Phoenix Landing Site Topography from MOC

Mars Lander 2007

Randolph Kirk, USGS

3rd Phoenix Landing Site Workshop 29 November 2005

Objectives

Contribute to assessment of safety of candidate PHX sites for landing

- Supported by Mars Critical Data Products Initiative (CRUDPIE)
- Builds on similar work done for MER (Kirk et al., 2003. JGR 108(E12), 8088, doi:10.1029/2003JE002131)
 - Assess "roughness" at highest resolution (MOLA, THEMIS, HRSC provide information on longer baselines)
 - Use MOC-NA images (3-6 m/pixel typ.)
 - Make DTMs by stereo and photoclinometry
 - Report slope statistics, supply DTMs for simulations
 - Start by sampling all candidate areas, work to sample all terrain types in areas...will never achieve 100% area coverage

Differences

- Detailed safety criteria will be different for tripod lander
- Initial image and stereo coverage is even sparser (but will grow)
- HRSC-SRC may become important (paired with MOC-NA)
- HiRISE will be important when available
- Less geomorphologic diversity?
- More problems with image data?

PHX LS Workshop 11/29/05 Kirk—PHX LS Roughness from

MOC

Topographic Scales Affecting Safety and Relevant Datasets

300 m baselines—MOLA point-to-point
150 m baselines—MOLA pulsewidth
100 m baselines—THEMIS photoclin., HRSC stereo
3-20 m baselines (and extrapolation to slightly shorter)—MOC and
MOC+SRC stereo and photoclinometry
3 m baselines (rocks)—requires

<3 m baselines (rocks)—requires modeling...or HiRISE

3

PHX LS Workshop 11/29/05

•

•

•

Photoclinometry & Stereo

Methodologies Compared

Photoclinometry

- Single image
- Horizontal res 1 pixel
- Measure, ∫ slopes
 - Neighbor hts to << 1 pix
 - Errors grow w/baseline
 - Radiometric
 - Artifacts if albedo varies
 - Scale error if haze not calib. to stereo/MOLA
 - No absolute heights
- CPU & labor intensive

Stereo.

- Two convergent images
- Horizontal res ≥3 pixels
- Vert res 0.2 pix / (b/h)
 - ~1 pix for MOC
 - Independent of baseline
- Geometric
 - Ignores albedo
 - Ignores atmosphere
 - Absolute heights require control (e.g. to MOLA)
- CPU & labor intensive

Effect of Haze and Albedo

Sun is from upper left in all examples

Correct Haze and Albedo

Too much Haze subtracted

Albedo overestimated

Albedo underestimated

PHX LS Workshop 11/29/05

Evolving Strategies

Workshops 1 and 2

- Map available MOC stereopairs (and request others)
 - Slopes at ≥10m baselines (does not resolve basketball texture)
- Try to calibrate PC against stereo DTMs
 - Largely thwarted by lack of clear topo at ST scales, variable albedo
 - Success at one site (A1) gives consistent slopes down to 3m

Workshop 3

- Identify single MOC images overlapping "prominent" (typ <100m high) relief features in MOLA
- Perform PC with calibration against MOLA

Study Locations

PHX LS Workshop 11/29/05

MOLA-Calibrated PC Candidates

9 candidates ID'd by Tim Parker

3 eliminated: no sign of MOLA topo in image

2 eliminated: albedo too variable

1 eliminated: mostly in shadow

3 sites studied, 1 using pair of images to suppress albedo var

PHX LS Workshop 11/29/05

PHX LS Workshop 11/29/05

Kirk—PHX LS Roughness from MOC

4

Slope vs. Baseline Phoenix B1-7 and MER Compared

Crater Slopes from Stereo

PHX D1 (degraded)

Slopes at 18 m baseline from stereo DTMs collected at 6-21 m/post

10

Adirectional Slope (°)

PHX A1

PHX LS Workshop 11/29/05 Kirk—PHX LS Roughness from MOC

PHX C1

14

20

Conclusions

- Reliable slope estimates have been obtained despite difficulties with sparse coverage, albedo variations and lack of clear topo features for PC haze calibration
- Stereo resolves hills and craters; PC resolves "basketball" nubs and pits
- Slopes on fresh craters, pits exceed 10° in small areas
- Slopes on pedestal & degraded craters, hills are ≤5°
- Slopes on "basketball" nubs are <<5°
- Overall, roughness compares to MER A/B sites

