United States Environmental Protection Agency Office of Transportation and Air Quality National Vehicle and Fuel Emissions Laboratory 2565 Plymouth Road

Ann Arbor, MI 48105

<u>Determination of Benzene, Toluene and</u> <u>Total Aromatics in Finished Gasoline by Gas</u> <u>Chromatography / Mass Spectrometry Method</u>

This method is written for the Environmental Protection Agency, National Vehicle and Fuel Emissions Laboratory (NVFEL) internal use. The use of specific brand names by NVFEL in this method are for reference only and are not an endorsement of those products. This document may be used for guidance by other laboratories.

NVFEL Reference Number

130

Implementation Approval

Original Procedure Authorized by EPCN # 325 on 06-11-2003

Revision Description

Table of Contents

1.	Scope
2.	Summary of Method
3.	Significance
4.	Applicable Documents
5.	Definitions
6.	Interferences and/or Limitations
7.	Safety4
8.	Apparatus
9.	Reagents and Materials4
10.	Sampling
11.	Calibration5
12	Analytical Procedure
13.	Calculations and Reporting
14.	Performance Criteria

1. Scope

This procedure measures the concentrations of benzene, toluene and other specified aromatic compounds in gasoline.

2. Summary of Method

Gasoline samples are infused with an internal standard gravimetrically. They are then introduced into a gas chromatograph with a mass selective detector that separates their components to identify and quantify them.

3. Significance

The identities and concentrations of aromatic compounds in a sample of gasoline can be determined.

4. Applicable Documents

- 4.1 ASTM Standard D5769-98
- 4.2 40 CFR 80.46 (f)(1)
 Agilent ChemStation for GC/MSD 6890/5973 Network
 NVFEL 120, Chain of Custody Procedure for Fuel analysis Requested by OECA

5. Definitions

5.1 Internal Standard (ISTD) :

Deuterated analogs of benzene, toluene, ethylbenzene and naphthalene are used as internal standards because of their similar chromatographic characteristics and the ability of the mass selective detector to resolve them.

5.2 Control Fluid:

Test fuel drawn from the National Vehicle Fuel Emissions Laboratory underground storage tank is used as a control fluid. The large and stable supply of fuel is used a reference for the consistency of calibration curves used by the instrument.

5.3 Quality Control Standard (QCSTD) :

A mixture of alkanes and aromatics prepared per ASTM D5769. This mixture is analyzed prior to samples to ensure the performance of the instrument. This analysis must meet the criteria detailed in ASTM D5769.

6. Interferences and/or Limitations

The concentrations of results should lie between the concentrations of the standards. If the concentrations of the results lie outside the range of the standards, then the range of the standards needs to be extended or the sample should be diluted to fall into that range.

7. Safety

Gasoline and its components are extremely volatile and flammable. They are carcinogenic, mutagenic and toxic. Persons performing this procedure must be familiar with the chemicals and hazards they represent; read the Material Safety Data Sheets available for them.

All handling should be performed under an approved fume hood.

8. Apparatus

8.1 Gas chromatograph with a mass selective detector.

Equipment used: Agilent 6890Network with 5973MSD configured as in appendix A (many different configurations are equally acceptable) and Chemstation Analytical software on a computer.

8.2 Analytical Balance: Mettler AG 204

9. Reagents and Materials

Use the highest purity compounds available for calibrations. Impurities must be accounted for when standards are made and used.

10. Sampling

Sampling is done by agents in the field.

11. Calibration

Determine if an instrument calibration is required. The following are criteria for calibration:

- 11.1 If the instrument has not previously been calibrated for this analysis.
- 11.2 If the current calibration is lost or damaged.
- 11.3 If the instrument has been reconfigured or repaired.
- 11.4 If the standards or control fluids are outside the acceptance criteria and it is determined that the instrument calibration is at fault.
- 11.5 If a calibration is needed, calibration curves are generated by analyzing the compounds of interest over five levels of concentrations covering the range of interest. Each compound is measured discretely by weight and its concentration in each level is calculated.

A typical calibration set is shown in appendix B.

