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Abstract: Many studies of water flow and solute transport in the vadose zone require estimates of the unsaturated soil hydraulic
properties, including the soil water retention cufV¢RC) describing the relationship between soil suction and water content. An artificial
neural network ANN) approach was developed to describe the WRC using observed data from several soils. The ANN approach was
found to produce equally or more accurate descriptions of the retention data as compared to several analytical retention function
popularly used in the vadose zone hydrology literature. Given sufficient input data, the ANN approach was also found to closely describe
the hysteretic behavior of a soil, including observed scanning wetting and drying curves.
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Introduction the same suction during drying. Fig. 1 shows the hysteretic nature
of the WRC for Caribou silt loam using data determined by Topp
(1971 as tabulated by Mualenil974 in his unsaturated soil
hydraulic property catalogue. Notice that in addition to the main
hysteretic loop, one also obtains secondary scanning curves as

The soil water retention curveVRC) describes the ability of a

soil to store water at different suctions. This curve, also known as
the soil moisture characteristic, is one of the most basic water
properties of a soil relating soil suctidor the matric or pressure L
head h, with the volumetric conteni. As the suction increases, reflected by the smaller loops in Fig. 1.

progressively smaller pores lose their water and hence the water Several theo_r s hf”“’e bee_n advanced to explam the hysteretic
content decreases. nature of soils, including the independent domain the&werett

The WRC of a soil depends upon both soil texture and soll 195.3 and various modlflca_t|ons theregé.g., Topp“_197)1 Thf
structure. The amount of water retained at relatively low suctions main causes of hystgresﬁbﬂllgl 197.1) are (1.).the inkbottle
depends primarily upon capillary effects and the soil pore-size effect due to geometric nonunlforr_mty of individual poré8} the
distribution, and hence is strongly affected by the soil structure. contqct anglg eﬁec(S) aggregate Impacts of such phenomeng as
Water retention at higher suctions is increasingly due to adsorp-swe"mg' shrinking, or aging; an#) the effect of entrapped air

tion, and hence is affected more by soil texture and the Speciﬁcpockets in soils that connect different size pores during wetting.

) - Water retention data are often convenientl ri ing ana-
surface area of a soil, as opposed to soil structure. Coarse- ater retention data are often conveniently described using ana

textured soils generally release their water much quicker than Iytlcalj ixrrthehsismn?. A nge T/ur:kgr:f i\?ur?tlor?ds ::I?Vle tr’]eigsgrf)'
fine-textured soils which often have a much broader pore-size posed Tor ThiS purposee.g., van enuchten a else '

distribution so that when suction is increased, the water contentLﬁg eé arl. 1(?324;“]?] dm\c/)ri ng:larh?r]é;;:)em_?hth%sre t:(y Brno(;)ks
will decrease only gradually. Hence, a coarse-textuisahdy a orey a an enuchte - 1€ Brooks a

soil is able to retain less water as compared to a fine-texturedcorey(l%@ WRC model is given by

(clayey soil. 0=0,+(0s—0,)(ach)™ ah=1
One complication in the description of the soil hydraulic prop-
erties is the hysteretic nature of the water retention function, i.e., =065 ah<l @

the curve follows different paths depending upon the drying and where h=pressure head; 6=volumetric water content;
wetting history of the soil. During wetting when the suction is ¢ =saturated water content;9,=residual water content;
gradually lowered, the water content is generally higher than ata:parameter whose in\/ersea(:a_l) is frequently referred to
as the air entry value; and is sometimes named the pore-size
IScientist ‘F’, National Institute of Hydrology, Roorkee 247667, distribution index. van Genucht€980 proposed an alternative

India. S-shaped model for the retention curve as follows:

2A. K. Barton Professor, Dept. of Civil and Environmental Engineer- h—m
ing, Louisiana State Univ., Baton Rouge, LA 70803-6405. E-mail: 0=0,+(05—0,)[1+|ah|"] 2
cesing@Isu.edu wherea, n andm=empirical constants defining the shape of the

