

Lunar GIS

USGS, Astrogeology

Funded by PG&G Cartography & Constellation via JPL and in cooperation with Brown University (M3 Team), Arizona State University, NASA Ames, NASA Goddard, University of Nottingham (T. Cook). Special thanks to Peter Isaacson from Brown University

GOALS:

- Missions must have a cartographic planning component, and a **consistent** cartographic coordinate system should be used for data products.
- The current effort to create a Lunar GIS needs to be continued and greatly expanded in the future, and coordinated among **multiple facilities**.
- Planetary data should be systematically processed in a coordinated way and made available in an easily accessed form (e.g., a GIS).
- Expand and/or connect planetary GIS-ready (OGC compliant) servers to broaden and coordinate data access.
- Develop toolkits and decision support systems to support further exploration and a human return to the Moon.

Lunar GIS Tools Overview (only a couple examples shown)

ArcGIS Desktop by ESRI (ArcMap, ArcScene, ArcGlobe)

Global Mapper, QGIS, UDIG, OpenEV (part of FWTools, GDAL)

<u>GIS Web Services</u> – external data protocols and providers

GIS Web Services

GIS Web Services

JPL OnMoon WMS (OGC Compliant GIS Server), http://webgis.wr.usgs.gov/ogc

OGC Planetary Coordinate Reference System Planetary Namespace based on IAU2000 report and using NAIF codes for

 \bullet base value.

GEOGCS["GCS_Moon_2000",DATUM["D_Moon_2000",SPHEROID["Moon_2000_IAU_IAG",1737400.0,0.0]], PRIMEM["Reference_Meridian",0.0],UNIT["Degree",0.0174532925199433]]

Mars GIS-IAU	GEOIDS
49900	Mars2000, areocentric latitudes, positive East longitudes
49901	Mars2000, areographic latitudes, positive West longitudes
49902 - 49909	Available
	PROJECTIONS - Even codes=areocentric, Odd codes=aerographic NOT all shown)
49910	Equirectangular (Simple Cyl), clon=0°, spherical equation, areocentric
49911	Equirectangular (Simple Cyl), clon=0°, spherical equation, aerographic
49912	Equirectangular (Simple Cyl), clon=180°, spherical equation, areocentric
49914	Sinusoidal, clon = 0°, spherical equation, areocentric
49916	Sinusoidal, clon = 180°, spherical equation, areocentric
49918	Polar Stereographic, clat = 90°, clon = 0°, spherical eq, polar radius, areocentric
49920	Polar Stereographic, clat = -90°, clon = 0°, spherical eq, polar radius, areocentric
49922 ~ 49959	Available (1:2M Mars series handled by AUTO below)
	AUTO PROJECTIONS (parameter order)
49960	Auto Sinusoidal, spherical equation, areocentric, (clon)
49961	Auto Sinusoidal, spherical equation, aerographic, (clon)
40062	Auto (Polar) Stereographic spherical equation areocentric (clon clat scale)
	49900 49901 49901 49902 - 49909 49910 49910 49911 49912 49916 49918 49920 49920 49960 49961

Lunar GIS Data Set Overview (subset of layers shown) – For more information please visit: http://webgis.wr.usgs.gov/

- All layers will be available for download and via on-line WMS GIS servers
- ULCN2005: Unified Lunar Control Network 2005(ULCN2005) solution

Derived ULCN2005 DEM

Clementine UVVIS (5 bands, 100m/pixel) and NIR (6 bands, 500m/pixel – 100m/p in progress)

 ULCN 2005 controlled via a 6 polynomial warp. Offset vectors shown below

Global Lunar Orbiter mosaic at 60 m/pixel (ULCN 2005 Controlled, in progress)

Global 5M Geologic Maps

IAU Nomenclature, Named Craters, Landing Sites (backdrop Clementine and ULCN2005 DEM)

• Lunar Prospector global maps of derived elemental abundances (Thorium, Hydrogen, Iron)

• Clementine derived parameter maps (e.g., FeO, TiO2, optical maturity)

• Apollo historic 'Lunar Consortium' data (e.g., Al, Si, Fe, Ti)

Apollo topographic maps produced by USGS (Hadley Rile, Littrow, Alphonsus crater)

Apollo Metric and Pan Camera Coverage maps (Scans by LPI and vector footprints)

Not yet GIS available

- Galileo SSI bands and color-ratio mosaics
- Photogrammetrically-derived topography of a Shackleton crater analog
- Cook, T., et al. and ULCN2005 merged DEM