12. Analytical Procedure

- 12.1 Tare a sealable 5ml bottle. Add approximately 4ml of sample to the bottle and record the weight to the nearest 0.1mg. Add 0.5ml of ISTD to the bottle and record the weight to the nearest 0.1mg. Repeat for all samples, control fluids and QC check standards.
- 12.2 Dispense an appropriate amount of analyte into a uniquely marked autosampler compatible vial for introduction into the instrument.
- 12.3 Arrange items to be analyzed on the autosampler tray in accordance to the sequence to be followed by the instrument.
- 12.4 Build the sequence (Appendix C) to run a QC check standard first, then a control fluid, then the samples followed by another control fluid.
- 12.5 The Chemstation sequence file contains the identity of the analyte, the position of the sample vial, the method used to analyze it, the weight of the sample, the weight of the ISTD and the specific gravity of the sample being quantified.
- 12.6 Running the sequence causes the instrument to inject a portion of the analyte into the gas chromatograph. The gas chromatograph separates the various compounds, which are identified in turn by the mass selective detector.

13. Calculations and Reporting

The chemstation calculates the quantity of each compound by measuring the area response against that of the internal standard.

14 Performance Criteria

- 14.1 The linearity of the calibration curves must be 0.995 or higher.
- 14.2 The Quality Control sample values must be within +/- 5% of the theoretical values except for 1,2,4,5-tetramethylbenzene and naphthalene, which must be within +/- 10%.
- 14.3 The Control Fluid must be within +/- 3 sigma of the mean value of at least ten previous analyses.
- 14.4 The balance should measure check weights within 0.1% of theoretical value.

Determination of Benzene, Toluene and Total Aromatics in Finished Gasoline by Gas Chromatography / Mass Spectrometry Method

Appendix A

TOPLEVEL PARAMETERS Method Information For: C:\MSDCHEM\1\METHODS\A3R0506.M Method Sections To Run: () Save Copy of Method With Data () Pre-Run Cmd/Macro = (X) Data Acquisition (X) Data Analysis () Post-Run Cmd/Macro = Method Comments: RG HP1 20m x 0.1mm x 0.4um column, split mode 1400/1, column flow 0.5ml END OF TOPLEVEL PARAMETERS INSTRUMENT CONTROL PARAMETERS _____ Sample Inlet: GC Injection Source: GC ALS Mass Spectrometer: Enabled HP6890 GC METHOD _____ OVEN Initial temp: 50 'C (On) Initial time: 0.10 min Maximum temp: 270 'C Equilibration time: 0.50 min Ramps: # Rate Final temp Final time 1 10.00 200 0.00 2 0.0(Off) Post temp: 0 'C Post time: 0.00 min Run time: 15.10 min FRONT INLET (UNKNOWN) BACK INLET () Mode: Split Initial temp: 250 'C (On) Pressure: 8.84 psi (On) Split ratio: 1.4e+003:1 Split flow: 619.8 mL/min Total flow: 623.3 mL/min Gas saver: On Saver flow: 20.0 mL/min Saver time: 2.00 min Method: A3R0506.M Wed May 14 12:35:37 2003 Fage:1

Page 7 of 13

Determination of Benzene, Toluene and Total Aromatics in Finished Gasoline by Gas Chromatography / Mass Spectrometry Method

Appendix A Continued

Gas type: Helium COLUMN 2 COLUMN 1 (not installed) Capillary Column Model Number: J&W 121-1023 DB1 Max temperature: 325 'C Nominal length: 20.0 m Nominal diameter: 180.00 um Nominal film thickness: 0.40 um Mode: constant flow Initial flow: 0.4 mL/min Nominal init pressure: 8.85 psi Average velocity: 30 cm/sec Inlet: Front Inlet Outlet: MSD Outlet pressure: vacuum BACK DETECTOR (NO DET) FRONT DETECTOR (NO DET) SIGNAL 2 SIGNAL 1 Data rate: 20 Hz Data rate: 20 Hz Type: test plot Type: test plot Save Data: Off Zero: 0.0 (Off) Save Data: Off Zero: 0.0 (Off) Range: 0 Range: 0 Fast Peaks: Off Fast Peaks: Off Attenuation: 0 Attenuation: 0 COLUMN COMP 1 COLUMN COMP 2 (No Detectors Installed) (No Detectors Installed) THERMAL AUX 2 Use: MSD Transfer Line Heater Description: MSD Transfer Line Initial temp: 280 'C (On) Initial time: 0.00 min # Rate Final temp Final time 1 0.0(Off) POST RUN Post Time: 0.00 min TIME TABLE Parameter & Setpoint Specifier Time 7673 Injector Front Injector: Sample Washes 2 Sample Pumps 2 0.1 microliters 0.5 microliters Injection Volume Syringe Size PostInj Solvent A Washes 2 PostInj Solvent B Washes 2 Viscosity Delay 2 seconds Viscosity Delay2 secondsPlunger SpeedFastPreInjection Dwell0.00 minutes