3Soil Physicist, USDA-ARS Salinity Laboratory, 450 W. Big Springs

curve.
Rd., Riverside, CA 92507-4617. . .
Note. Discussion open until February 1, 2005. Separate discussions Recently, a two-parameter equation for water retention curve

must be submitted for individual papers. To extend the closing date by was proposed by Assouline et 81998
one month, a written request must be filed with the ASCE Managing 6=9L+(95—9L){1—exq—§(h’l—h[l)“]} O<h<h,

Editor. The manuscript for this paper was submitted for review and pos- ©)
sible publication on March 25, 2003; approved on January 7, 2004. This )
paper is part of thddournal of Hydrologic Engineering Vol. 9, No. 5, where h_ =suction head that corresponds to a very low water

September, 2004. ©ASCE, ISSN 1084-0699/2004/5-415-420/$18.00. contentd, , where the hydraulic conductivity becomes negligible;
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4500 e Manweting ] A system may be nonlinear and multivariate, and the variables
4000 8- Maindrying 1 - . . . e
00 kN s Weting seanving | involved may have complex inter-relationships. Artificial neural
2000 RN —#—Drying scanring || networks are capable of adapting their complexity and their ac-
2500 el curacy increases as more and more input data are made available
200.0 | ——#—drying scanni to them. They are capable of extracting the relation between the

150.0 -
100.0 4

input and output of a process without any knowledge of the un-
derlying principles. Because of the generalizing capabilities of the

g 2% . - .L- . . . .
500 TE R ey activation function, one need not make any assumption about the
0.0 T v T - - . . . . .
0.31 0.33 0.35 07 0.39 041 043 0.4t relatlonsh|p(l|r1ear or nonlinear betwee.n input and output. All
Treta these properties make ANNs an attractive tool for water resources

practitioners.

In the field of water resources, ANNs have been used for flow
predictions, flow/pollution simulation, parameter identification,
and to model complex nonlinear input—output time series. Hsu
and¢ andm=empirical shape parameters. This model was tested €t al. (1999 have shown that the ANN approach provides a better
on water retention data sets of 12 soils representing a range of soifepresentation of the rainfall-runoff relationship of a medium
textures from sand to clay. Agreement between the fitted curvessized basin than does the ARMAX approach or the Sacramento
and the measured data was reported to be the same or better tha#Pil moisture model. Raman and Sunilkunt&®95 investigated
for other models. the use of ANNs for synthetic inflow generation and compared

One disadvantage of analytical expressions, such as thosdhe model performance with that of a multivariate time series
given by Eqgs.(1)—(3), is that they are essentially empirical and autoregressive moving average model. Minns and K396
incorporate certain assumptions about the shape of the WRC, in-applied an ANN to rainfall-runoff modeling. Dawson and Wilby
cluding, for example the existence of a residual water contents in (1998 used an ANN for river flow forecasting. Artificial neural
Egs.(1) and(2). For this purpose several investigators have used networks were used for reservoir inflow prediction by Jain et al.
alternative approaches to mathematically describe observed retent1999. Birikundavyi et al.(2002 found that an ANN can achieve

Fig. 1. Hysteretic water retention curves for Caribou silt lo&hata
from Topp 1971

tion data, such as cubic splinésastanek and Nielsen 20Dbr accuracy superior to that of ARMAX and deterministic models
other more flexible functiongPrunty and Casey 2002An emerg- ~ for 7-day ahead forecasting. Kumar et 1002 concluded that

ing modeling technique that may be very well suited for this the ANN can predict reference crop evapotranspiration for an area
purpose is the artificial neural network&NNSs). This empirical better than the Penman—Monteith method.

