is concerned with describing

Table 2. Comparison of Norm Index for Various Soils

Soil type
Catalog
number

Brooks and
Corey
~1964!
model

Ge
~1

varia

Beit Netofa clay soil 1006 0.044
Rideau clay loam 3101 0.02
Touchet silt loam 3304 0.015
Pachappa loam 3403 0.055
Rubicon sandy loam 3501 0.015
Pachappa fine sandy clay 3503 0.034
Sable de riviere 4118 —
hysteretic behavior of soils using ANNs. This problem is more

418 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER/
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complex than modeling WRC because the shape of drying
wetting limbs of the curve is not the same. Additionally, an A
has to be provided with enough data so that it can unambigu
decide which curve to follow.

As before, the soil moisture data were normalized using
~6!, while the suction data were normalized by dividing by
maximum value. The root mean square error~RMSE! for the
training/testing was calculated as

RMSE5A1

n (
i 51

n

~uai2umi!
2 (8)

where n5number of data points, anduai and umi5actual and
modeled values of the moisture content, respectively.

Initially, the ANN model was provided with two input valu
(hi andhi 21 , i.e., the observed value of suction at the current
previous points! by reasoning that these would provide eno
information for the model to determine which~main wetting o
drying! branch to follow, and then correctly estimate the
moisture. Note that in this case, the ANN training set consist
all the available pairs ofh–u values for drying as well as wettin
curves. The RMSE was quite small for the Rideau clay loam
was quite large for the Caribou silt loam. This experiment
followed up by including one more input in the ANN forhi 22 .
This additional input should provide the ANN with the defin
information whether the data is on the wetting limb or on
drying limb. As expected, inclusion of this additional input
sulted in a large improvement in training results as reflected
substantial reduction in the RMSE for both soils. The reductio

Norm index obtained by

n

n

van
Genuchten

~1980!
m5121/n

Assouline
et al.

~1998!
This study

~artificial neural network!

5 0.034 0.017 0.012
0.033 0.028 0.016

5 0.045 0.034 0.019
0.0653 0.030 0.058

8 0.05 0.038 0.025
0.0346 0.041 0.036

8 0.00118 0.042 0.0074

Fig. 3. Measured water retention data and curves obtained
artificial neural networks and empirical model of Assouline e
~1998!
van
nuchte
980!
blem,

0.024
0.019
0.010
0.051
0.014
0.03

0.0011
OCTOBER 2004
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RMSE was much larger for Caribou silt loam as compare
Rideau clay loam, with both soils now showing the same ord
magnitude for RMSE.

Many other input combinations were tried. Another useful
to guide the ANN to the correct branch was found by includ
hinit as input. This is the suction at the initial point of theh–u
curve. This will be the maximum suction value for the wett
curve and the minimum value for the drying curve. We found
including this information also led to a large reduction in
RMSE value. The observed and ANN-modeled curves for the
soils for this combination of inputs are given in Figs. 4 and
These figures show a good match between the observed and
puted curves, except near saturation. Thus, a properly tr
ANN which has four neurons in the input layer representinghi ,
hi 21 , hi 22 , and hinit can satisfactorily reproduce the hyster
behavior of a soil. The RMSE values for the various input c
binations for the two soils are given in Table 3, Part I.

An attempt was also made to model the behavior of the s
ning curves using ANN. In this case, the training set consiste
all the available pairs ofh–u values for main drying and wettin
curves and data for one dry scan and one wet scan curve
same combination of inputs, as earlier, was tried using the da
main drying and wetting as well as one drying scanning curve
one wet scanning curve. The results are given in Part II of T
3. These results also show that the training RMSE was quite
when the inputs werehi , hi 21 , hi 22 , andhinit .

Since data for more than one dry and wet scan curves for
soil were available, the goodness of the ANN was tested usin
data of a dry scan and wet scan that was not used in the tra
The results are given in Parts III and IV of Table 3 and Figs. 6
7. Evidently, the match between observed and computed dr
wet scan curves was good for Soil 3101 while it was not that g
for the wet scan curve of Soil 3301. However, the shape of a
curve is significantly influenced by the drying and wetting his

Fig. 4. Observed and artificial neural network modeled w
retention curve for Rideau clay loam

Fig. 5. Observed and artificial neural network modeled w
retention curve for Caribou silt loam
JOURNAL OF HYDROL
-of the soil and when seen with this perspective, coupled with
errors, etc., the results appear to be very good and useful.

Limited numerical experiments to determine the impac
missing data and errors in data on ANN training were also m
In the first case, three or four successive data points were d
from a segment of WRC and the ANN was trained. We found
for our data sets RMSE changed by less than 0.5%. Introdu
of 10% error in some data points of the training set also le
about the same change in RMSE. As the ANN tries to gener
the data behavior, it assumes the behavior shown by the erro
data set to be the true behavior of WRC and therefore, R
does not change significantly.

It may be added that when the values of norm index
RMSE are small, these indices may not be adequate to diff
tiate among the models and additional criteria, such as m
reliability need to be used.

Conclusions

The WRC of a soil was modeled by an ANN using the meas
data of soil moisture content and suction. The ANN used in

Fig. 6. Observed and artificial neural network modeled scan cu
for Rideau clay loam

Table 3. Results of Artificial Neural Network Modeling: Root Me
Square Error~RMSE! for Soils for Different Input Vectors

Inputs

RMSE

Rideau clay loam
~No. 3101!

Caribou silt loam
~No. 3301!

I. Main drying and wetting data

hi , hi 21 0.006073 0.015291
hi , hi 21 , hi 22 0.004783 0.004679

hi , hi 21 , hinit 0.008849 0.002032

hi , hi 21 , hi 22 , hinit 0.002466 0.002431

II. Main drying, wetting, and dry/wet scan data

hi , hi 21 , hinit 0.013179 0.009246

hi , hi 21 , hi 22 , hinit 0.007314 0.003045

III. Test—dry scan curve

hi , hi 21 , hinit 0.008189 0.02348

hi , hi 21 , hi 22 , hinit 0.006781 0.00608

IV. Test—wet scan curve

hi , hi 21 , hinit 0.004979 0.04636

hi , hi 21 , hi 22 , hinit 0.008485 0.02063
OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2004 / 419
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study was a three-layer feed-forward architecture. It was f
that the ANN with only suction head data as input was ab
describe WRC better than did the empirical model of Assou
et al. ~1998! and the performance was comparable to the
Genuchten~1980! model. More importantly an ANN, whose i
puts were the current and previous values of suction heads
found to reproduce the hysteretic behavior and scan curves
satisfactory manner. This application of ANN as a fitting t
should be useful in soil-moisture modeling.

Notation

The following symbols are used in this paper:
h 5 soil suction~or matric or pressure head!;

hL 5 soil suction corresponding to very low water content;
u 5 volumetric water content of soil;

uL 5 very low water content of soil at which hydraulic
conductivity becomes negligible;

u r 5 residual~volumetric! water content of soil; and
us 5 saturated~volumetric! water content of soil.
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