High-Resolution Slope Estimates of MER Landing 'Sites from MOC-NA Images

Randolp Kirk
USGS Ast neology Team
MER Landing Site Workshop 1 9 January 2003

Outline

- Objectives
- DEM Count
- Methodology
- Error assessment
- New results
- Summary

Objectives

Objective is to assess safety of MER sites in terminal phase of landing with airbags

- Safety to be assessed by Monte Carlo simulation of bounce trajectory
- Failure mode 1: bounce too vertically (crunch!)
- Failure mode 2: bounce too horizontally (rip!)
- Failure mode 3: bounce or drop off cliff (spoofing)
- USGS supplying DEMs of each site \& morphologic unit; simulations weighted by unit area
- Summary statistics of slopes at $5-\mathrm{m}$ baseline (airbag diameter) will be presented here
- Useful for purposes of comparison
- Not the official criterion

Topographic Model Count

Site WS2 WS3 PR WS4 Totals

MPF
Elysium
Gusev
Hematite Isidis
Athabasca
Eos
Melas
Totals

$\begin{array}{lllll}5 & 8 & 2 & 7 & 22\end{array}$

Photoclinometry \& Stereo

MER LS Workshop 01/09/03

Methodologies Compared

Photoclinometry

- Single image
- Horizontal res 1 pixel
- Measure, I slopes
- Neighbor hts to << 1 pix
- Errors grow w/baseline
- Radiometric
- Artifacts if albedo varies
- Scale error if haze not calib. to stereo/MOLA
- No absolute heights
- CPU \& labor intensive

Stereo

- Two convergent images
- Horizontal res ≥ 3 pixels
- Vert res 0.2 pix / (b/h)
- ~1 pix for MOC
- Independent of baseline
- Geometric
- Ignores albedo
- Ignores atmosphere
- Absolute heights require control (e.g. to MOLA)
- CPU \& labor intensive

Which Results to Use?

Prefer stereo when

- Samples larger, more representative area
- PC is compromised by albedo variations

Prefer PC when

- Albedo variations not dominant
- Stereo fails to resolve relief elements
- Stereo matching/editing errors severe

Slope Analysis of DEMs

Direct calc of slopes

- Adirectional (gradient) or bidirectional (e.g. E-W)
- Gives shape of entire slope distribution
- Distributions are longtailed: extreme slopes are more common than RMS slope might suggest
- Limited to single horizontal baseline at a time

Fourier transform

- Limited to bidirectional slope
- Gives RMS slope only, not distribution
- Quickly gives variation with baseline
- Are slope-producing features adequately resolved?
- Requires care in mirroring and (not) windowing data to avoid end effects

Error Assessment

Tests to quantify stereo,PC errors for

- MER LS Slopes Peer Review (9/02)
- JGR special issue
- Assess matcher errors w/ parallax-free image
- Compare USGS/MSSS/JPL stereo DEMs
- Compare overlapping stereopairs of MPF site with each other and other datasets
- Trough/ridge in stereo DEMs now understood
- Assess PC errors with synthetic images of fractal surfaces
- Compare 2D photoclinometry results (fractal and real) with point photoclinometry

Test of Matching Errors

- Utilize "typical" MOC stereopair (Gusev)
- Resample nadir image to approximate size, skew, etc. of oblique image
- Collect DEM as if this were the oblique image (result should be flat, or at least planar)
- Remove residual tilt of DEM, examine "relief", ascribable to matcher errors
- Amplitude of error 0.22 pixel (vs 0.2 pix ROT)
- Amplitude+correlations \rightarrow statistical model of "slopes" caused by matching errors
- Observed slopes exceed error slopes for all but the smoothest units

Matcher Test DEM Results

Typical image area

Bland image area
Stretch is $\pm 7.5 \mathrm{~m}$ for both

Comparison of Stereo DEMs

- Compare USGS/MSSS-Harris/JPL models of Melas Chasma pair
- Must coregister to same sample spacing and coordinate system, remove tilt/arch
- USGS-MSSS show random differences consistent with 0.22 pixel matching errors
- USGS-JPL differences smaller; matcher behavior correlated?
- Compare new, old models of MPF site
- Overlap consistent w/~0.2 matching errors
- New data at landing point shows slopebaseline consistent with IMP results, etc.