technique is now being applied successfully to a wide range of A set of two papers published by the ASCE task committee on
applications in hydrology. It is this technique that we will explore application of ANNs in hydrologyASCE 2000a, 2000kcontains
in this paper in an attempt to obtain improved descriptions of the a detailed review of the theory and applications of ANNs in water
water retention curve. resources. Govindaraju and R&9D00 have described many ap-
The main purpose of this paper hence is to use ANNs to de- plications of ANNs to water resources.
scribe the water retention curve of soils using measured soil water  Atrtificial neural networks have also recently found widespread
retention and suction data. Results will be compared with those application to predictions of the water retention curve from soil
using Egs.(1), (2), and(3). We also apply the ANN model to a  texture and related data using pedotransfer funct{ipiss (e.g.,
case with hysteresis involving drying and wetting curves and Pachepsky et al. 1996; Schaap et al. 1998; Koekkoek and Boolt-
scanning curves. Below we first briefly review the use of ANNs in ink 1999; Minasny and McBratney 2002The basic premise of
water resources. these approaches is to assume the applicability of a certain reten-
tion model[e.g., Egs(1) or (2)], and then to use ANNSs to corre-
late several or all of the unknown model parameters to more
readily available or more easily measured data, such as soil tex-
ture, bulk density, organic matter content, and/or soil structure. As
Artificial neural networks refer to computing systems whose cen- an example, Schaap et §.998 used ANNSs to estimate the pa-
tral theme is borrowed from the analogy of biological neural net- rameters in Eq(2), as well as the saturated hydraulic conductiv-
works. They represent highly simplified mathematical models of ity. To facilitate the practical use of PTFs, they designed a hier-
biological neural networks. They include the ability to learn and archical structure to allow input of both limited and more
generalize from examples to produce meaningful solutions to extended sets of predictors. They combined their ANNs with the
problems even when input data contain errors or are incomplete,bootstrap metho@Efron and Tibshirani 19930 additionally ob-
and to adapt solutions over time to compensate for changing cir-tain an estimate of the uncertainty in the PTF predicti@chaap
cumstances and to process information rapidly. et al. 1998. The PTFs were calibrated on some 2,100 soil hy-
The ANN approach is faster compared to its conventional draulic data sets, and further tested on more than 47,000 records
counterparts, robust in noisy environments, and flexible in the from the Natural Resources Conservation Services soil character-
range of problems it can solve. An ANN has the ability to learn ization database. Schaap and L@P00 subsequently expanded
from examples, to recognize a pattern in the data, to adapt solu-the hierarchical approach to include unsaturated hydraulic con-
tions, and process information rapidly. Due to these advantagesductivities. Their work resulted in a windows-based software
ANNSs have been used in numerous real world applications, suchpackage, Rosetta(http://www.ussl.ars.usda.gov/models/rosetta/
as image processing, speech processing, performing general magosetta.htinthat incorporates the different PTFs.
ping from input pattern to output pattern, and grouping similar An advantage of the PTF approach is that estimates of the
patterns. Applications of ANNs to hydrology are rapidly gaining complete retention function are obtained. Still, the predictions
popularity due to their power and potential in mapping nonlinear always remain somewhat approximate since they are based on
system data. generic, not site-specific data. If site-specific data are available,

Artificial Neural Network Applications in Water
Resources
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Table 1. Soil Data Sets and Mualefi974 Curve Types Used in This

- Study
g % Soil type Catalog number Curve type
[
‘§ E Beit Netofa clay soil 1006 First drying
2 & Rideau clay loam 3101 Main drying
S = Touchet silt loam 3304 First drying
% Pachappa loam 3403 Main drying
Rubicon sandy loam 3501 Main drying
Pachappa fine sandy clay 3503 Main drying
Sable de riviere 4118 Main drying
Input Layer Hidden Layer Output Layer

Fig. 2. Three-layer feed forward artificial neural network with one
input node(for matric potentig), four nodes in hidden layer, and one
output node(representing soil moisture contgnt

where8,; and 6.;=observed and computed values of the water
content for theith observation, respectively.