Spare Slides

PHX LS Workshop 11/29/05

Potential Problems

For stereoanalysis

- Scarcity of image pairs
- Poor image quality, lack of texture, surface changes, etc.
- Imaging modes not yet usable (cPROTO)
- "Jitter": high-frequency motion of s/c during imaging
 - Along stereobase —> "washboard" topography
 - Around boresight —> "lasagna" topography
 - Across stereobase —> difficulty sterematching ("beer goggles")

For photoclinometry

- Must be "calibrated" for contrast-reduction due to haze; requires presence of suitable features
 - Big enough to be resolved in stereo DTM
 - Small enough that photoclinometry is relatively accurate
 - Steep enough to modulate brightness appreciably
 - Not too much albedo variation
- Variations in albedo introduce artifacts in DTM

PHX LS Workshop 11/29/05

Why Roughness Hazard Assessment for Phoenix is Hard

- Geomorphology of landing zone is relatively uniform and large features are subdued/benign
- Identity, roughness of small features crucial
- A few huge boulders (fully shadowed) among the "basketball" bumps, or
- A continuum of bumps with slope-related shading more or less visible through their low albedo?
- Can only make quantitative discrimination by photoclinometry; features are only a few pixels so stereo does not resolve them
 - Requires good haze calibration (from stereo)
 - Equivalent question in qualitative terms: What do the features look like w/atmospheric haze stripped away? Better yet, with albedo stripped away?
 - High contrast (boulders/steep slopes/shadows), or
 - Low contrast (bumps/gentle slopes/shading)?

Low relief and strong albedo variations on features seen in stereo make them almost useless for calibration purposes

HiRISE images/DTMs will be incredibly valuable

•

Example: A favorable case (!) for photoclinometry calibration

PHX B3 S01-00601 3.36 m/pixel

Bigger albedo anomalies will distort whole PC DTM if not cropped out

Exceptionally uniform albedo in plains here as good as it gets for PC

> Local albedo variations here are more typical, will distort local features

> > This hill is as good as it gets for calibration... but close examination shows "shading" is mostly variation in density of bright cracks

PHX LS Workshop 11/29/05

Total I/F range 0.12-0.14 (15%) *Mostly albedo* "Calibration hill" is only 10 m high

Kirk—PHX LS Roughness from MOC

Portion of stereo DTM

Previously Reported Models

PHX LS Workshop 11/29/05 Kirk—PHX LS Roughness from MOC

Workshop 1 Sites

Vilking Lander 2 (PHX analog S of zone)

- 134°E 48°N
- M18-01468/E18-01379
- **PC** calibration difficult

Phoenix 0

(analog N of zone)

- 196.5°E 73.5°N
- E02-01891/R01-01314
- Stereo hopeless
- PC calibration difficult

Phoenix A1

- 251.6°E 66.8°N
- M23-02019/E23-00945
- Crater useful for calibration; assess roughness outside
- Phoenix C1
 - ◆ 64.6°E 70.2°N
 - M19-01733/E19-00409
 - Crater, bright polyg. cracks
 - Calibration poss but albedo variations make PC imposs

Phoenix D1

- M00-00483/R19-02207
- Very subdued crater
- Albedo variations, low relief for cal make PC impossible

PHX LS Workshop 11/29/05

Workshop 2 Sites

Phoenix B1

- 130.4°E 67.8°N
- R22-00168/S01-00644
- Subdued crater marginally resolved; PC cal impossible

Phoenix B2

- 131.6°E 67.6°N
- R23-00231/R22-00846
- No resolved features, albedo variable; PC calibration impossible

- Phoenix B3
 - 131.4°E 67.2°N
 - S02-00705/S01-00601
 - Some resolved hills; PC calibration maybe possible
- Phoenix B4
 - 126.6°E 67.1°N
 - S02-00736/S01-00875
 - Crater w/ polygons on floor
 - Low hill with dark albedo; PC calibration impossible
- Phoenix A2
 - 259°E 69°N
 - R22-01155/R23-00908
 - No resolved features; PC calibration impossible

Viking Lander 2 – Utopia

VL2

PHX LS Workshop 11/29/05

Slope vs. Baseline at VL2: Modest slopes w/ conservative PC haze level

RMS Slope—Viking Lander 2 100 RMS Bidirectional Slope (°) 10 1 VL 2 - ST Area A (hills+plains) VL 2 - PC Area B (hills) VL 2 - PC Area C (plains) 0.1 10 100 1000 Baseline (m) Kirk—PHX LS Roughness from PHX LS Workshop MOC

One stereopair analyzed, ~20 km NNE of landing pt Stereo DTM not useful for calibration of image haze -using darkest pixel gives good agreement with stereo slopes: 4.5° RMS at 1.8 m