USGS-MS³ DEM Comparison

USGS-JPL DEM Comparison

MPF 1: SP125603/SP123703

MPF 2: M1102414/E0402227

MPF 1-MPF 2 Comparison

Comparison with Other Data

Mars Pathfinder Landing Site: RMS Slope vs. Baseline

Trough/Ridge in Stereo DEMs

- Optical distortion (~1\% pincushion) identified as cause
- Error proportional to
- Amount of distortion
- Inverse of (base/height)
- Distance on ground between boresight tracks

Simulated Images to Assess Photoclinometry Errors

Example of Simulations

Simulation Results

- Const albedo: 2D PC slopes accurate to $\leq 2 \%$
- Varying albedo: stripe artifacts add to apparent slopes
- Effect is much greater if slope baseline crosses stripe (sun) direction at an angle
- Filtering DEM largely eliminates these errors
- Point PC and 2D PC results agree to $<5 \%$ when correctly interpreted \& compared
- Point PC gives downsun slope across each pixel
- 2D PC results usually quoted as slope between adjacent pixel centers, in sample direction
- Haze estimation may be the biggest error source in practice (10-20\% ?)

Effect of Haze and Albedo

Elysium 1: E18-00429/E21-00119

Slope vs. Baseline at Elysium: First stereo result; no PC

One stereopair obtained and analyzed

Stereo slopes intermediate: 3.5°

Albedo appears to vary; consistent solution for haze not found so no PC slope results

Does stereo resolve features?

Is area representative of ellipse?

Gusev 3: M0-301042/E17-01547

Gusev 4: E17-00827/E18-00184 Gusev 5: E05-03287/E18-00184

Gusev 6: E19-00218/E21-00256

Slope vs. Baseline at Gusev: Consistent data, geologic variety

Stereo resolves main roughness elements but PC resolves them better, preferred

Many morphologic units with large range in roughness

Safety of site depends on area coverage as well as outcomes of simulations on individual units

\square Hematite 3: E02-00970/E17-00918

"Rough" crater ejecta

Typical smooth plains

Hematite 4: E12-03255/E18-00595

\square Hematite 5: E15-00023/E21-01653

Slope vs. Baseline at Hematite: Finally, an answer (It's smoooth!)

Stereo matching succeeded in areas 4, 5-RMS slopes $1.2^{\circ}-1.5^{\circ}$ despite crater in each area
Consistent with previous PC slopes (uncontrolled) in areas without severe albedo variations

Consistent with upper limit $\sim 1^{\circ}$ for failed stereo in area 3

Isidis 2: E13-00965/E14-01522

Slope vs. Baseline at Isidis: First result within ellipse is rough

Now have stereo in ellipse; strong albedo variations prevent PC

Stereo slopes similar to previous area ~150 km from ellipse, but rougher (6°)

Area is heavily cratered, may be rougher than average ellipse

Summary of Slope Results

Slope Statistics \& Locations

MER LS Workshop 01/09/03
Kirk—MER LS Roughness from MOC
RMS Bidir / 99\% Adir

Gusev 1: E02-00665/E02-01453

Gusev 2: E02-00341/E05-00471

Isidis 1: E02-02016/E02-01301

Athabasca 2: M07-05928/E10-02604

Athabasca 3: M07-00614/E05-00197

Slope vs. Baseline at Athabasca: Complicated

Stereo resolves main roughness elements

Photoclinometry confirms no unresolved features

Slopes vary with location

Note high PC slopes at long baselines (rolling topography or albedo varying?)

Stereo results preferred

Eos 1: E02-02855/E04-01275

Eos 2: E04-02155/E11-02980

Slope vs. Baseline at Eos: Sampling effect on PC

Melas 1: E02-00270/E05-01626

Melas 2: M08-04367/E09-02618

Melas 3: M04-00361/E12-00720

Slope vs. Baseline at Melas: Stereo lacks resolution

Stereo fails to resolve dunes

Photoclinometry resolves dunes, gives best slope estimates

Stereo appears to resolve layer topographyfortunate, since PC is impossible because of albedo