A three-layer feed-forward ANN was trained for each data set.
The input layer had one neuron that received matric potential
values as input. The signal from the only neuron in the output
layer represented the corresponding moisture content. The num-
several approaches may be used to obtain accurate descriptions dfer of neurons in the hidden layer was determined by trial and
the retention data. This include&) fitting the data with one of  error; five neurons gave the best results for the data used in this
the empirical retention functions mentioned earli€2) using study. The sigmoid transfer function was used. This function is
cubic splinesg(Kastanek and Nielsen 20pdr other methods for _ _
interpolation between measured retention data; é8)dusing yi=11+exp=z)] ()
ANNs for the interpolation. It is the latter approach that is fol- where z;=2w;;x;; w;;=weight of the connection from thih
lowed in this paper. neuron in the previous layer to the current neuron; greinput

to ith neuron in the previous layer. The sigmoid function is con-

tinuously differentiable. Its derivative ig'=y(1—y).
Development of Artificial Neural Network Model and The weights of the ANN were estimated using an error back-
Analysis of Data propagation method. In this algorithm, a set of inputs and outputs

was selected from the training set and the network calculated the
A three-layer feed forward ANN was used in this study. Accord- output based on the inputs. The actual output was compared with
ing to Hsu et al.(1995, three-layer feed forward ANNs can be the target output to find the output-layer errors. The weights of all
used to model real-world functional relationships that may be of neurons were adjusted based on the strength of the signal in the
unknown or poorly defined form and complexity. Such an ANN is connection and the total measure of the error. The total error at
shown in Fig. 2. The input to the network is received by the the output layer was then reduced by redistributing this error
neurons in the input layer. The data passing through the connecbackwards through the hidden layers until the input layer was
tions from one neuron to another are manipulated by weights reached. This process continued for a number of prescribed itera-
which control the strength of a passing signal. When these tions or until a prescribed error tolerance was reached.
weights are modified, the data transferred through the network ~The mean square err¢MSE) over the training samples is a
changes and the network output alters. The neurons in a layertypical objective function and can be expressed as

share the same input and output connections, but do not intercon- N m
nect among them;elves. Each layer performs spemﬂg functions. E= 2 2 (Tpn—opn)2 (6)
All the nodes within a layer act synchronously, meaning at any p=1n=1

point of time they will be at the same stage of processing. The
level of activity generated at the output né¢gles the network’s
response to the inputs presented to it.

whereT,=target(or observell value of thenth neuron for the
pth pattern;O,,=output value of thenth neuron for thepth pat-

in thi d lied the ANN | h q tern; N=total number of training patterr{sets of matric potential
n this study, we applied the results to the same data sets 5,4 il moisture content valyesndm=total number of output

as used in the recent study by Assouline e(#98. The same Lo, 1ons About 10,000 iterations were performed to train the
data were also previously used by van Genuchten and Nielsenayn for each data set.

(1985 in their comparisons of the relative accuracy of the Brooks
and Corey(1964 and van Genuchtefil980 retention models.

All data sets were taken from the hydraulic property catalogue of
Mualem(1974). Details of the data sets are given in Table 1. van
Genuchten and Nielsefi985 and Assouline et al(1998 both
fitted the WRC model parameters to the data using an iterative ON=(0—0min)/AD (7)
nonlinear regression procedure based on the Marquardt—
Levenburg algorithm(Marquardt 1968 Following Assouline

et al. (1998, we compared the results of different approaches
using the norm indexNI) defined as

The number of water retentioh—h data pairs for the main
drying curves of the soil used in this study ranged from 14 to 34.
Before training, thed values were normalized by using the fol-
lowing formula:

where# ,,=Vvalue slightly less than the minimum of thevalues;
and A6 =difference between the minimum and the maximum val-
ues. A different formula will be more suitable for a variable that
varies within a certain range. Minns and H&lR96 have rightly

n emphasized the importance of the correct standardization.
NI= A /;1 (Bi—0¢i)2 @) The suction values were normalized by dividing by the maxi-

mumh value. This, however, caused a problem in the ANN train-
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Table 2. Comparison of Norm Index for Various Soils