Method: A3R0506.M

Wed May 14 12:35:37 2003

Page:2

Determination of Benzene, Toluene and Total Aromatics in Finished Gasoline by Gas Chromatography / Mass Spectrometry Method

Appendix A Continued

PostInjection Dwe	ll 0.00 minutes
Back Injector:	
No parameters specified	MS ACQUISITION PARAMETERS
General Information	
Tune File	· atune u
Acquistion Mode	: Scan
MQ Tufarmahian	
Solvent Delay	: 1.50 min
EM Absolute	: False
EM Offset Resulting EM Voltage	: 0 : 1423.5
[Scan Parameters]	
Low Mass	: 50.0
High Mass Threshold	: 170.0 : 25
Sample #	: 3 A/D Samples 8
[MSZones]	
MS Quad MS Source	: 150 C maximum 200 C : 230 C maximum 250 C
	END OF MC ACOULCETTON DADAMETERS
	END OF MS ACCOUSTION FRAMETERS
	END OF INSTRUMENT CONTROL PARAMETERS
	DATA ANALYSIS PARAMETERS
Method Name: C:\MSDCHEM\1	\METHODS\A3R0506.M
Percent Report Settings	
Sort By: Retention Time	
Method: A3R0506.M	Wed May 14 12:35:37 2003 Page:3

Determination of Benzene, Toluene and Total Aromatics in Finished Gasoline by Gas Chromatography / Mass Spectrometry Method

Appendix A Continued

Output Destination Screen: No Printer: Yes File: No Integration Events: Meth Default Generate Report During Run Method: No Signal Correlation Window: 0.020 Qualitative Report Settings Peak Location of Unknown: Apex Library to Search Minimum Quality C:\Database\Nist98.1 70 C:\Database\Wiley275.L 0 Integration Events: libsrch.e Report Type: Summary Output Destination Screen: No Printer: Yes File: No Generate Report During Run Method: No Quantitative Report Settings Report Type: Summary Output Destination Screen: Yes Printer: Yes File: No Generate Report During Run Method: Yes accustdcal Calibration Last Updated: Tue May 06 17:27:33 2003 Reference Window: 5.00 Percent Non-Reference Window: 10.00 Percent Correlation Window: 0.20 minutes Default Multiplier: 1.00 Default Sample Concentration: 0.00 Compound Information Method: A3R0506.M Wed May 14 12:35:37 2003 Page 10 of 13