Flat area with bumpy texture has 2.9° RMS

11/29/05

Phoenix 0 – Scandia Tholi

Phoenix 0

Planetographic

11/29/05

PHX LS Workshop

Slope vs. Baseline at Phoenix 0: Very low slopes from MOLA and PC

First stereopair (after VL2) in Phoenix analog knobby terrain has severe jitter problems; stereo DTM useless

MOLA resolves km polygons, cal gives haze = 0

PC gives RMS slope 0.8° at 3 m with bumps well resolved

Max possible haze would give RMS slope 3.4°

Phoenix A1

Phoenix A1

Stereopair: m2302019 e2300945

٥

5

PHX LS Workshop 11/29/05

Kirk—PHX LS Roughness from MOC

Slope vs. Baseline at Phoenix A1: Low slopes outside crater

First stereopair in Phoenix Zone, on edge of Box A

Stereo DTM of crater rim gives excellent haze cal

ST gives RMS slope 3.7° outside ejecta —dominated by residual jitter effects

PC gives RMS slope 1.5° at S end of image (bumpy terrain farthest from ejecta blanket)

ST slopes inside crater rim ~10° to locally 20°

Phoenix A2

Phoenix A2

PHX LS Workshop 11/29/05 Kirk—PHX LS Roughness from MOC

Slope vs. Baseline at Phoenix A2

Second pair in Box A

ST Slope 0.8° RMS in N-S direction despite residual jitter "washboard"; almost no real features seen

PC calibration impossible without features in ST

Phoenix B1

Planetographic

PHX LS Workshop 11/29/05

Phoenix B2

Planetographic

PHX LS Workshop 11/29/05

Phoenix B3

PHX LS Workshop 11/29/05

Phoenix B4

Kirk—PHX LS Roughness from MOC

PHX LS Workshop 11/29/05

Slope vs. Baseline at Phoenix B1-7

Four stereopairs analyzed

ST slopes range from 1.0°-2.5° RMS

Three images cal to MOLA for PC

PC slopes range from 0.8°–1.6° RMS

Phoenix C1

Phoenix C1

PHX LS Workshop 11/29/05 Kirk—PHX LS Roughness from MOC

Slope vs. Baseline at Phoenix C1: Stereo gives low slopes outside crater

First pair in box C (W edge) is crater with polygons on floor

Stereo gives RMS slope 1.5° inside and out

Good topo (crater rim) for calibrating haze but terrain consists of bright fractures on dark background; PC impossible

Slopes on crater rim ~8° to locally 15°

Phoenix D1 – Scandia Colles

MOLA MOC Ortho m0000483 Raw Stereo DEM Corrected Stereo DEM 6 meters/pixel 6 meters/pixel 6 meters/pixel 6 meters/pixel 118°42' 118°40' 118°38' 118°36' 118°42' 118°40' 118°38' 118°36' 118°40' 118°38' 118°36' 118°40' 118°38' 118°36' 118°42' 118°42' Stereopair: m0000483 r1902207 -68°24 -68°24 68°24 -68°24 -4039 - -4028 -68°23' 68°23' 68°23' 68°23' -4027 - -4017 -4016 - -4006 -4005 - -3995 -3994 - -3984 68°22' 68°22' -68°22' -68°22 -3983 - -3973 -3972 - -3962 -3961 - -3951 -3950 - -3940 -68°21' 68°21' 68°21' 68°21 -3939 - -3929 -3928 - -3918 -3917 - -3907 -3906 - -3896 68°20' 68°20' -68°20' -68°20' -3895 - -3885 -3884 - -3874 68°19' 68°19' 68°19' -68°19' 0 0.5 Km Planetographic -68°18' -68°18' 68°18' 68°18' 118°42' 118°40' 118°38' 118°36' 118°42' 118°40' 118°38' 118°36' 118°42' 118°40' 118°38' 118°36' 118°40' 118°38' 118°38' 118°36' West

PHX LS Workshop 11/29/05

Phoenix D1

Slope vs. Baseline at Phoenix D1: Stereo gives moderate slopes

RMS Slope—Phoenix D1 Scandia Colles 100 3MS Bidirectional Slope (°) 10 Phoenix D1 - ST a 0.1 10 100 1000 1 Baseline (m) PHX LS Workshop Kirk—PHX LS Roughness from

First pair in box D is bumpy with degraded crater

Stereo gives RMS slope 4.4°

PC unlikely to give reliable results because of albedo variations; calibration difficult because of absence of well defined relief features

11/29/05

MOC.