Norm index obtained by

Brooks and van van
Corey Genuchten Genuchten Assouline
Catalog (1964 (1980 (1980 et al. This study

Soil type number model variablem, n m=1-1/n (1998 (artificial neural network
Beit Netofa clay soil 1006 0.044 0.0245 0.034 0.017 0.012
Rideau clay loam 3101 0.02 0.019 0.033 0.028 0.016
Touchet silt loam 3304 0.015 0.0105 0.045 0.034 0.019
Pachappa loam 3403 0.055 0.051 0.0653 0.030 0.058
Rubicon sandy loam 3501 0.015 0.0148 0.05 0.038 0.025
Pachappa fine sandy clay 3503 0.034 0.03 0.0346 0.041 0.036
Sable de riviere 4118 — 0.00118 0.00118 0.042 0.0074

ing for soils for which the difference between the maximum and
the minimum values of suction was extremely large. For instance,
the maximum and minimum values of the matric potential for the
Pachappa loam soil were 3%¥9.0* cm and 10 cm of water. If the
suction values were normalized by merely dividing by the maxi-
mum value for such data, most values in the lower suction range
clustered close to zero and this resulted in poor training. To over-
come this problem, the suction values for such soils were first log
transformed and then standardized to fall within the range of 0—1.
All available pairs ofo —h values were used to train the ANNs.

These days, a number of software packages are available, com-

mercially as well as in public domain, that can be used to train an
ANN.

Results and Discussion

The values of the norm index obtained by Assouline etl198

and in this study are given in Table 2. Also included in Table 2 are
norm values obtained by applying the van Genuch{&880
model assuming both independentand n values, or the often
assumed relationshim=1—1/n (van Genuchten and Nielsen
1985. Notice that the NI obtained using ANNSs is significantly
smaller (except for one sojlthan those obtained by Assouline
et al. (1998, with the results of van Genuchten being somewhat
better than those by Assouline et £.998, especially wherm

and n are kept independent. These results are consistent with
many other studies in which ANNs have been found to model the
behavior of real-world data better than the empirical/regression
models.

Fig. 3 graphs observed values of soil suction versus the mois-
ture content for Rideau clay loam. Also shown in the figure are
plots of the WRC curve obtained by using E8) (the parameters
as given by Assouline et al. 1998 were usadd the ANN-based
curve. Note that the input to the ANN model was only the suction

head. It can be seen that the ANN curve is closer to the measured

data points than the curve obtained using 8). The results of
Table 2 also show that the performance of ANN is much better
than the model of Assouline et #lL998 and is comparable to the
model of van Genuchtefl980 and Brooks and Corey1964).
Note that application of ANN requires that the data over the entire
water retention range is available. Also, the Assouline et al.
(1998 model cannot be extrapolated to lower pressure heads
(higher suctionswithout risking physically unrealistic retention
values.

Modeling of Hysteresis

The second part of this study is concerned with describing the
hysteretic behavior of soils using ANNs. This problem is more

complex than modeling WRC because the shape of drying and
wetting limbs of the curve is not the same. Additionally, an ANN
has to be provided with enough data so that it can unambiguously
decide which curve to follow.

As before, the soil moisture data were normalized using Eq.
(6), while the suction data were normalized by dividing by the
maximum value. The root mean square er(BMSE) for the
training/testing was calculated as

1 n
RMSE= \/ = 2, (05— 0m)?
i=1

where n=number of data points, anél,; and 6,,;=actual and
modeled values of the moisture content, respectively.

Initially, the ANN model was provided with two input values
(h; andh;_4, i.e., the observed value of suction at the current and
previous points by reasoning that these would provide enough
information for the model to determine whi¢main wetting or
drying) branch to follow, and then correctly estimate the soil
moisture. Note that in this case, the ANN training set consisted of
all the available pairs dfi—6 values for drying as well as wetting
curves. The RMSE was quite small for the Rideau clay loam but
was quite large for the Caribou silt loam. This experiment was
followed up by including one more input in the ANN fox_,.