Page:4

Appendix B

				0.546815						0.555435	33.3723	0.5824		2037-26-5	toluene-d8
				0.084595						0.085928	5.1612	0.0901		1146-65-2	napthalene-d8
				0.153228						0.155644	9.3495	0.1632	-	5837-05-2	ethylbenzene-d10
				0.154355						0.156788	9.4223	0.1644	-	1076-43-3	benzene-d6
											mass	6	.0		
				0.9389						0.9537					
	73.2727			mass istd		77.7457				mass istd					
	52.333					36.0262					0			540-84-1	2,2,4-trimethylpentar
	-120.4					-140.899					-181.02				
28.57776	20.9397	23.75				41.7195	47.5			100	81.9371	95			
0.659181	0.483	0.5	24	0.105882	1.318658	1.0252	_	24	0.239044	2.783843	2.281	2	24	91-57-6	2-methylnapthalene
0.684566	0.5016	0.5	23	0.105231	1.310555	1.0189	-	23	0.213557	2.48703	2.0378	N	23	90-12-0	1-methylnapthalene
0.698214	0.5116	0.5	22	0.110529	1.376539	1.0702	-	22	0.223827	2.606634	2.1358	2	22	700-12-9	pentamethylbenzene
0.665323	0.4875	0.5	21	0.107245	1.335637	1.0384	-1	21	0.203517	2.370111	1.942	Ν	21	91-20-3	napthalene
0.600087	0.4397	0.5	20	0.091175	1.135497	0.8828	_	20	0.182579	2.126265	1.7422	N	20	527-53-7	1,2,3,5-tetramethylbe
0.827593	0.6064	0.5	19	0.114805	1.42979	1.1116	_	19	0.218168	2.540729	2.0818	2	19	95-93-2	1,2,4,5-tetramethylbe
0.906067	0.6639	0.75	18	0.136824	1.704017	1.3248	1.5	18	0.272862	3.177681	2.6037	ω	18	135-03-1	1,2-diethylbenzene
0.897606	0.6577	0.75	17	0.132073	1.64485	1.2788	1.5	17	0.266008	3.097864	2.5383	ω	17	104-51-8	n-butylbenzene
0.873722	0.6402	0.75	16	0.131733	1.640605	1.2755	1.5	16	0.26276	3.06003	2.5073	ω	16	105-05-5	1,4-diethylbenzene
0.976762	0.7157	0.75	15	0.149032	1.856051	1.443	1.5	15	0.297919	3.469491	2.8428	З	15	496-11-7	indan
0.907705	0.6651	0.75	14	0.137186	1.708519	1.3283	1.5	14	0.279255	3.252129	2.6647	ы	14	526-73-8	1,2,3-trimethylbenzei
1.478586	1.0834	1.25	13	0.224901	2.800927	2.1776	2.5	13	0.270986	3.155835	2.5858	თ	13	95-63-6	1,2,4-trimethylbenzei
0.906613	0.6643	0.75	12	0.13606	1.694499	1.3174	1.5	12	0.275136	3.204165	2.6254	ω	12	611-14-3	2-ethyltoluene
0.876588	0.6423	0.75	1	0.131547	1.63829	1.2737	1.5	1	0.269152	3.134478	2.5683	ы	11	108-67-8	1,3,5-trimethylbenzei
0.878772	0.6439	0.75	10	0.130163	1.621054	1.2603	1.5	10	0.270253	3.147292	2.5788	ы	10	622-96-8	4-ethyltoluene
0.878772	0.6439	0.75	9	0.131516	1.637904	1.2734	1.5	9	0.268723	3.129474	2.5642	ω	9	620-14-4	3-ethyltoluene
0.876588	0.6423	0.75	œ	0.131288	1.635074	1.2712	1.5	8	0.267769	3.118368	2.5551	ω	8	103-65-1	propylbenzene
0.874541	0.6408	0.75	7	0.130287	1.622598	1.2615	1.5	7	0.265872	3.096278	2.537	ω	7	98-82-8	isoprpylbenzene
1.781973	1.3057	1.5	თ	0.266088	3.313881	2.5764	ω	თ	0.541836	6.310084	5.1703	6	ი	95-47-6	o-xylene
1.744033	1.2779	1.5	сī	0.260759	3.247511	2.5248	З	თ	0.52968	6.168512	5.0543	თ	თ	106-42-3	p-xylene
1.747991	1.2808	1.5	4	0.261875	3.261402	2.5356	ယ	4	0.528003	6.148985	5.0383	6	4	108-38-3	m-xylene
1.462891	1.0719	1.25	ω	0.220573	2.747033	2.1357	2.5	ω	0.453932	5.286372	4.3315	ნ	ω	100-41-4	ethylbenzene
5.500139	4.0301	4.75	N	0.829208	10.327	8.0288	9.5	N	1.717678	20.00364	16.3904	19	N	108-88-3	toluene
0.873449	0.64	0.75	-	0.132776	1.653596	1.2856	1.5	_	0.268314	3.124714	2.5603	ω	-	71-43-2	benzene
	99.4802					99.1873					99.0871				BOTTLE
mass%	рш	vol		mass std	mass%	рm	vol		mass std	mass%	mg	<u>vo</u>			
ω	ω	ω			N	2	N			-	-	-			