This additional input should provide the ANN with the definite
information whether the data is on the wetting limb or on the
drying limb. As expected, inclusion of this additional input re-
sulted in a large improvement in training results as reflected by a
substantial reduction in the RMSE for both soils. The reduction in

(8)

100.0
¢ Measured

Empirical method
- = = ANN

.
T

10.0

Matric potential (kPa)

0.1
0.2500

0.3500 0.4000
Soil moisture content

Fig. 3. Measured water retention data and curves obtained using

artificial neural networks and empirical model of Assouline et al.

(1998

0.3000 0.4500
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450.0 N I i T Table 3. Results of Artificial Neural Network Modeling: Root Mean
400.0 1 ] Square Erro(RMSE) for Soils for Different Input Vectors
—_ 350.0 A% T ‘---A-nAPNn'odel
g 300.0 Lt ! | —e—Ovserved RMSE
& 2500 Rideau clay loam  Caribou silt loam
13 200.0 Inputs (No. 3102 (No. 3301
‘» 150.0 - - -
< 1000 \ I. Main drying and wetting data
Mr-9de- 2.
5g-g tod iy hi, hj_, 0.006073 0.015291
027 029 031 033 035 037 039 041 043 his hig, hip 0.004783 0.004679
Theta hi, hiz1, hini 0.008849 0.002032
Fig. 4. Observed and artificial neural network modeled water hi, hi_1, hi_5, hiny 0.002466 0.002431
retention curve for Rideau clay loam Il. Main drying, wetting, and dry/wet scan data
hi\ hi_1, hin 0.013179 0.009246
RMSE was much larger for Caribou silt loam as compared to h;, h;_1, hj_5, hi 0.007314 0.003045

Rideau clay loam, with both soils now showing the same order of
magnitude for RMSE.
Many other input combinations were tried. Another useful way h;, hi_1, hing 0.008189 0.02348
to guide the ANN to the correct branch was found by including h;, hi_1, hi_5, hiy 0.006781 0.00608
hi,: as input. This is the suction at the initial point of the-6
curve. This will be the maximum suction value for the wetting
curve and the minimum value for the drying curve. We found that hi, hi—1, hini 0.004979 0.04636
including this information also led to a large reduction in the h;, hj_;, hj_5, hiy 0.008485 0.02063
RMSE value. The observed and ANN-modeled curves for the two
soils for this combination of inputs are given in Figs. 4 and 5.
These figures show a good match between the observed and comef the soil and when seen with this perspective, coupled with data
puted curves, except near saturation. Thus, a properly trainederrors, etc., the results appear to be very good and useful.
ANN which has four neurons in the input layer representing Limited numerical experiments to determine the impact of
hi_;, hi_,, andh;,; can satisfactorily reproduce the hysteretic missing data and errors in data on ANN training were also made.
behavior of a soil. The RMSE values for the various input com- In the first case, three or four successive data points were deleted
binations for the two soils are given in Table 3, Part I. from a segment of WRC and the ANN was trained. We found that
An attempt was also made to model the behavior of the scan-for our data sets RMSE changed by less than 0.5%. Introduction
ning curves using ANN. In this case, the training set consisted of of 10% error in some data points of the training set also led to
all the available pairs dfi—0 values for main drying and wetting  about the same change in RMSE. As the ANN tries to generalize
curves and data for one dry scan and one wet scan curve. Thehe data behavior, it assumes the behavior shown by the erroneous
same combination of inputs, as earlier, was tried using the data ofdata set to be the true behavior of WRC and therefore, RMSE
main drying and wetting as well as one drying scanning curve and does not change significantly.
one wet scanning curve. The results are given in Part Il of Table It may be added that when the values of norm index and
3. These results also show that the training RMSE was quite smallRMSE are small, these indices may not be adequate to differen-
when the inputs weré;, h;_4, h;_,, andhj,; . tiate among the models and additional criteria, such as model
Since data for more than one dry and wet scan curves for eachreliability need to be used.
soil were available, the goodness of the ANN was tested using the
data of a dry scan and wet scan that was not used in the training.
The results are given in Parts Ill and 1V of Table 3 and Figs. 6 and Conclusions
7. Evidently, the match between observed and computed dry and
wet scan curves was good for Soil 3101 while it was not that good The WRC of a soil was modeled by an ANN using the measured
for the wet scan curve of Soil 3301. However, the shape of a scandata of soil moisture content and suction. The ANN used in this
curve is significantly influenced by the drying and wetting history

Ill. Test—dry scan curve

IV. Test—wet scan curve

500 300.0 T I
450.
\ ---A--- ANNdry scan L
400.0 250.0 A —e— Observed dry scan
E 350.0 ’---A---Amrmdel — X‘\) ...m-- ANNwetscan N
s 300.0 \\ ~———Observed £ ’ —>— Observed wet scan
< 250.0 s
g 2000 * g 150.0 -‘A
. oA A
3 500 W -‘*‘*M £ 1000 -
& 1000 74‘%\‘_ -*M \%“
50.0 “dgea 50.0 S
0.0 ‘ ‘ w Mbw__
031 033 035 037 039 041 043 045 00 -
0.27 0.32 0.37 0.42
Theta Theta
Fig. 5. Observed and artificial neural network modeled water Fig. 6. Observed and artificial neural network modeled scan curves
retention curve for Caribou silt loam for Rideau clay loam

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2004 / 419



350.0 !
300.0 \ -+ &--- ANNdry scan
‘\A ——e— Observed dry scan
250.0 3 ---m--- ANNwet scan i
:E: 200.0 \A(‘ : —— Observed wet scan
s i
B 1500 Ay
& M
100.0 5
\i&‘fif ‘ LN
50.0 P
5z BN
00 B Ty
0.32 0.34 0.36 0.38 0.40 0.42 044

Theta

Fig. 7. Observed and artificial neural network modeled scan curves

for Caribou silt loam

study was a three-layer feed-forward architecture. It was found

Dawson, C. W., and Wilby, R(1998. “An artificial neural network ap-
proach to rainfall-runoff modelling.Hydrol. Sci. J.,43(1), 47—66.
Efron, B., and Tibshirani, R. J1993. “An introduction to the boot-
strap.” Monographs on statistics and applied probability, 3Zhap-

man & Hall, London.

Everett, D. H.(1955. “A general approach to hysteresis 4—An alterna-
tive formulation of the domain model.Trans. Faraday Soc.51,
1551-1557.

Govindaraju, R. S., and Rao, A. RR000. Artificial neural networks in
hydrology Kluwer Academic, Dordrecht, The Netherlands.

Hillel, D. (1971). Soil and water: Physical principles and process&sa-
demic, New York.

Hsu, K.-L., Gupta, H. V., and Sorooshian, @995. “Artificial neural
network modeling of the rainfall-runoff processffater Resour. Res.,
31(10), 2517-2530.

Jain, S. K., Das, A., and Srivastava, D. {999. “Application of ANN

for reservoir inflow prediction and operationJ? Water Resour. Plan.
Manage.,1255), 263—-271.

that the ANN with only suction head data as input was able to Kastanek, E. J., and Nielsen, D. R00J). “Description of soil water

describe WRC better than did the empirical model of Assouline
et al. (1998 and the performance was comparable to the van
Genuchten1980 model. More importantly an ANN, whose in-
puts were the current and previous values of suction heads, was |
found to reproduce the hysteretic behavior and scan curves in a
satisfactory manner. This application of ANN as a fitting tool

should be useful in soil-moisture modeling.

Notation

The following symbols are used in this paper:
h soil suction(or matric or pressure hegd

h,_ = soil suction corresponding to very low water content;
0 = volumetric water content of soil;

6, = very low water content of soil at which hydraulic

conductivity becomes negligible;
0, = residual(volumetrig water content of soil; and
0, = saturatedvolumetrig water content of soil.
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