Appendix B Continued

		4	4	4					ອ ເກ	- 57 57	ол (Л	ол (Л	5 5 total
ווומסס פנט		2	Ч	11103370	ווומסס סנט		¥C.	- Hereit	111433 /0	IIIdoo otd			u g
0.06992	-	0.375	0.323	0.464113	0.037813	_	0.1875	0.1605	0.230861	0.019225	_	5.8125	4.969
0.440288	N	0.375	0.3202	0.46009	0.037485	N	1.1875	1.0099	1.452625	0.12097	N	34.8125	29.779
0.117105	ω	0.625	0.5276	0.758099	0.061764	ω	0.3125	0.2655	0.381891	0.031803	ω	9.6875	8.332
0.139927	4	0.75	0.6278	0.902075	0.073494	4	0.375	0.3192	0.459133	0.038235	4	11.625	9.801
0.13961	თ	0.75	0.6285	0.903081	0.073576	თ	0.375	0.3176	0.456831	0.038043	5	11.625	9.803
0.142647	ი	0.75	0.6461	0.92837	0.075637	ი	0.375	0.3268	0.470064	0.039145	6	11.625	10.025
0.070007	7	0.375	0.3203	0.460234	0.037496	7	0.1875	0.16	0.230142	0.019165	7	5.8125	4.919
0.070171	ω	0.375	0.3184	0.457503	0.037274	8	0.1875	0.1591	0.228847	0.019058	8	5.8125	4.946
0.070346	9	0.375	0.3231	0.464257	0.037824	9	0.1875	0.1794	0.258046	0.021489	9	5.8125	4.98
0.070346	10	0.375	0.3285	0.472016	0.038456	10	0.1875	0.161	0.23158	0.019285	10	5.8125	4.972
0.070171	11	0.375	0.3202	0.46009	0.037485	11	0.1875	0.1598	0.229854	0.019141	11	5.8125	4.964
0.072575	12	0.375	0.3406	0.489402	0.039873	12	0.1875	0.1632	0.234744	0.019549	12	5.8125	5.110
0.118361	ໄ	0.625	0.5303	0.761979	0.06208	13	0.3125	0.2679	0.385343	0.03209	13	9.6875	6.64
0.072662	14	0.375	0.3317	0.476614	0.038831	14	0.1875	0.165	0.237334	0.019764	14	5.8125	5.154
0.07819	15	0.375	0.3572	0.513255	0.041816	15	0.1875	0.1841	0.264807	0.022052	15	5.8125	5.542
0.069942	16	0.375	0.3202	0.46009	0.037485	16	0.1875	0.1589	0.228559	0.019034	16	5.8125	4.902
0.071854	17	0.375	0.3191	0.458509	0.037356	17	0.1875	0.1594	0.229279	0.019094	17	5.8125	4.953
0.072531	18	0.375	0.3335	0.4792	0.039042	18	0.1875	0.1622	0.233306	0.019429	18	5.8125	5.088
0.066249	19	0.25	0.2332	0.335081	0.0273	19	0.125	0.1906	0.274156	0.022831	19	3.875	4.223
0.048037	20	0.25	0.2189	0.314534	0.025626	20	0.125	0.1096	0.157647	0.013128	20	3.875	3.393
0.053259	21	0.25	0.3571	0.513111	0.041805	21	0.125	0.1395	0.200655	0.01671	21	3.875	3.964
0.055892	22	0.25	0.2808	0.403477	0.032872	22	0.125	0.1296	0.186415	0.015524	22	3.875	4.12
0.0548	23	0.25	0.2505	0.359939	0.029325	23	0.125	0.1069	0.153763	0.012805	23	3.875	3.915
0.052768	24	0.25	0.4054	0.582512	0.047459	24	0.125	0.1388	0.199648	0.016626	24	3.875	4.333
		9.875	8.9622	12.87763			5.9375	5.2945	7.615531				158.85
			-108.44					-104.469					
			60.6329					34.4551					
mass istd			69.5951		mass istd			29.7728	dodecane			mass istd	
0.9534					0.945			69.5224				0.9565	
0.156739					0.155358							0.157249	
0.155595					0.154224							0.156101	
0.085901					0.085145							0.086181	
0.55526					0.550368							0.557066	

Appendix C

Sample Log	Table fo	r A3R0512	.S (on line 1	of 19)		
Lin <u>e</u> Type	Vial	Data File	Method	Sample Nam	e	
1) Sam	ple	1	A3R0506	QC		_
2) Sam	ple	2	A3R0506	12182		
3) Sam	ple	3	A3R0506	12183		
4) Sam	ple	4	A3R0506	12184		
5) Sam	ple	5 c	A3R0506	12185		
6) Sam	pie	ь 7	A3RU5U6	12185		
/) Sam	pie	·	ASHUSU6	12107		<u> </u>
Туре	Vial	Data File	Method	Sample N	ame	
Sample	T		 A3R0506			
h fin all an an				upported Data	ada	
	amplea	Uri	Ē	xpected <u>b</u> ait		
[conelation's	ampies					
Sample Amt	Multiplie	r				
0	1					
Gas Smpl W	t	Gas Density	, Ga	as ISTD <u>W</u> t		
2.9208		0.738	0.	4707		
			I			
<u>R</u> epeat	Cu <u>t</u>	<u>C</u> opy <u>P</u> a	ste Re <u>a</u> d	ОК	Cancel <u>H</u> elp	More≥>
Use the arrow	keys to se	lect entry				